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Abstract—In this survey, various concepts and methodologies
developed over the past two decades for varying and learning
the impedance or admittance of robotic systems that physi-
cally interact with humans are explored. For this purpose, the
assumptions and mathematical formulations for online adjust-
ment of impedance models and controllers for physical human-
robot interaction (HRI) are categorized and compared. In this
systematic review, studies on (a) variation and (b) learning
of appropriate impedance elements are taken into account.
These strategies are classified and described in terms of their
objectives, points of view (approaches), signal requirements
(including position, HRI force and EMG activity). Different
methods involving linear/nonlinear analyses (e.g., optimal control
design and nonlinear Lyapunov-based stability guarantee) and
Gaussian approximation algorithms (e.g., GMM-based and DMP-
based strategies) are reviewed. Current challenges and research
trends in physical HRI are finally discussed.

Index Terms—Human-robot interaction (HRI); impedance and
admittance models; impedance variation; impedance learning;
impedance control; robot learning; robot stability.

I. INTRODUCTION

Impedance and its reciprocal, admittance, play an essential
role in physical human-robot interaction (HRI) by defining
a mathematical relationship between force and position. The
objective of the controller of a robotic system can be amended
from pure position or force control to impedance and/or
admittance control in order to perform more physically chal-
lenging tasks [1]. Accordingly, robot impedance adjustment
has been the center of many research studies over the past
three decades in the fields of robotics and HRI [2], [3].
Considerable progress has been made through the development
of sophisticated control strategies involving the dynamics and
kinematics of multi-DOF robots [4]. Although most of these
studies focused on impedance/admittance models with con-
stant parameters, others have focused on state-dependent, time-
varying impedance control and online learning of impedance
parameters in different applications of HRI.

Impedance variation and learning for robotic systems
have been inspired by human behavior. The human limb’s
impedance is continuously modified by the central nervous
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system (CNS) based on the task requirements [5], [6], [7], [8],
and the same strategy can be mimicked by robots during HRI
[9], [10]. Depending on each collaborative task objective and
human physical behavior, the robot impedance parameters can
be modulated and changed in real-time autonomously [11]. For
instance, it was shown that the tasks of inserting a peg into a
tight hole and throwing a switch without overshooting cannot
be optimally facilitated by the same impedance level for the
robot [12]. Walker et al. [12] showed that amending the robot
impedance in harmony with the operator’s hand impedance
could improve the performance of these two tasks. Variable
impedance provides versatility for the robot that can change
its dynamics according to the task requirements and human
physical behavior. However, this requires adequate knowledge
and modeling of the robot, task and human limb.

In recent years, several impedance adaptation strategies have
been proposed and tested in the robot’s joint and Cartesian
spaces, which are explained in the present review paper. In
Section II, the nonlinear dynamic structure of multi-DOF
robots and typical desired impedance/admittance models in
the joint and task coordinates are presented. The main methods
underlying online impedance variation are discussed in Section
III, and are categorized based on velocity, force and EMG
signals in addition to stability criteria. In Section IV, various
learning algorithms for online adjustment of impedance pa-
rameters are described and classified based on their analyses,
including optimization and learning from demonstration using
position, force and EMG data. Finally, current research trends
and future challenges of online impedance adaptation in HRI
applications are discussed in Section V.

II. DESIRED IMPEDANCE MODELS

The joint-space dynamics of a robot with n joints and m
Cartesian coordinates can be represented as

Mqq̈ + Cqq̇ + gq + τ frc = τ c + τ e (1)

where q ∈ Rn×1 is the vector of joint positions, Mq ∈ Rn×n
is the inertia matrix, Cq ∈ Rn×n is the matrix of Coriolis and
centrifugal terms, gq ∈ Rn×1 is the vector of gravitational
torques, τ frc ∈ Rn×1 is the vector of the friction torques,
τ c ∈ Rn×1 is the control torque, and τ e = JT fe is the external
torque in which fe ∈ Rm×1 is the external force applied on the
end-effector of the robot and J ∈ Rm×n is the robot Jacobian
matrix. The end-effector dynamics of a robot in the Cartesian
space can be written as [13]

