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Abstract 12 

The COVID-19 pandemic has resulted in public health interventions such as physical distancing 13 

restrictions to limit the spread and transmission of the novel coronavirus, causing significant effects on 14 

the delivery of physical healthcare procedures worldwide. The unprecedented pandemic spurs strong 15 

demand for intelligent robotic systems in healthcare. In particular, medical telerobotic systems can play 16 

a positive role in the provision of telemedicine to both COVID-19 and non-COVID-19 patients. 17 

Different from typical studies on medical teleoperation that consider problems such as time delay and 18 

information loss in long-distance communication, this survey addresses the consequences of 19 

physiological organ motion when using teleoperation systems to create physical distancing between 20 

clinicians and patients in the COVID-19 era. We focus on the control-theoretic approaches that have 21 

been developed to address inherent robot control issues associated with organ motion. The state-of-22 

the-art telerobotic systems and their applications in COVID-19 healthcare delivery are reviewed, and 23 

possible future directions are outlined. 24 

 25 

1 Introduction 26 

On January 30, 2020, the World Health Organization (WHO) officially declared the coronavirus 27 

disease 2019 (COVID-19) outbreak as a public health emergency of international concern (WHO, 28 

2020). Subsequently, the COVID-19 was assessed by WHO as a pandemic. The pandemic resulted in 29 

public health interventions to limit the spread and transmission of the novel coronavirus, causing 30 

significant effects on the delivery of physical healthcare procedures worldwide. For instance, to slow 31 

the spread of disease by stopping chains of transmission of COVID-19 and preventing new ones from 32 

appearing, social and physical distancing measures are strongly recommended globally, which resulted 33 

in dramatic reductions of in-person visits of patients to clinics or professionals. As this unprecedented 34 

crisis is likely to last for a long time and will possibly have multiple waves until a vaccine is available, 35 

rapidly seeking and developing a global solution to address this issue (i.e. physical distancing 36 

restrictions) will build confidence in delivering healthcare services either remotely or in-person while 37 

observing physical distancing.  38 
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Intelligent robotic systems, especially telerobotic systems, can play a positive role in this pandemic 1 

as they can effectively improve the fully remote or physical distancing-aware healthcare procedures 2 

(Tavakoli et al., 2020). Specifically, robotic and telerobotic systems can significantly reduce the risk 3 

of infectious disease transmission to frontline healthcare workers by providing a way to triage, evaluate, 4 

monitor, and treat patients from a safe distance. Moreover, medical robots have inherent advantages 5 

including steady-hand, accuracy, motion scaling, and biomotion compensation, which lead them to be 6 

able to provide general supports for patients and medical professionals, and further alleviates the non-7 

COVID-19 burden placed on healthcare systems during this crisis. In fact, given the growing demands 8 

for remote-based healthcare services in the age of COVID-19, a motivation to urgently develop and 9 

apply technologies for robotics-assisted surgery has emerged. Inspired by the above-mentioned points, 10 

this paper focuses on a survey addressing the subject of teleoperation on medical applications. 11 

Teleoperation naturally indicates operating at a distance, which can perfectly meet the requirements 12 

of fully remote or in-person distancing-aware healthcare services during the COVID-19 pandemic. 13 

Meanwhile, a medical telerobotic system is capable of extending the human capabilities such as the 14 

facilitation of motion and/or force scaling, offering advantages in minimally invasive surgery including 15 

repeatability, accuracy, dexterity and fine manipulation, etc. In a general single-master/single-slave 16 

medical telerobotic system, the human applies a force on the master consoler, which results in 17 

movement commands transmitted to the slave manipulator that in turn mimics the human's operations.  18 

