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ABSTRACT2

During an ultrasound (US) scan, the sonographer is in close contact with the patient, which3
puts them at risk of COVID-19 transmission. In this paper, we propose a robot-assisted system4
that automatically scans tissue, increasing sonographer/patient distance and decreasing contact5
duration between them. This method is developed as a quick response to the COVID-19 pandemic.6
It considers the preferences of the sonographers in terms of how US scanning is done and can7
be trained quickly for different applications. Our proposed system automatically scans the tissue8
using a dexterous robot arm that holds US probe. The system assesses the quality of the acquired9
US images in real-time. This US image feedback will be used to automatically adjust the US10
probe contact force based on the quality of the image frame. The quality assessment algorithm is11
based on three US image features: correlation, compression and noise characteristics. These12
US image features are input to the SVM classifier, and the robot arm will adjust the US scanning13
force based on the SVM output. The proposed system enables the sonographer to maintain a14
distance from the patient because the sonographer does not have to be holding the probe and15
pressing against the patient’s body for any prolonged time. The SVM was trained using bovine16
and porcine biological tissue, the system was then tested experimentally on plastisol phantom17
tissue. The result of the experiments shows us that our proposed quality assessment algorithm18
successfully maintains US image quality and is fast enough for use in a robotic control loop.19
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1 INTRODUCTION
Ultrasound (US) image acquisition is a popular medical imaging method because it does not involve21
radiation (like x-ray or CT do), is generally regarded as safe, has a low cost compared to other medical22
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imaging methods and is widely available. For a healthcare system that is struggling with COVID-19, US23
scanning is a way for COVID-19 diagnosis (McDermott et al., 2020; Buda et al., 2020), especially in24
developing countries where access to the lab kit is very limited. But there are some factors regarding the25
US scanning procedure during COVID-19 pandemic that need to be addressed. The first factor is the close26
contact between sonographers and patients; it is very important to minimize contact between sonographers27
and patients during the COVID-19 pandemic. It has been proven that close person/person contact is the28
main way for the transmission of the virus (Zu et al., 2020; Jarvis et al., 2020; Jin et al., 2020; Morawska29
and Milton, 2020). The second factor is related to COVID-19 patients with underlying conditions such as30
heart conditions. These patients are at heightened risk, and some of these underlying conditions need US31
imaging, like echocardiography. The third factor is that US imaging can also be quite time-consuming.32
Most US scans last between 15 to 45 minutes (NHL, 2018). For example, echocardiography takes almost33
20 minutes (Ebadollahi et al., 2001). Because of this, we need a system that helps a sonographer to scan34
tissue and decreases the contact duration (i.e, allows for greater distancing) between sonographers and35
patients. This paper proposes a quick, low-cost, and deployable solution for the problem mentioned above36
as a consequence of the COVID-19 pandemic. Robots can be very useful for solving this problem. The37
part of the scanning that requires experience and knowledge of the sonographer can be done the normal38
way, and the parts that put the sonographer at an increased risk of contacting the virus can be delegated to39
the robotic system just like the way x-ray systems work. Using robots during the COVID-19 pandemic40
can significantly decrease the risk of virus transmission (Tavakoli et al., 2020) particularly because the41
proposed robotic system can be sanitized between each US scanning procedure.42

The assessment of image quality is essential in developing robotic US scanning. Image quality assessment43
has been a challenging topic in medical image processing, and different methods have been proposed44
in the literature. There are three different categories of image quality assessment algorithm based on45
the availability of reference images or other supplementary information. The first category is called full-46
reference image quality assessment. A reference image (high-quality image) is available in this category,47
and the quality assessment metric is implemented by comparing a given image to the reference image.48
The second category is called semi-reference image quality assessment, in which the algorithm has access49
only to some information about the reference image, such as important features in the image. For instance,50
(Chen et al., 2020) uses the visual features (statistical features from contourlet transform) that are critical51
for both human perception and object recognition for sonar image quality assessment, but the reference52
image is not available. Semi-reference methods are more challenging than full-reference algorithms, and53
how to utilize the additional information is an important question for these algorithms. The final category is54
called no-reference image quality assessment, in which the algorithm does not have access to the reference55
image or any additional information related to it. This category is the most challenging but is very important56
and useful for medical image quality assessment (Chow and Paramesran, 2016). Being as typically we57
do not have access to quality reference images, the crucial part of no-reference image quality assessment58
is developing the quality metrics. Quality metrics should be based on features that are present in either59
high-quality or low-quality images. The extracted features need to be combined to build a quality metric60
that creates an image quality score.61