Mxẍ + Cxẋ + gx + ffrc = fc + fe (2)
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in which x ∈ Rm×1 is the vector of end-effector posi-
tion/orientation (pose), Mx =

(
JM−1

q JT
)−1 ∈ Rm×m is the

end-effector inertia matrix, Cx = Mx

(
JM−1

q Cq − J̇
)

J† ∈
Rm×m is the matrix of the end-effector’s centrifugal and
Coriolis terms, gx = J†

T
gq ∈ Rm×1 is the vector of

gravitational wrench and ffrc = J†
T
τ frc ∈ Rm×1 is the

vector of friction wrench reflected at the end-effector, and
fc = J†

T
τ c ∈ Rm×1 is the Cartesian-space control wrench.

Moreover, J† is generalized inverse of the Jacobian matrix
defined in [13] as

J† = M−1
q JT

[
JM−1

q JT
]−1

. (3)

Note that replacing Mq with the identity matrix In×n will
change this generalized form to the right pseudoinverse.

The desired Cartesian-space impedance model of the robot
is considered as

Md
x

¨̃xd + Bd
x

˙̃xd + Kd
xx̃d = fe (4)

where Md
x, Bd

x, and Kd
x are the desired Cartesian inertia,

damping, and stiffness matrices, respectively, and x̃d = xd −
x0 ∈ Rm×1 is the deviation of the desired end-effector
position from x0 that is initially designed to be tracked in
the absence of the interaction force fe. Also, the desired joint-
space impedance model is defined as

Md
q
¨̃qd + Bd

q
˙̃qd + Kd

q q̃d = τ e (5)

where q̃d = qd − q0 is the desired joint trajectory deviation
with respect to q0 as the initial HRI-free trajectory. Md

q ∈
Rn×n, Bd

q ∈ Rn×n and Kd
q ∈ Rn×n denote the desired joint

inertia, damping and stiffness values, respectively.
Different strategies on online regulation and learning of

the robot impedance in physical HRI are explained in the
next two sections. Significant objectives, requirements and
characteristics of these methods are summarized in Table I.
Velocity, force and stability control of robotic systems have
been taken into consideration as the primary purposes. The
position and force feedback from the robot and the EMG data
from the human muscles are required in these schemes. Other
aspects of these studies are also outlined in Table I in terms
of their benefits and drawbacks.

III. IMPEDANCE VARIATION METHODS

The objective of variable impedance control (VIC) is to
modulate the desired stiffness, damping and inertia of the robot
in order to improve the robot’s compliance and/or stability dur-
ing its interaction with the human. One of the main purposes
of impedance regulation in HRIs is to maintain a force range
between the robot and user [14] based on task specifications
(e.g., velocity magnitude or positioning accuracy).

A. Velocity-Based Approaches

In physical HRI, the precision in performing a task comes
with subtle movements at low velocities that the robot can
emulate it by imposing high impedance. Conversely, low
impedance is of interest when one needs to perform large
movements at high velocities [15], [16], [17], [18], [19], [20],

[21]. Therefore, researchers have regulated the desired robot
impedance in each task based on the end-effector velocity
without requiring any force measurement (as stated in Table I).
Moreover, in some applications such as robot-assisted welding,
since the welder needs to carry the torch through the welding
line, there is no pre-specified position trajectory for the end-
effector while its velocity has to be controlled. In addition, mit-
igating the uncontrolled vibrations in robot-assisted welding is
achievable by setting large damping for the torch movement
that is only favourable during welding operation at a slow
speed. However, when welding is not in progress, a relatively
high damping value causes difficulty in transporting the torch
from one point to another. Due to the lack of reference
position and to ease the manipulation of the torch between
the welding phases, the velocity-dependent VIC was adopted
in [22], [23]. In a similar fashion, the admissible region of
damping variation was obtained experimentally in [15] in order
to enhance the accuracy and execution time in a drawing task.
Accordingly, an exponential function was adopted to change
the robot damping matrix Bd