Designing a teleoperation system requires addressing many issues concerning sensors and actuators, 19 

communication media, time-delay problem, stability, and transparency. Most of the relevant work and 20 

surveys focused on teleoperation, which is assumed to include a stable environment on the slave site, 21 

aiming for perfect transparency, system stability, and solving time-delay induced problems (Hokayem 22 

and Spong 2006, Passenberg et al., 2010). However, a survey addressing problems for teleoperation 23 

with a moving environment is seldom studied. Differing from the most researched issues such as time-24 

delay, stability, and transparency, the most critical problem for teleoperation with moving environment 25 

is to synchronize the slave robot's motion with the movement of the object (the environment) so that 26 

the automatic robotic motion compensations can be deployed instead of manual ones by the human 27 

operators.  28 

A typical application of teleoperation in medical area is manipulating with physiological organ 29 

motion caused by cardiac and respiratory activity. The cardiac motion has important local effects on 30 

the heart and areas proximal to the heart. Respiratory motion affects the movement for the majority of 31 

the body, from the thorax to the abdomen (including heart, lungs, liver, pancreas and kidneys), and 32 

from inside to outside (such as chest and breast) of the body. It has been reported that organ 33 

displacements may range from 10 to 40 mm in anterior-posterior, left-right and superior-inferior 34 

directions during normal breathing (Keall et al., 2006). The physiological organ motion has significant 35 

effects on medical procedures such as (i) inside or outside moving-organ surgeries (the surgeon has to 36 

manually compensate for the organ motion), (ii) moving-organ evaluation (the ability to define accurate 37 

target volumes in radiation oncology is difficult), and (iii) image-based diagnosis and monitoring 38 

(image quality and quantitative accuracy are highly effected) (Uchinami et al., 2019). When the 39 

telerobotic systems (Ballantyne 2002) are used for the applications requiring automatic organ motion 40 

compensation, the current medical performance may need to be improved.  41 

Among many medical telerobotic systems (Avgousti et al., 2016, Evans et al., 2018), da Vinci 42 

robot (Intuitive Surgical Inc.) is currently the most widespread robotic surgical system, which not only 43 

can be used for teleoperation over remote distance but also can perform a variety of surgeries, 44 

evaluations, diagnosis, and monitoring. Those functionalities involve scaling the operator's actions 45 

over a small distance and with a negligible communication-delay. Experimentally, the communication 46 

delay will be kept within in 5 ~ 10 milliseconds, and the effects caused by communication delay is 47 

https://www.sciencedirect.com/topics/medicine-and-dentistry/thorax
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trivial and can be negligible. In the short-distance applications, the master console and the slave 1 

manipulators are generally placed in the same operating room or different operating rooms in the same 2 

clinic, the time-delay problem, therefore, is trivial and negligible.  3 

In this paper, we narrow down the teleoperation systems to short-distance medical telerobotics with 4 

applications accompanying with physiological organ motion, and mainly focus on the issue of motion 5 

compensation. The aim of this survey is to present the state-of-the-art of the medical telerobotic 6 

systems with applications requiring motion compensation and the related control strategies. The rest 7 

of the paper is organized as follows. Section 2 deals with the control strategies of robotic-assisted 8 

systems with an emphasis on the control for automatic motion compensation. Section 3 focuses on 9 

clinical applications with telerobotic systems and solutions to effectively deliver healthcare services 10 

during the COVID-19 pandemic. Section 4 discusses the perspectives of future work and concludes 11 

the paper.   12 

2 Teleoperation for Organ Motion Compensation 13 

The mission of advancing medical telerobotic systems is to boost medicine performance by improving 14 

patient care, expanding access to high-quality therapy, and enhancing physician education, safety, and 15 

efficiency. For medical telerobotic systems with physiological organ motion such as respiratory and 16 

heartbeat motion, to minimize the risks of tool-tissue collision and tissue injury, an idea of automatic 17 

synchronization of the movement of robotic manipulator’s end-tip with the moving organ is proposed. 18 