The problem with US images processing is the inherent noise in the images, making it difficult for a62
physician to interpret them. This makes US image quality assessment a very complicated task. In this63
paper, we propose a method for assessing the US image’s quality when a robotic arm is holding the US64
probe. We will incorporate the algorithm in the robot control loop for automatic scanning of tissue. An65
admittance-based controller will be used for the robot and automatically control the probe’s scanning66
force applied to the tissue. The admittance controller produces a desired position using a predefined67
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relationship between the position and measured force (Fong and Tavakoli, 2018; Zeng and Hemami, 1997).68
The US scanning assistant is shown in Figure 1. The sonographer uses a handle to position the robot by69
incorporating a robot’s built-in admittance control, and the robot adjusts the US scanning force applied to70
the tissue by analyzing the quality of the acquired image. This system reduces contact time and mitigates71
the risk of virus transmission between the sonographer and the patient. Being as the system scans the tissue72
based on image quality assessment feedback, the sonographer does not need to be next to the patient for73
the whole duration of the scanning.74

Figure 1. US scanning assistant including Panda robot arm, US probe, handle for sonographer, tissue
phantom, frame grabber, and robot base frame

The outline of the paper is as follows. In Section 2, we will give a brief review of previous medical image75
quality assessment algorithms, robot-assisted sonography and robotic admittance control applications.76
We will address the contributions of this paper in Section 2.4. We develop our proposed image quality77
assessment algorithm in Section 3 by giving details of the algorithm and discussing the specific image78
features it uses. In Section 4, we will give the details of the robotic admittance controller used in the system79
to adjust the US scanning force applied to the tissue. The experimental setup and the experimental results80
are presented in Section 5. We will conclude our method and its advantages in Section 6.81

2 PRIOR WORK
In this section, we will talk about previous work that has been done in medical image quality assessment,82
robot-assisted sonography, and robotic admittance control. We will talk about our contribution and novelty83
in the last paragraph of this section.84
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2.1 Medical Image Quality Assessment85

Medical image quality assessment is a broad topic across multiple imaging modalities, with each imaging86
modality having its features and characteristics that need to be considered. A review of different medical87
image quality assessment algorithms and their corresponding imaging modalities can be found in (Chow88
and Paramesran, 2016). The most crucial problem in medical image quality assessment is the unavailability89
of reference data, and most methods are based on no-reference image quality assessment algorithms.90
We can classify no-reference medical image quality assessment methods into model-based and image-91
based methods. The algorithm is based on modelling both images and noise in a model-based image92
quality assessment algorithm, such as the method proposed in (Zemp et al., 2003). On the other hand, in93
image-based quality assessment algorithms, metrics are present to assess the image’s quality.94

In US image quality assessment, different methods have been proposed for modelling image and noise.95
In (Zemp et al., 2003), the author uses Noise-Equivalent Quanta (NEQ) that models noise based on US96
machine parameters and tissue physical property information; an improved version of the signal-to-noise97
ratio. Structural Similarity Index Measure (SSIM) is a very famous image quality assessment metric and98
has been used in many different applications. The method proposed in (Renieblas et al., 2017) uses SSIM99
as the main quality assessment criteria and incorporates specific image features like preserved edges,100
structural similarity, and textures in the image.101

Image-based quality assessment methods propose criteria that formalize critical features for quality102
assessment. The method proposed in (Hemmsen et al., 2010) uses data management and data acquisition103
techniques to formalize the quality assessment metrics for US images. The authors of (Abdel-Hamid et al.,104
2016) use five important features of transformed images for building a quality assessment metric. These105
five features are sharpness, illumination, homogeneity, field definition, and content. The method proposed106
in (Abdel-Hamid et al., 2016) uses the wavelet transform and extracts the five image features from the107
transformed image, and combining them to create a formula for image quality assessment of human retina108
images.109