x within the obtained region in
terms of the robot end-effector’s absolute velocity. Ikeura et
al. [24] proposed a switching-type impedance control method
for a cooperative task between human and a robot based on a
velocity threshold (v0) as{

fe = Md
xẍ + Bd1

x ẋ, ẋ ≺ v0

fe = Md
xẍ + Bd2

x ẋ, ẋ � v0

(6)

where the vectors fe and x are the force and position of
the end-effector, and matrices Bd1

x , Bd2
x , and Md

x are the
high damping parameter, low damping parameter, and iner-
tia, respectively. In this method, the model parameters were
approximated from users’ force and position data recorded
experimentally. According to Eq. (6), for velocities below v0,
the desired damping parameter is set to its higher level Bd1

x ,
and when the end-effector velocity exceeds the threshold v0,
the desired damping parameter switches to its lower magnitude
Bd2
x to increase the movability of the robot. In their later work

[16], they solved the discontinuity problem for the desired
damping parameter by employing an exponential function for
a smooth variation between Bd1

x and Bd2
x .

B. Force-Based Approaches

Control of the interaction force between robot and envi-
ronment is vital, notably in some tasks that need a certain
level of force for their execution such as in grinding [70],
assembling [71], deburring [72] and surgery [73]. Using
typical impedance controllers, one can control the interaction
force indirectly by regulating the robot position and choosing
the desired impedance in compliance with the environmental
structure [74] as expressed in Table I. However, uncertainties
in robot/environment dynamics and kinematics can render
a poor indirect force control. Consequently, a force-based
variable impedance controller was designed in [14] for direct
HRI force control assuming its continuous differentiability.
Having (4) as the desired impedance in which Md

x, Bd
x and
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Methodology Objective Requirements Benefits Drawbacks References

Im
pedance

Variation

Velocity-based Adjusting robot impedance
based on its end-effector ve-
locity at each portion of task

• Position data • Providing both slow (precise) and
high-speed (free) movements
• No need to force measurement

• Lack of analytical stability proof [24], [20], [16],
[19], [21], [18],
[23], [17], [22],
[15]

Force-based Interaction force control via
impedance variation

• Position data
• Force data

• Compliant interaction by direct
force control

• Not appropriate for precise po-
sitioning and velocity-based tasks
• Not appropriate in the presence
of robot/environment modeling un-
certainties

[14], [25], [26],
[27], [28], [29]

EMG-based Replicating human impedance
(obtained from EMG signals)
in each task for the robot

• Position data
• EMG data

• Bio-inspired impedance variation
by estimation of human limb stiff-
ness

• Requiring rich and diverse data
• Lack of stability consideration
• Excluding damping and iner-
tia in human and desired robot
impedance analyses

[30], [31], [32],
[33], [34], [35],
[36]

Stability-based Guaranteeing a stable phys-
ical HRI while varying the
impedance, considering the
robot and human dynamics (in
some cases)

• Position data • Having stable and safe HRI
• No need to force measurement
• For non-passive humans (in some
cases)

• More conservative on the robot
stability rather than having a com-
pliant performance (with specific
impedance values)
• Model-based strategies (requiring
the robot and/or human dynamic
structure, but can be uncertain)

[37], [38], [38],
[39], [40], [41],
[42], [43], [44],
[45], [46], [47],
[48], [49], [50]

Im
pedance

L
earning

LFD-based Obtaining mean trajectory and
adjusting impedance based on
Gaussian approximations

• Position data
• Force / EMG
data

• Model-free algorithms (no need to
human and robot models)

• Lack of stability guarantee
• Requiring demonstration steps
(for offline learning)

[51], [52], [53],
[54], [55], [56],
[57], [34], [58],
[59]