This inspires the development of telerobotic systems to provide compensation for the physiological 19 

organ motion to assist the human in performing operations accurately and safely. Indeed, if the robotic 20 

system can move a surgical instrument (e.g., catheter, ultrasound probe, forceps) in synchrony with the 21 

target tissue while the organ moves, it can provide significant benefits to the surgeon and give him/her 22 

a feeling of performing surgery on a stationary organ. 23 

2.1 Teleoperation Systems 24 

In a telerobotic system, the master console controls a remote slave robotic manipulator by sending 25 

position/velocity commands and receiving potential haptic/visual feedback signals, as well as the 26 

information of slave robot status. Teleoperation systems can be divided into three categories with their 27 

features: unilateral teleoperation systems, bilateral teleoperation systems, and multilateral teleoperation 28 

systems.  29 

In a typical single-master/single-slave teleoperation system, if the slave does not possess a force 30 

sensor, which causes the human operator losing the sense of touch, then this system is called a unilateral 31 

teleoperation system. In contrast, if the slave possesses force sensors and is able to transmit the force 32 

feedback to the master, then this system is called a bilateral teleoperation system. In other words, the 33 

human can feel the interaction force between the slave robot and what it is touching, enabling the 34 

human to efficiently manipulate the master robot to provide appropriate commands. When a 35 

teleoperation system is consisting of more than one master consoles and/or slave manipulators and 36 

involves more than one sensed and command signals flow between the human operator and the 37 

environment, the system is called a multilateral teleoperation system. A multilateral framework not 38 

only allows for a one-to-one correspondence between the operator-master and the slave-environment 39 

sets, but also realizes collaborative scenarios between multiple operator-master sets and/or multiple 40 

slave robots.   41 

2.2 Physiological Organ Motion  42 

 43 
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The motion of a moving organ is primarily induced by respiratory and/or heartbeat motions with 1 

different frequency ranges. In order to mimic the physiological organ motion in experiments, the 2 

studies can be classified into two categories: organ simulators and living organ. By designing 3 

mechanical devices, the organ simulators can be controlled to mimic the moving organ’s motion based 4 

on pre-acquired organ motion data (Yang et al. 2016, Cheng and Tavakoli, 2019b) or biological signals 5 

(Cheng and Tavakoli, 2018c). In vivo experiments use living porcine organ (Kesner and Howe 2014) 6 

or dog organ (Mansouri et al. 2018) to demonstrate the control techniques. Specifically, in Yang et al. 7 

(2016), a stereo video of in vivo porcine heart, which recorded image sequence of a totally endoscopic 8 

coronary artery bypass graft from a daVinci (Intuitive Surgical, CA) surgical platform, was used to 9 

measure the 3D heart positions offline by vision tracking. The quasi-periodic 3D heart motion signals 10 

were transmitted to a Motoman SIA-5F (Yaskawa America, Inc., Miamisburg, OH, USA) 7-DOF serial 11 

manipulator (Cheng and Tavakoli, 2019b) to control the manipulator to work as a real heart organ.  12 

2.3 Motion Compensation Control Techniques 13 

To compensate for the physiological organ motion and synchronize a robot's motion with the organ's 14 

motion, various control methods have been proposed for both handheld robotic systems (Yuen et al., 15 

2009, Poulsen et al., 2012, Winter et al., 2015, Ting et al., 2018, Salehi et al., 2018, Kolbitsch et al., 16 

2018) and telerobotic systems (Ginhoux et al., 2005, Gangloff et al., 2006, Cheng and Tavakoli, 2018a). 17 

In the paper, we mainly focus on motion compensation control methods for telerobotic systems, which 18 

generally falls into four categories: position control, force control, impedance control, and hybrid 19 

control.  20 

2.3.1 Position Control  21 

The position-based controllers need the real-time organ position and use that to synchronize the slave's 22 

movement with the organ's motion. For a teleoperation system, to further control the slave robot to 23 

mimic the human's operation, the summed positions of the master and the moving organ are used as a 24 

reference position for the slave robot to follow. A pure position-based telerobotic control system 25 

belongs to a unilateral teleoperation system as it provides the human without haptic feedback.  26 

Before discussing robot controllers, a vital issue is to measure the moving organ position in real 27 

time. To this end, many image-based sensors have been widely used in research such as high-speed 28 

camera/laparoscopy (Nakajima et al., 2014), X-ray fluoroscopy (Ma et al., 2020), computed 29 

tomography (CT) (Su et al., 2013), magnetic resonance imaging (MRI) (Yang et al., 2014), positron 30 

emission tomography (PET) (Bettinardi et al., 2013), and ultrasound imaging (US) (Bowthorpe and 31 