As one modality of medical imaging, US poses many challenges in terms of image quality assessment.110
These challenges come primarily from the noisy nature of the US images. US image’s quality is usually111
defined as an ability to see some tissue features or organs in the image. The method proposed in (Zhang112
et al., 2017) developed a method of segmenting the fetus in an US image, using a texton method on the113
image. The texton method performs segmentation and feature extraction, and a random forest classifier114
assesses the quality of the image based on the extracted features. (Schwaab et al., 2016) proposes the115
extraction of three features from breast US images and uses a random forest for classification of those.116
These features are the nipple position, the shadow caused by the nipple, and the breast contours’ shape.117
(Schinaia et al., 2017) used a method similar to (Schwaab et al., 2016), but incorporated 14 features and a118
correlation matrix for quality assessment. Deep Convolutional Neural Networks (CNN) have also proven119
to perform well for complicated tasks like this. (Wu et al., 2017) uses two deep convolutional neural120
networks called C-CNN and L-CNN for quality assessment. L-CNN finds an ROI (Region Of Interest)121
in the image, and C-CNN evaluates the quality of the image based on the extracted ROI. The output of122
C-CNN is the binary label segmentation of the US image. The method proposed in (Chatelain et al., 2015)123
and (Welleweerd et al., 2020) use confidence map, which was proposed in (Karamalis et al., 2012) for124
orienting and moving the US probe during scanning of the tissue. Confidence map methods are based on125
US signal propagation model inside of the tissue and the outcome is a map that can be used for feature126
extraction. The extracted features are the inputs to the controller and the output is the control signals for127
controlling the probe’s orientation and position.128
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2.2 Robot-assisted Sonography129

Robots can be very helpful to a sonographer during US scanning. Many methods have been proposed to130
facilitate the process of sonography using robots. (Najafi and Sepehri, 2011) developed a robotic wrist to131
perform US imaging on a patient at remote sites. This system has four degrees of freedom and has been132
used for US imaging of the liver and kidney. The device developed in (AbbasiMoshaii and Najafi, 2019)133
is placed on the patient’s body by an operator, and US expert controls the device’s motion to obtain US134
image. The paper focuses on the robotic mechanism that performs US imaging. The mechanism keeps135
the US probe in contact with the patient’s body and facilitates the sonographer’s US scanning procedure.136
(Fang et al., 2017) proposes a cooperatively robotic US system to reduce the force sonographers apply.137
This system consists of a six-axis robotic arm that holds and actuates the US probe. A dual force sensor138
setup enables cooperative control and adaptive force assistance using admittance force control. (Antico139
et al., 2019) prepared a good review of different methods proposed in robot-assisted US intervention, and140
(Moshaii and Najafi, 2014) is a good review of the mechanical details of robot-assisted US scanning.141

tele-sonography is developed for scanning the tissue using remote robot. (Sharifi et al., 2017) developed142
an impedance-controlled teleoperation system for robot-assisted tele-echography of moving organs such143
as heart, chest, and breast compensating for their natural motions. This system proposes two impedance144
models for master and slave robots. The slave robot follows the master robot’s trajectory but complies with145
the oscillatory interaction force of moving organs, and the sonographer receives feedback from the slave146
robot. (Sartori et al., 2019) proposes a solution for energy consumption in tele-echography on the master147
site based on properly scaling the energy exchanged between the master and the slave site. There are many148
challenges in designing tele-sonography system. The most important one is the high cost of the system and149
haptic feedback required in the master site. Using haptic feedback causes time delay in the system that may150
result discrepancy between sonographer and US probe during scanning. Our proposed method can be used151
as a local controller in the slave site to overcome this problem.152