Optimization-
based

Identifying appropriate
impedance parameters based
on considered human and
impedance models

• Position data
• Force data

• No need to know robot dynamics
• Uncertainty on human dynamic
parameters

• Lack of robot stability guarantee
• Requiring a structure for human
dynamics

[60], [61], [62],
[63]

AI-based Emulating the decision mak-
ing process and the physi-
cal behavior pattern of human
(for different task specifica-
tions such as precise position-
ing and velocity adjustment)

• Position data
• Force data

• Model-free algorithms (no need
to human and robot models) • Pow-
erful mathematical tools to realize
intelligent human-robot collabora-
tion in complicated tasks (high-
level skill learning)

• Lack of stability proof
• Having considerable computation
costs and training cycles (in com-
plex algorithms)

[64], [65], [66],
[67], [68], [69]

TABLE I
CHARACTERISTICS, REQUIREMENTS AND FEATURES OF STUDIED IMPEDANCE VARIATION AND LEARNING METHODS

Kd
x are unknown, a controlled version of this impedance model

was defined to regulate the contact force as

M̂d
x

¨̃x + B̂d
x

˙̃x + K̂d
xx̃ = fd −Kf

˙̃
f (7)

where f̃ = fd − fe and x̃ = x− x0. M̂d
x, B̂d

x and K̂d
x are the

implemented time-varying impedance parameters. Also, fd ∈
Rm×1 is the desired contact force and Kf ∈ Rm×m is a
gain matrix of the force error term. Based on Eqs. (4) and
(7), and denoting M̃d

x = Md
x − M̂d

x, B̃d
x = Bd

x − B̂d
x and

K̃d
x = Kd

x − K̂d
x, one can write:

˙̃
f = K−1f f̃ + K−1f Y (x̃, ˙̃x,¨̃x)θ (M̃d

x,B̃
d
x,K̃

d
x) (8)

where Y(.) ∈ Rm×3m and θ(.) ∈ R3m×1 are the regressor
position-error matrix and the unknown impedance-error vector,
respectively. Equation (8) is obtained given that the Lagrangian
dynamics is linearly parameterizable. Choosing the Lyapunov
function as V = f̃TPf̃ + θTΓθ, where P and Γ are positive
definite matrices, its time derivative was obtained as

V̇ = f̃T
(
K−Tf P + PK−1f

)
f̃

+ 2
(
θ̇
T
Γθ + f̃TPK−1f Yθ

) (9)

Now, if P, Γ and θ satisfy the following conditions

K−Tf P + PK−1f = Q0

θTΓθ + f̃TPK−1f Yθ = 0
(10)

Fig. 1. Schematic diagram of force-based variable impedance controller in
the end-effector’s Cartesian space

where Q0 is a negative semi-definite matrix, then V̇ =
f̃TQ0f̃ ≤ 0. Thereby, the closed-loop system of this force-
based variable impedance controller [14] was proven to be
stable. Given (10), the state-dependent adaptation law for M̂d

x,
B̂d
x, K̂d

x was defined as

θ̇ = −
(
f̃TPK−1f YΓ−1

)T
= −Γ−1YTK−Tf Pf̃ (11)

and since V > 0 and V̇ ≤ 0, f̃ → 0 is concluded (i.e.,
fd → fe). The schematic diagram of the proposed force-
based variable impedance control method [14] in the end-
effector’s Cartesian space is shown in Fig. 1. As mentioned
earlier in Section III-A, it is of interest in some applications to
decrease the damping when the force and velocity are in the
same direction (acceleration magnitude is considerable), and
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vice versa. In line with this rationale, a variable impedance
controller was put forward in [29] with the following damping
regulation:

Bd
x(t) = −α diag(fe) diag (sgn(ẋ)) + B0

x (12)

where B0
x is a constant diagonal matrix as the initial damping

value. The corresponding desired dynamic behavior of the end-
effector is described by (4) with null stiffness parameter. In
[28], the optimal damping and inertia of the target impedance
were also determined based upon minimization of the upper
bound of contact forces (for a certain range of human inertia
and stiffness).