Tavakoli, 2016a, b, Diodato et al., 2018). To get performance, hybrid imaging systems are also 32 

developed to measure precise organ motion including MRI/US imaging (Celicanin et al., 2018), 33 

MRI/CT imaging (Neumann et al., 2017), PET/CT imaging (Bettinardi et al., 2013, Pepin et al., 2014), 34 

and PET/MRI (Kolbitsch et al., 2018). The above-listed measurements have their advantages and 35 

limitations, which are elaborated in Table I. 36 

Table I. ADVANTAGES AND DISADVANTAGES OF MEDICAL IMAGING MEASUREMENTS 37 

Measurements Advantages Disadvantages 

High-speed 

camera 

Accurately measure real-time organ 

position by tracking points on the tissue 

It only visualizes the outer surface of the 

moving organ and is not appropriate for 

surgeries performed inside of the organ. 
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X-ray 

fluoroscopy 

and CT 

Cancerous organ scanning inside the 

body, such as of the thoracic and 

abdominal viscera. Precise. 

It exposes patients to a dose of radiation 

that is capable of damaging cells and 

initiating changes leading to cancer. 

MRI Avoid radiation issue and can provide 

high-quality imaging, especially to 

discover tumors. 

Expensive. Patients with iron-

containing metallic implants cannot 

undergo MRI scanning because MRI 

machine can dislodge those implants.  

US Study heart function, blood flow in the 

neck or extremities, gallbladder 

disease, and fetal growth and 

development. 

Image quality is heavily operator-

dependent, and its sampling frequency 

is low. 

 1 

Non-image-based sensors have also been used to collect moving organ motion data such as 2 

sonomicrometric sensors (Bebek and Cavusoglu, 2007), optical measurement (Ruszkowski et al., 3 

2016), and electromagnetic tracking system (Loschak et al., 2020).  4 

Once the position of the moving organ is measured, robot controllers aimed for motion 5 

compensation can be deployed. Controllers for physiological organ motion compensation can be 6 

classified into error feedback controllers, predictive feedforward (prediction-based) controllers, and 7 

predictive feedback controllers, as elaborated in the following: 8 

Error feedback controllers directly use the measured position as a reference signal for the medical 9 

robot. A proportional–integral–derivative (PID) controller is widely used to continuously calculate an 10 

error value (Murphy, 2004). However, the error feedback controller is found to be unable to reduce 11 

tracking error sufficiently if used solely.  12 

Prediction-based controllers use the estimated current organ position as the setpoint to move the 13 

medical tools. It aims to develop accurate mathematical models of the organ's motion by using one or 14 

more previous measured motion dataset. The primary goal is to improve motion tracking performance 15 

by developing estimation methods. To this end, Taken's theorem (Ortmaier et al., 2005), artificial 16 

neural network (Cheng and Tavakoli, 2019c, Hirai et al., 2019), extended Kalman filter (EKF) (Liang 17 

et al., 2014), receding horizon model predictive controller (Bebek and Cavusoglu, 2007), and recursive 18 

least squares based adaptive filter (Tuna et al., 2014) have been investigated in the developments of 19 

prediction-based controllers. 20 

Predictive feedback controllers not only need the organ's current position but also take the tracking 21 

error into account. By considering the physiological organ motion as periodic disturbances, controllers 22 

such as model predictive controllers (MPC) (Gangloff et al., 2006, Vrooijink et al., 2017), Smith 23 

predictor-based controllers (Bowthorpe et al., 2013, Bowthorpe and Tavakoli, 2016a), generalized 24 

predictive controllers (GPC) (Bowthorpe and Tavakoli, 2016b), and repetitive-GPC (R-GPC) 25 