2.3 Robot Admittance Control153

Admittance controller uses a predefined relationship between force and position. Authors in (Carriere154
et al., 2019) use admittance control to ensure compliance in a co-manipulated US scanning system155
controlling the force applied to the tissue and reducing exerted force from the sonographer. The method156
proposed in (Piwowarczyk et al., 2020) uses an admittance controller to scale the force applied by the157
user on the robot in relation to force applied to the environment. The stability of admittance-controlled158
robots and their ability to cope with different environmental forces have been investigated in (Ferraguti159
et al., 2019). Admittance control was used in (Li et al., 2018) for an exoskeleton robot to create a reference160
trajectory based on measured force. (Dimeas and Aspragathos, 2016) analyzes the stability of admittance161
control by detecting unstable behaviours and stabilizing the robot using an adaptive online method to162
tune the admittance control gains. The stabilization of the robot is based on monitoring high-frequency163
oscillations in the force signals. This idea was also used in (Landi et al., 2017) for stabilizing the admittance164
control when interacting with humans. The idea of incorporating neural networks and admittance control for165
robot trajectory tracking is developed in (Yang et al., 2018), in which the trajectory tracking is guaranteed166
by using a neural network while admittance control regulates torques to follow the desired trajectory.167
Authors in (Keemink et al., 2018) prepared a very good review of different applications of admittance168
control in robotics.169

2.4 Contributions of this Paper170

As we mentioned in Section 2.3, different methods and applications have been proposed for medical171
image quality assessment and robotic admittance control but all of them do not consider image feedback in172
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admittance controllers. The idea of combining image feedback and admittance controller in the US scanning173
procedure is the first novelty of this paper. We also allow for collaboration between humans and the robot to174
keep the sonographer in the loop during the US scanning procedure. The proposed method uses a real-time175
image quality assessment algorithm to inform the robotic system. The real-time nature of the proposed176
image quality assessment algorithm makes it suitable for the clinician in the loop robot-assisted medical177
applications. The combination of admittance control and online image quality assessment algorithm in the178
robotic arm ensures social distancing during the COVID-19 pandemic and has not been explored before in179
the literature.180

The second novelty of this paper is to propose a very quick, low-cost, and deployable solution for the181
COVID-19 pandemic that can be trained based on the preferences of the sonographers in terms of how US182
scanning is done in different applications. The training phase requires nothing more than the commodity183
hardware (e.g. a personal computer). This is a very important advantage of the proposed system over the184
method mentioned in Section 2.1. The proposed method has the ability to consider the preferences of185
the sonographers for different applications by incorporating it in the training phase. The sonographer can186
manually classify the training set and the system will tune the parameters for the sonographer’s preferences.187
To the best of our knowledge, this ability has not been investigated in the previous methods.188

The third novelty of the proposed method is the ability to be used in unilateral tele-sonography as a189
controller on the patient side. In a tele-sonography modality, the sonographer moves the robot to the desired190
position using a master robot. The sonographer needs to feel the contact force between the tissue and the191
probe during scanning. The system should have a haptic interface on the master site to enable this feature192
for the sonographer. Using a haptic interface could cause a time delay in the system during scanning as193
discussed in (Najafi and Sepehri, 2011; Sharifi et al., 2017; Moshaii and Najafi, 2014; AbbasiMoshaii and194
Najafi, 2019). The low-cost and better solution is using a unilateral tele-sonography system with a local195
controller on the patient site that adjusts the force applied to the tissue during scanning based on acquired196
image’s quality. Our proposed method can be incorporated as a local controller in the slave site to adjust197
the force applied to the tissue based on the preferences of the sonographers. This feature will remove the198
essence of having haptic feedback in the tele-sonography system and will decrease the cost of the system.199

3 IMAGE QUALITY ASSESSMENT ALGORITHM
As previously mentioned, US images are usually very noisy, and therefore, the tissue is not very clear200
in the images. This problem makes the automated assessment of US images complicated. A US image201
quality assessment algorithm should distinguish between different features in an image and decide on202
image quality based on the acquired features. For our proposed image quality assessment method, we203
will use a Support Vector Machine (SVM) classifier, which is compatible with small training sets and has204
proven to have a good ability to solve complicated problems, especially in medical applications.205
3.1 Image Quality Assessment Metrics206