It is worth mentioning that most of the force-based
impedance variations have not been designed for precise posi-
tioning and velocity-based tasks in the presence of modeling
uncertainties. In [26] and [27], the desired damping parameter
was altered proportionally to the estimated stiffness of the
human arm in low velocities.

C. EMG-based Approaches

Electromyography (EMG) is a procedure to scrutinize the
activity of muscles and the nerve cells that innervate them
[75]. Motor neurons transmit electrical signals to contract
muscles which can be received by deploying EMG electrodes
on the surface of muscles [30], [31], [33], [34], [35], [32].
In [30], the concept of tele-impedance was introduced for
HRI, in which the desired endpoint stiffness of the robot is
adjusted in real-time using the human arm stiffness estimated
through analyzing EMG signals of eight muscles acting on
the shoulder and elbow joints. For this purpose, a linear
mapping between the human force/stiffness and the muscular
activation/coactivation was formulated in [30] as[

fe
kdx

]
=

[
Tf

Tk

]
uEMG +

[
0
k0
x

]
(13)

where kdx ∈ R3 and fe ∈ R3 are the endpoint stiffness
and force vectors, respectively. Also, k0

x is the stiffness in
relaxed arm conditions, and uEMG ∈ Rn is the vector of eight
muscles activities obtained from EMG signals. The matrices
Tk and Tf were experimentally identified which entails
precise measurements of kdx and fe through enough diverse
data samples. The obtained values for the human stiffness
kdx were considered as inputs for the endpoint impedance
controller of the robot in [76], [77]. In another study [36],
the damping level of the robot’s admittance controller was
adjusted during HRI based on estimating the human arm end-
point stiffness in terms of the co-contraction of antagonist
muscles. As mentioned in Table I, some disadvantages of
the above-mentioned EMG-based impedance variations are the
requirement of rich and varied data, lack of robot stability
consideration, and the exclusion of damping and inertia of the
human in robot impedance shaping.

D. Stability-based Approaches

In VIC strategies, the variation of impedance parame-
ters may violate the stability conditions. Therefore, it is of
paramount importance to strike a balance between achieving

a desirable performance (impedance-based compliance) and
ensuring robot stability, especially for those applications such
as medical robotics where human safety is a significant
concern (as pointed out in Table I). Suppose a robot-assisted
needle inserting system [78], [79] for surgical tasks in which
the robot instability may inflict serious tissue injuries on the
patient. In some applications like robotic surgery [80], it is
hard to mount a force sensor at the tip of robot end-effector
due to some design limitations related to robot size or its
mobility/dexterity. As suggested in [37], a direct feedback
from the interaction force fe can be avoided by setting the
same inertia for the desired impedance model (4) as that of the
robot (Md

x = Mx). Accordingly, the desired HRI impedance
dynamics was selected in [40], [38] as

Mx
¨̃x +

(
Bd
x + Cx

)
˙̃x + Kd

x
˙̃x = fe (14)

where x̃ = x− x0. Defining the following storage function

V
(
x̃, ˙̃x

)
=

1

2
˙̃xTMx

˙̃x +
1

2
x̃TKd

xx̃ (15)

and substituting ¨̃x from (14) into the time derivative of the
above-mentioned storage function, yields that the system in
(14) is passive with respect to the pair

(
fe, ˙̃x

)
since V̇

culminates in

V̇ = ˙̃xT fe − ˙̃xTBd
xx̃ ≤ ˙̃xT fe

V (t)− V (0) ≤
∫ t

0

˙̃xT (τ)fe(τ)dτ
(16)

As a result, in free motions and physical contacts with passive
environments, stable robot behavior is ensured. However,
an impedance model is needed that could take on a sur-
geon’s actions, e.g., stiffness alteration (characterized by state-
dependent time-varying Kd

x) during a puncturing task [81],
while preserving the robot stability. In this situation, the time
derivative of the storage function (15) was obtained as [38]