(Ginhoux et al., 2005) were used. As these methods rely on the known organ motion model, the 26 

robustness of the system to irregular organ motion is challenging.  27 

2.3.2 Force Control  28 

For applications that require tool-tissue contact such as ablation and biopsy with controlled depth, a 29 

significant breakthrough in medical telerobotics is facilitated by force-reflecting haptic feedback, 30 

which allows the human to perceive the forces applied by the slave robot on the environment (a moving 31 

target). Force feedback (haptic feedback) increases the transparency of the teleoperation, which 32 
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enhances human operator’s immersive maneuver on the master consoler. Such function, as mentioned 1 

earlier in the paper, requires sensory feedback information. In other words, a force/torque sensor should 2 

be mounted on the slave side to measure and transmit slave-environment interaction forces. To 3 

simultaneously compensate for the physiological organ motion, various force-based control methods 4 

are proposed. The control goal is to keep the slave-environment interaction forces at a constant value 5 

so that the human can have a haptic feeling that the environment is motionless through force feedback. 6 

Moreira et al. (2014) proposed a force control scheme using an active observer (AOB) based on a 7 

viscoelastic interaction model (soft tissue model) to compensate for the physiological motion. The 8 

model-based force control used the AOB to estimate the system states and an extra state, which is 9 

employed to compensate for system disturbances and modelling errors. Dominici and Cortesao 10 

achieved motion compensation by designing a cascade MPC architecture with a Kalman AOB 11 

(Dominici and Cortesao, 2014). The AOB inner loop provides stable closed-loop dynamics, and the 12 

MPC outer loop generates reference forces for AOB control for autonomous motion compensation. 13 

The authors further proposed another force control scheme by using a double AOB architecture 14 

(Cortesao and Dominici, 2017). In the work of Mohareri et al. (2014), the authors developed an 15 

asymmetric force feedback control system for bimanual telerobotic surgery using the da Vinci surgical 16 

system. To avoid instability issues caused by the closed-loop system, the authors proposed to use one 17 

hand to exert force through the master robot and use the other hand to perceive force feedback from 18 

the slave robot. He et al. (2020) proposed a neural network-based force control scheme to compensate 19 

the eyeball motion in retinal surgery, in which the tool-eyeball interactive force is feed into the neural 20 

network and the latter is trained to command the robot manipulator to move according with the eyeball 21 

movements.  22 

2.3.3 Impedance Control  23 

Different from the position control and the force control, which are utilized to control position or force 24 

variables separately, impedance control is a compliant control, which is employed to achieve desirable 25 

dynamic interaction between a robot manipulator and its environment. In other words, impedance 26 

control can control the dynamic relationship between robot motion and robot-environment interaction 27 

force as desired. For a robotic manipulator aiming to compensate for the organ's motion, the robot and 28 

the moving organ can be expressed as impedance and admittance, respectively (Hogan, 1984, 1985). 29 

The goal of impedance control is to regulate the dynamic relationship to achieve the requirements of 30 

automatically compensating for the organ motion while keeping the interaction force in a safe range.  31 

Florez et al. (2012) proposed a method that uses an impedance control on a handheld robotic 32 

instrument to compensate for physiological motion. The handheld system allows the human to perform 33 

low-frequency motions that correspond to the task. At the same time, the part of the instrument 34 

contacting the moving organ actively moves in synchronism with the organ's motion to keep a constant 35 

contact. Zarrouk et al. (2010) proposed an adaptive control architecture based on model reference 36 

adaptive control to solve the 3D physiological motion compensation in beating-heart surgery. A 37 

reference impedance model and an adaptive controller were designed for the surgical robot. The 38 

aforementioned impedance-controlled systems are developed for handheld medical robotics instead of 39 

teleoperated systems. In the work of Cheng (Cheng and Tavakoli, 2018b, 2019b; Cheng et al., 2018a) 40 

and Sharifi (Sharifi et al., 2018), the model reference adaptive control was applied to the bilateral 41 

teleoperation systems separately. The authors designed two reference impedance models for the master 42 

and slave robots, respectively. The slave reference impedance model was used to make the slave robot 43 

compensate for the living organ's motion, while the master reference impedance model has the ability 44 

to ensure the human to perceive non-oscillatory robot-organ interaction force. The oscillatory haptic 45 

feedback caused by oscillatory motion and force sensor inertia is filtered out by the master reference 46 

impedance model.  47 
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2.3.4 Hybrid Control  1 