We propose three distinct features for estimating the quality of the image. The first feature is based on the207
contact between the probe and the tissue. The second feature computes the level of compression caused208
by the US scanning force applied to the tissue. The third feature is an estimation of the noise level in the209
image. The noise level is estimated based on the statistical features of the noise in the US image. We will210
discuss each of the features in-depth in the following sub-sections.211
3.1.1 Correlation212

We use image correlation for modelling the contact between the tissue and probe. When there is no213
contact (or proper contact) between the probe and tissue, the US image will only consist of patterns of214
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arcs; see Figure 2a. When we have sufficient contact, however, actual tissue will be visible in the image.215
In Figure 2a, the image captured by the US machine was defined as no-contact image Inc in the sense216
that probe is not contacting the tissue when the image is captured. We define the contact feature as the217
correlation of no-contact image Inc with an image captured by the US machine Ik in every time step k218
of the experiment. The contact feature ck gives us a good estimation of the sufficiency of contact and219
ck ∈ [0, 1]. The mathematical details of how the correlation between the images is calculated and how220
contact between the probe and the tissue is defined are as follows:221

corr(Ik,Inc) =

∑M
px=1

∑N
py=1(Ik(px, py)− Ik)(Inc(px, py)− Inc)√

(
∑M

px=1

∑N
py=1(Ik(px, py)− Ik)2)(

∑M
px=1

∑N
py=1(Inc(px, py)− Inc)2)

(1)

ck =

{
1, if corr(Ik,Inc) ≥ tcorr

0, if corr(Ik,Inc) < tcorr
(2)

Here, the contact feature ck is the value of the correlation between the two images. (px, py) is the location222
of pixels in the image frame, and M and N are the height and width of input images, respectively. Ik and223
Inc are the average of the pixels’ intensities in the acquired image and the image with no contact with the224
tissue, respectively, and tcorr is the threshold for determining the contact level. Figure 2 shows two images,225
in which Figure 2a was captured when there is not enough contact between the tissue and the probe, and226
Figure 2b was conducted with sufficient contact. The x-y axis in the image frame is shown in Figure 2a and227
it is the same for all images in this paper.228
3.1.2 Compression229

The level of compression is a very important feature in US image acquisition. When the robot applies230
force to the tissue, it causes deformation. More force causes greater distortion/deformation. This causes231
pain for the patient, and may lead to wrong clinical diagnosis (Fang et al., 2017). The proposed compression232
feature is the difference between the maximum and minimum index of the pixels brighter than the threshold233
tcomp, relative to the image’s size in the vertical direction. The mathematical expression for calculating the234
image compression feature is as follows:235

U = max(py), where Ik(py, ∀px ∈ Ik) ≥ tcomp

L = min(py), where Ik(py,∀px ∈ Ik) ≥ tcomp

fc =
U − L
M

(3)

In (3), U and L are the maximum and minimum location of the pixels having intensity higher than tcomp.236
We define fc as the compression feature in (3). M is the height of the image along the y direction. Figure237
3 shows two images with different levels of compression. Figure 3a is the US image with a high level238
of compression, and Figure 3b is the US image with a low level of compression. We have also shown a239
variation of fc with respect to measured force in the z direction of the force sensor frame FZ|k (this is240
aligned with the y direction in image frame) in Figure 4.241
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(2a) Ultrasound image with no contact (2b) Ultrasound image with sufficient contact

Figure 2. Ultrasound images with and without contact between tissue and probe

3.1.3 Noise242

As we mentioned earlier, the US image is very noisy. The noise comes from the manner in which US243
captures an image. This noise feature is also very important for the quality assessment of US images. As244
a first step, we use a Wiener filter for removing speckle noise from the US image. The calculation of245
the Wiener filter is based on (Lim, 1990). The US image’s noise level can be estimated by the mean and246
standard deviation of the difference image between the original image Ik and the filtered image Ik,f . (4) to247
(8) show the mathematical explanation of using a Wiener filter to remove noise from the US image and248
calculate the noise feature.249

µ =

∑
px∈η

∑
py∈η Ik(px, py)

P ×Q
(4)

σ2 =

∑
px∈η

∑
py∈η Ik(px, py)