Hybrid control combines two or more control schemes together, including hybrid position/force control, 2 

hybrid position/impedance control, etc. The goal of hybrid control is mainly to develop a compliant 3 

control scheme to achieve specific task requirements. In Yuen et al. (2010) and Kesner and Howe 4 

(2014), the authors separately incorporated position control and force control to achieve beating-heart 5 

motion compensation. These methods combined the US guidance with a force controller and are aimed 6 

to incorporate a feedforward term that contains the estimated motion of a beating heart. The US was 7 

used to measure the position of the moving organ, while the force controller was utilized to extend the 8 

device application from free motion to constrained contact motion. Nakajima et al. (2014) used visual 9 

servoing to compensate for the organ motion and performed haptic feedback using an acceleration-10 

based bilateral control method. System stability was evaluated through frequency characteristics and 11 

root locus. In Cheng and Tavakoli (2018c), an impedance control combined with an US image-guided 12 

position control was developed in a teleoperation system. The US scanner estimated the moving organ 13 

position and transmitted it along with the master robot position to the slave robot as a position reference. 14 

For non-oscillatory haptic feedback, a reference impedance model was designed for the master robot 15 

to provide the human with a steady slave-organ interaction force. 16 

3 Applications 17 

Significant interest has been documented for both interventional (e.g., therapeutic treatments such as 18 

surgery and protontherapy) and diagnostic (e.g., US scan, X-ray scan and biopsy) applications (Figure 19 

1).  20 

 21 

Figure 1. Scheme of the control methods for physiological motion compensation and the potential 22 

applications. 23 
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The corresponding telerobotic systems can significantly reduce the risk of infectious disease 1 

transmission to frontline healthcare workers by making it possible to evaluate, monitor, and treat 2 

patients from a safe distance. Moreover, the teleoperation techniques are able to provide general 3 

support for patients and medical professionals, alleviating the non-COVID-19 burden placed on 4 

healthcare systems during this crisis. The latter, i.e., secondary prevention and disease management of 5 

non-COVID-19 individuals who need therapeutic treatments or diagnosis during this difficult time, is 6 

of equal importance. Telerobotic and autonomous systems can support healthcare staff such as 7 

physiotherapists and surgeons during the COVID-19 pandemic through facilitating fully remote or in-8 

person distancing-aware physical treatments and diagnosis services. 9 

3.1 Teleoperated Intervention 10 

3.1.1 Telesurgery 11 

Telerobotics applications mostly involve articulated robot configurations with an interchangeable 12 

surgical tool that is mounted on the end-effector of the slave robot (surgical robot). Robot systems have 13 

been developed from the first functional telesurgery system-ZEUS-to the da Vinci surgical system, the 14 

latter is currently the only commercially available surgical robotic system. However, telerobotics for 15 

applications with physiological organ motion are mostly in the domain of research yet.  16 

Most of the proposed systems are application-specific medical telerobots, such as the telerobots 17 

used for beating-heart surgery (mitral valve prolapses and repair, atrial septal defect, atrial fibrillation) 18 

and percutaneous nephrolithotomy surgery (kidney stones, kidney cysts, kidney blockage). Compared 19 

to conventional surgery operations, the surgeries assisted by telerobotic systems requiring organ 20 

motion have significant advantages. First, the master-slave system enables remote or physical 21 

distancing-aware surgical procedures during the COVID-19 pandemic. Second, automatic 22 

compensation for complex physiological organ motion greatly reduces the difficulty of operation for 23 

surgeons and increases surgical accuracy, which turns to improve patient safety. Third, advanced 24 

technique introduces minimally invasive robotic surgery, which can be used for the surgeries 25 

mentioned above with benefits including small incisions, little pain, low risk of infection, short 26 

recovery time and reduced blood loss. Last but not least, specifically for beating-heart surgery, robotic 27 

surgery has been found to have additional advantages over the conventional arrested-heart surgery, the 28 

latter has to employ a heart-lung bypass machine (Angelini et al., 2002).  29 

3.1.2 Teleradiotherapy  30 

When a tumour locates close to the vital organs (heart, lung, etc.), radiation therapy is generally 31 

recommended as a useful treatment to destroy cancer cells and slow tumour growth without harming 32 

nearby healthy tissue. The goal of radiation therapy is to assess the true volume of the tumour and its 33 

real motion, and to obtain an accurate target delineation and an accurate and personalized definition of 34 

the treatment plan (Khan and Gibbons, 2014). As the breathing-induced motion has significant effects 35 

on organs (e.g. liver, lung, breast, kidney, prostate and pancreas) radiation therapy, accurately and 36 

automatically compensating for continuous physiological respiratory motion of organs is necessary. 37 

Indeed, if not correctly compensated, organ motion can lead to a spreading of the thermal dose, which 38 

is the cause of two severe issues: (i) loss of treatment efficiency, and (ii) generation of unplanned 39 

lesions in adjacent healthy tissues. Moreover, teleradiotherapy will be useful to get rid of the side 40 

effects of radiation therapy to the physicians.  41 

3.2 Telediagnosis 42 
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3.2.1 Tele-echography  1 

Ultrasound is an imaging modality that plays a significant role in medical emergency and surgical 2 

decision-diagnosis. To compensate for the limited availability of ultrasound experts in isolated areas 3 

(such as physical distancing-aware caused by COVID-19 pandemic), the use of robotic telemedicine 4 

systems is gaining attention. A commercial MELODY tele-ultrasound robotized system was developed 5 

by AdEchotech SME (France) (Vieyres et al., 2013) for long-distance US diagnosis. The slave robot 6 

is attached to an US probe through a probe holder. The human at the master site moves a fictive US 7 

probe as required for an echographic diagnosis. The MELODY system was designed to fulfil remote 8 

static organ diagnosis without considering issues such as moving organ motion compensation. Sharifi 9 

et al. (2017) developed a bilateral telerobotic system for echography in beating-heart surgery. Although 10 

it is just a proof of concept, the idea of the control scheme is worth to be considered for future 11 

commercial popularizing. 12 

3.2.2 Teleradiography  13 

Teleradiography allows radiologists or physicians to provide services without physically being at the 14 

location of the patient. Similar to tele-echography, by mounting the CT scanner or X-ray holder on the 15 

slave robot, the radiologists or physicians can remotely diagnose the patient's body without being 16 

exposed to radiation. Most importantly, robot-assisted organ motion compensation will be a benefit for 17 

accurate imaging and preventing the over-radiation of the patients.   18 

3.3 Training and Education  19 

The wide applicability of teleoperated interventions and telediagnosis will not only depend on the 20 

maturity of the technology but also the skill level of trained physicians. These applications require 21 

specialized skills compared to traditional methods. Moreover, it is essential that medical schools are 22 

equipped with such technologies to appropriately train physicians. Existing possibilities include the 23 

use of multilateral teleoperation systems with a multiple control console configuration to enable 24 

training or collaborative medical applications (Shahbazi et al., 2018, Cheng and Tavakoli, 2019a). 25 

4 Discussions and Future Directions 26 

Influenced by COVID-19 pandemic, the presented review focuses on a potential solution for remote 27 

and physical distancing-aware healthcare delivery – medical telerobotics. The review studies the 28 

medical telerobotics for applications with physiological organ motion, and discusses control schemes 29 

for motion compensation, potential applications and associated benefits. The medical telerobotics have 30 

been already employed in a wide range of diagnostic and interventional applications in different 31 

medical disciplines. To successfully apply medical telerobotic technologies to clinical practice, a 32 

significant issue is to develop appropriate control schemes for the specific application.  33 