2

P ×Q
− µ2 (5)

Ik,f (px, py) = µ+
σ2 − ν2

σ2
(Ik(px, py)− µ) (6)

In = Ik − Ik,f (7)
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(3a) Ultrasound image with high tissue
compression

(3b) Ultrasound image with low tissue
compression

Figure 3. Ultrasound images with high and low level of compression

fn = In + σn (8)

Here, η is the neighbourhood with the size of P ×Q around each pixel of the noisy image and Ik(px, py)250
is the intensity of each pixel in the noisy US image. µ is the average of pixel intensity in the original US251
image, and σ2 is the corresponding variance value in (5). Ik,f (px, py) is the intensity of the US image252
after removing the noise using Wiener filter and ν2 is the noise variance in the image in (6). (7) finds the253
difference between US image Ik and filtered image Ik,f to find the US image’s noise. In (8), In is the254
average of noise in the image and σn is the corresponding standard deviation value. Figure 5 shows two255
images with high level (Figure 5a) and low level (Figure 5b) of noise. We have also shown in Figure 6, the256
variation of the noise feature fn in the US image with respect to measured force FZ|k.257

3.2 Support Vector Machine (SVM)258

The compression and noise features mentioned above will be used as an input to the SVM classifier (e.g,259
taking the output of the image feature calculation, (3) and (8), for Ik we then calculate the SVM score) and260
the correlation feature works as a gate. SVM classifier tries to find a line that separates two classes based261
on the features in feature space. SVM finds this line by optimizing a cost function based on the margin262
between two classes in feature space. There may be a need to increase the features’ dimension to find this263
line in a higher dimensional space.264

We tested the SVM using cross-validation. We used two different tissue phantoms to train and test the265
SVM, meaning we trained the SVM using one of the phantoms and tested it on the other phantom. The266
phantoms were biological porcine and bovine tissue. We trained the SVM using bovine phantom, and the267
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Figure 4. Compression feature with respect to measured force

trained SVM was tested on porcine tissue and vice versa. We will use the output of the SVM for robotic268
control.269

We created an image database for training and testing the SVM. To create a database, we used a robot270
arm to scan bovine and porcine tissue phantoms by scanning multiple points on these tissues automatically271
by increasing force values at each point. The scanning procedure started from one side of the tissue and272
continued by dividing them to many points and increasing the US scanning force applied to the tissue273
from 1 N to 20 N with an increment of 0.25 N . The force increment was based on force control feedback274
in the robotic arm by increasing the tissue indentation until the force value reached the desired force.275
This procedure was just used for creating a bovine and porcine image database. The images captured at276
each point on the tissue and the forces’ value were saved using a computer. A trained non-medical user277
then manually classified all images and a subset of 1000 images selected with 500 high-quality images278
and 500 low-quality images from the tissue phantoms’ US images for different force values. The images279
were classified subjectively by the user, and the images were determined to be high quality if there is280
sufficient contact between tissue and the probe and tissue is visible without significant deformation within281
the US image. The variation of the pixel intensity in the frame with respect the background was also282
been considered for image classification. The SVM was trained using 800 images with equal probability283
weighting in each of the two classes. The trained SVM was tested on the remaining 200 images. After284
training, the SVM has reached an accuracy (a ratio of the number of correct labels to all labels) of 96%285
on our test database. Figure 7 shows the procedure of training SVM using biological porcine and bovine286
tissue.287
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(5a) Ultrasound image with a high levels of
noise

(5b) Ultrasound image with a low levels of
noise

Figure 5. Ultrasound images with high and low levels of noise

The rule for updating the force’s value based on the output of the image quality assessment algorithm is288
shown in (9) and (10). We have also shown a block diagram of the quality assessment algorithm in Figure289
8.290

Vsvm = SVM(fc, fn);Vsvm ∈ {0, 1} (9)

FZ|k+1 = FZ|k + δF (1− Vsvm) (10)

4 ROBOT ADMITTANCE CONTROL
Our admittance controller in the x-y-z direction keeps the robot in the original x-y position and updates291
the z position based on the image quality assessment algorithm, as mentioned earlier. We transform the292
force sensor data into the base frame of the robot. Figure 1 shows the robot coordinate system during the293
experiments.294