Solutions only involving visual servoing (image-based position control) are found to have several 34 

limitations: (i) artificial and natural landmarks occlusion will affect the measurements of the landmark-35 

based sensors, (ii) tissue deformation during contact tasks will affect organ position measurement, (iii) 36 

physiological motion induces oscillatory force feedback and will affect human's performance. To deal 37 

with those issues, a latest research proposed a novel printing procedure to fabricate an electrical-38 

impedance-tomography strain sensor on an ex-vivo breathing lung. The authors integrate a visual 39 

sensing system with a 3D printer to track the time-varying 3D geometry of the lung (Zhu et al., 2020). 40 

The method presented in the above-mentioned research could aid modern medical treatments in myriad 41 

ways, such as printing electrode arrays for neural interfaces and printing bioscaffolds with engineered 42 

cells for tissue regeneration.  43 
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Another issue of position control is that when a position controller is used for contact tasks, the 1 

contact constraints will be treated as a disturbance resulting in increasing position tracking error, which 2 

probably leads to excessive interaction force. Therefore, a position control scheme in position tracking 3 

task works better in free motion than constrained motion. Applications such as biopsy and percutaneous 4 

puncture are more suitable to be performed by a position-based telerobotic control scheme.  5 

In clinical practice, most medical interventions require direct interaction between one or more tools 6 

with the patient's organs. To assure the patient's safety and provide the surgeon with a comprehensive 7 

perception, force feedback is necessary for medical telerobotics during robotized interventions. In 8 

addition to the limitations of sensors and systems available for force feedback teleoperations, the force 9 

control scheme has its drawbacks as well. As the goal of pure force control is to keep the contact force 10 

as the reference without position limitations, it leads that force control can only work in constrained 11 

motion.  12 

In fact, both position control and force control can be treated as extreme situations of impedance 13 

control. Specifically, the position controller has infinite impedance, while the force controller has zero 14 

impedance. Those controllers may be appropriate for applications in which the work exchanged 15 

between the robot and its environment is negligible. For applications where power exchange cannot be 16 

ignored, hybrid position/force interaction control or impedance control can be used to provide 17 

techniques to accommodate the side-effects.  18 

Medical telerobotics for applications requiring physiological organ motion have been developed 19 

considerably for the last 20 years, and they will be necessarily developed much further in the coming 20 

years, especially in the field of surgery and diagnosis. However, further efforts are required to address 21 

both clinical and technological challenges. 22 

An existing difficulty for the adoption of medical telerobotic technologies is to deliver accuracy and 23 

precision medical procedures, which require particular effort to overcome. For instance, precise 24 

interaction and force applied on the tissue by the robotic instrument, accurate dose delivery to the 25 

patients, and limited radiation exposure of the patients should be strictly controlled according to 26 

specific medical practice. Considering and regulating applicable requirements and specifications for 27 

medical procedures and devices will be a benefit for bridging the gap between engineering and 28 

medicine. Both patients' and physicians' safety are always the priority in clinical practice. Therefore, 29 

when adopting a medical device in clinical practice, the stability of the system, the robustness and 30 

reliability to an unforeseeable emergency such as irregular organ motion should be of great concern. 31 

Another significant issue that limits the spread of telerobotic system in clinical practice is the high 32 

cost of the medical devices. As the system development requires interdisciplinary knowledge including 33 

medicine, engineering, computer science, and mathematics, the challenges and costs are doubtless high. 34 

As a result, mature technology and standard requirements of specifications would be beneficial. 35 

Ultimately, medical telerobotics is a promising technology, which has significant advantages for 36 

healthcare delivery and can play a positive role in the COVID-19 pandemic as it can effectively 37 

improve the remote or physical distancing-aware healthcare procedures. The present review study of 38 

teleoperation for medical applications requiring physiological motion shows that various control 39 

methods have been proposed for specific applications. As a result, preliminary research towards this 40 

direction has already been achieved, but the deep potential of medical telerobotic for applications 41 

requiring organ motion remains largely unexploited. 42 

 43 

 44 

 45 
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