We use the output of the quality assessment algorithm in the loop controlling the force applied by the US295
probe to tissue. Figure 9 shows the control loop for the z-axis used during the experiments. The admittance296
model calculates desired position of the robot based on the input force. Kθ is the gain for calculating how297
much torque should be applied at joints. The control loop works on two different frequencies. Dash lines in298
Figure 9 represent image-quality feedback working on 30 Hz, and the solid lines represent robotic control299
working on 1 kHz. We reduced the sampling time of robotic control to 30 Hz to avoid discrepancies300
during our experiment.301
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Figure 6. Noise feature with respect to measured force
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Figure 7. SVM training procedure
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Figure 8. Quality assessment algorithm

Figure 9. Robot control for the z axis
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The value of the force applied to the tissue in the z-direction is fed to the admittance controller. The302
transfer function describes the admittance model in (11). Where Xk(s) is the desired Cartesian position303
in the robot base frame, and Fk(s) is the force applied to the end effector in the robot base frame in the304
z-direction. M is the virtual mass matrix specified for the system. B and K represent specified damping and305
spring matrices, respectively. The matrices M, B and K are shown in Section 5. The admittance model in306
the feedforward finds the desired position for the system, while the feedback impedance model calculates307
the robot’s current position. We multiply the error by inverse jacobian J−1 and Kθ to find the error in joint308
space, and torque should be applied at joints.309

H(s) =
Xk(s)

Fk(s)
=

1

Ms2 + Bs+ K
(11)

For the experimental setup and results, which will be covered in 5, We chose the values of M, B and K310
for the parameters of the admittance model, as shown in the following matrices. The matrix of K has only311
one non-zero parameter (in the z direction) that controls the US force applied to the tissue. The values of M312
and K are based on (Piwowarczyk et al., 2020), and they were chosen empirically as a trade-off between313
sluggishness and control of the system. We calculated the value for B to have a critically damped response314
in the z direction. The threshold values in our quality assessment algorithm were found empirically based315
on the SVM response in our US image database, these values are tcorr = 0.7 and tcomp = 20.316

M =

5.625 0 0
0 5.625 0
0 0 5.625

 kg

B =

33.54 0 0
0 33.54 0
0 0 33.54

 N · sec
m

K =

0 0 0
0 0 0
0 0 50

 N

m

5 EXPERIMENTAL SETUP AND RESULTS
In this study, an Axia80-M20 force-torque sensor (ATI Industrial Automation, Apex, NC, USA) was317
mounted on a Panda robotic arm (Franka Emika GmbH, Munich, Germany), which holds US probe (see318
Figure 1). We have used US machine for capturing images with an Epiphan DVI2USB3.0 (Epiphan Systems319
Inc, California, USA) for sending the image to the computer. The US machine used for the experiment was320
an Ultrasonix Touch with a 4DL14-5/38 Linear 4D transducer (Ultrasonix Corp, Richmond, BC, Canada).321
For this experiment, we only use the 2D functionality of the US probe. We used a tissue phantom made of322
plastisol as an artificial tissue for our experiment. The setup is shown in Figure 1.323

The admittance controller was programmed and implemented in MATLAB 2019a (The Mathworks Inc,324
Natwick, MA, USA) and ran using Simulink on a PC running Ubuntu 16.04 LTS. The PC has an Intel Core325
i5-8400 running at 4.00 GHz. The communication between robot and computer was done over UDP, and326
the Epiphan was connected to the computer using a USB port.327
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To evaluate the image qulaity controller algorithm, we selected six spots on the surface of the plastisol328
tissue and ran the proposed method on those six locations. We then manually classified the acquired images329
and found the values of Structural Similarity Index Metric (SSIM) and Peak Signal to Noise Ratio (PSNR)330
between the output of our quality assessment algorithm and our manual subjective results. The calculation331
of SSIM is based on (Wang et al., 2004). These values are reported in Table 1.332

Location SSIM PSNR

First Position 0.87 26.85

Second Position 0.76 20.60

Third Position 0.84 24.30

Fourth Position 0.88 28.16

Fifth Position 0.86 24.53

Sixth Position 0.82 22.54

Table 1. Similarity metrics’ value between quality assessment algorithm and subjective classification

The experiments are designed to test the feasibility of incorporating our quality assessment algorithm333
into the control loop. The robot increases the force applied to the tissue by going down in the z-axis using334
an admittance controller. Figure 10 shows the output of the quality assessment algorithm and the subjective335
result by the human operator. Figure 10a is the output of the quality assessment algorithm in one specific336
position and Figure 10b is the output of the manual classification of the image in that specific position.337
This will show that our proposed method provides US images of high quality similar to those taken by a338
sonographer.339

The values reported in Table 1 show the US image captured using our proposed image quality assessment340
method is similar to the result of manual classification. The similarity between the values of SSIM and341
PSNR in all six positions proves the generality of the proposed quality assessment method. Being as PSNR342
only compare the values of intensities without analyzing general features of the image like the shape of the343
organ inside the tissue. The SSIM finds the similarities between two images based on structural analysis.344
The values of SSIM are high for our experiment, which proves our algorithm performs very close to a345
human operator.346

We evaluated the performance of the proposed method experimentally by recording the values of each347
feature and the output of SVM by controlling the force applied to the tissue. Figure 11 shows the average348
value of compression value with respect to the force applied to the tissue during the test experiment. The349
values reported in this figure, are the average compression feature values in six different spots on the350
surface of the tissue. The bar in each force value represents the variation of the compression feature at351
the corresponding force value at all six locations on the tissue. We also reported the same variation for352
noise feature in Figure 12. Figure 13 shows the variation of SVM output during scanning of the tissue by353
increasing the force applied to it. The threshold value of tSVM divides the graph to two separate classes354
in which the top part is associated with class of high-quality images and the bottom part is related to the355
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(10a) Quality assessment output (10b) Subjective result

Figure 10. Output of quality assessment algorithm and human subjective classification

low-quality images. These graphs prove the generality of our proposed method in different situations as the356
variation of each feature across the different levels of force was within the limited range in all six locations357
on the tissue.358
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Figure 11. Variation of compression feature during the test experiment in all six spots on the surface of
the tissue
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Figure 13. Variation of SVM during the test experiment in all six spots on the surface of the tissue
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The experiments conducted in this section shows us that the level of force applied to the tissue using the359
quality assessment algorithm is whitin a reasonable range, based on the results shown in Figures 11, 12360
and 13. The general trend and variation of these features during scanning are consistent with respect to the361
applied force, which proves the generality of the proposed method. Figure 10 and Table 1 show us that the362
output of the quality assessment algorithm is very close to the desire of the sonographer that all the values363
reported in Table 1 are whitin a reasonable range and the image acquired using image quality assessment364
algorithm and the subjective result are very close to each other in Figure 10.365

6 CONCLUSION
This paper has presented US image quality assessment algorithm used for robotic control of US scanning.366
Our proposed quality assessment algorithm uses feature extraction and a SVM classifier to assess the367
acquired images’ quality. The algorithm estimates the US image’s quality based on correlation, compression,368
and noise features. These features are input into a SVM classifier to determine an image is of high quality369
or low quality. The algorithm was used as a part of the real-time control loop in the robotic US image370
scanning system. The user is able to put the US probe at a specific location on the tissue, and the algorithm371
will modulate the US scanning force applied to the tissue. An admittance controller was used internally372
to modulate the force. We evaluated the performance of the proposed system using different quality373
assessment metrics, showing close agreement between manual subjective assessment of the captured US374
image quality and the quality estimation from our algorithm.375

This system is designed to enable isolation between patients and sonographers during the COVID-19376
pandemic. In the future, we can control the US probe’s orientation in an autonomous manner to enable377
six degrees of freedom of the US probe during scanning. We can also incorporate the quality assessment378
algorithm into a teleoperation system to enable remote control of a US scanning robot. Here, the user379
can remotely move the robot to the desired location, with the algorithm appropriately adjusting the US380
scanning force automatically.381
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