V̇ = ˙̃xT fe +

[
1

2
x̃T K̇d

x(t)x̃− ˙̃xTBd
x

˙̃x

]
(17)

which shows that the stiffness variability renders the passivity
condition (16) no longer guaranteed. Consequently, tank-based
impedance control strategies were developed to provide a
variable stiffness while preserving the robot passivity for a
stable HRI [38], [39], [40], [43]. The main idea of the tank-
based approaches is to create a reservoir for storing the energy
being dissipated by the controlled system. To this end, the
tank-based control law [38] was proposed as

fc = gx + Mxẍ0 + Cxẋ0 −Bd
x

˙̃x−Kc
xx̃ + ωxt (18)

where Kc
x is a constant stiffness and xt ∈ R is the state

associated with the tank system governed byẋt = σ
xt

(
˙̃xTBd

x
˙̃x
)
− ωT ˙̃x

y =
(

˙̃xTxt

)T (19)

such that
T (xt) =

1

2
x2t (20)
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is the energy stored in the tank which can be exploited for
deploying the variable stiffness Kv

x(t). Thereby, the gain ω in
Eq. (18) was determined by

ω(t) =

{
−Kv

x(t)x̃
xt

if T (xt) > ε

0 otherwise
(21)

which controls the exchange of energy between the main
impedance model (14) and the tank (19). Also, ε in (21) is
the minimum threshold up to which the tank is allowed to be
used up. Applying the controller (18) to the robotic system
(2), the closed-loop dynamics yielded as

Mx
¨̃x +

(
Bd
x + Cx

)
˙̃x + Kc

xx̃− ωxt = fe (22)

Substituting (21) into (18), the desired stiffness is equal to
Kc
x + Kv

x when T (xt) > ε or equal to Kc
x when T (xt) ≤ ε.

Moreover, σ in (19) regulates the level (based on practical
considerations [82]) up to which the energy can be stored in
the tank that is according to the following rule

σ =

{
1 if T (xt) ≤ T
0 otherwise

(23)

where T is the maximum tank capacity. Considering that the
robot’s closed-loop dynamics (22) is energetically coupled
with the tank system through the input ω(t), the overall energy
of the robotic system was given by

V
(
x̃, ˙̃x

)
=

1

2
˙̃xTMx

˙̃x +
1

2
x̃TKc

xx̃ (24)

where its derivative is

V̇ = ˙̃xT fe − ˙̃xTBd
x

˙̃x + ˙̃xTωxt (25)

Having Ṫ = xtẋt = σ
(

˙̃xTBd
x

˙̃x
)
−xtωT ˙̃x and adding it to V̇

in (25) implies that the energy dissipated by the implemented
impedance controller is stored in the tank until it reaches its
upper limit T , such that this energy is injected from the tank
to the robot via the control law (18) and ω(t) in (21). Now,
taking W

(
x̃, ˙̃x, xt

)
= V

(
x̃, ˙̃x

)
+ T (xt) into account as the

storage function of the total coupled system, its derivative was
obtained as

Ẇ = ˙̃xT fe + (σ − 1) ˙̃xTBd
x

˙̃x (26)

Regarding σ ∈ [0, 1], one can write Ẇ ≤ ˙̃xT fe, and thus:

W (t)−W (0) ≤
∫ t

0

˙̃xT (τ)fe(τ)dτ (27)

which means that the coupled system is passive concerning
the input-output pair of fe and ˙̃x. In [41], a state-independent
stability condition was proposed for varying stiffness and
damping, which is of practical importance for verifying the
stability conditions offline before any execution of the task.
Having (1) when τ f = 0 as the dynamics of the robot manip-
ulator, and (5) as the desired closed-loop dynamic relationship,
the following controller was designed in [41]:

τ c = Mqν + Cqq̇ + gq − τ e (28)

where

ν = q̈d + H−1
(
−Bd

q
˙̃q−Kd

q (q− q̇d) + τ e

)
(29)

in which H = Md
q is a constant positive definite matrix

while Bd
q and Kd

q are time-varying impedance parameters.
The following Lyapunov function was suggested to analyze
the robot stability:

V (q̃, ˙̃q, t) =

(
˙̃q + αq̃

)T
H
(

˙̃q + αq̃
)

2
+

q̃Tβ(t)q̃

2
(30)

where β(t) is a positive semi-definite and continuously differ-
entiable matrix defined as

β(t) = Kd
q(t) + αBd

q(t)− α2H (31)

in which α is a positive constant. This function allowed them
to establish sufficient constraints on the stability independently
of system states. Differentiating (30) with respect to the time,
and substituting the closed-loop dynamics (5) with τ e = 0
into it yields

V̇ (q̃, ˙̃q, t) = ˙̃qT
(
αH−Bd

q(t)
)

˙̃q

+
1

2
q̃T
(
K̇d
q(t) + αḂd

q(t)− 2αKd
q(t)

)
q̃

(32)

Thereby, V̇ (q̃, ˙̃q, t) ≤ 0 is satisfied when
1) αH−Bd

q(t) is negative semi-definite, and
2) K̇d

q(t) + αḂd
q(t)− 2αKd

q(t) is negative semi-definite
and accordingly it can be concluded that the impedance
dynamics (5) in the absence of physical interaction (τ e = 0)
is globally uniformly stable.

In another study [44], Eq. (5) was employed and the
desired variable impedance dynamics Md

q , Bd
q and Kd

q were
considered to be diagonal positive definite matrices having
bounded elements, and the last two matrices were considered
to be time-varying. Defining Md = Md

q , τ e = M−1
d τ e,

α = qd − q, Bd(t) = diag{bii(t)} = M−1
d Bd

q(t) and
Kd(t) = diag{kii(t)} = M−1

d Kd
q(t), the desired dynamics

was expressed in linear time-varying (LTV) systems’ format
as [

α̇
α̈

]
=

[
0 I

−Kd(t) −Bd(t)

] [
α
α̇

]
+

[
0
τ e

]
(33)

which was shown equivalently as[
α̇i
α̈i

]
=

[
0 1

−kii(t) −bii(t)

] [
αi
α̇i

]
+

[
0
τei

]
for i = 1, 2, . . . n

(34)

Then, some constraints are given for stiffness and damping
coefficients concerning the system stability as the following
relations:

∃ β1 ∈ R > 0; kii(t) ≥ β1

∃ β2, β3 ∈ R > 0; β2 ≤
bii(t)+0.5

˙
kii(t)

kii(t)√
kii(t)

≤ β3
(35)

It was demonstrated that besides the above conditions,
if kii(t) > 0 and λ1(t), λ2 > 0 such that

exp(−
∫ t
t0

√
kii(t)dt) ≤ λ1(t0)e−λ2t, then the system de-

scribed by (34) with τei being zero is uniformly asymptot-
ically stable (UAS). Note that an LTV system is uniformly
exponentially stable (UES) if and only if it is UAS [83]. As
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a result, the system (34) with zero interaction force is UES,
i.e.:

∃ µ, k(t) > 0; ||Φi(t, t0)| | ≤ k(t0)e−µ(t−t0), t ≥ t0 (36)

where Φi(t, t0) is the state transition matrix of the system
(34). By satisfying the above conditions, the desired variable
impedance dynamics is exponentially stable, and the robot’s
position, velocity, and acceleration in (5) are all bounded, if the
interaction force is bounded. In [42], a similar VIC method
was employed to improve HRI by imposing stability-based
conditions on varying impedance parameters, where the robot
model was approximated based on uncertainty-disturbance
estimator (UDE) [84]. Although the above methods enhanced
the human safety via guaranteed stability without any force
measurement, they can pose digression from the desired time-
varying impedance, which implies a trade-off between stability
and performance (as stated in Table I).

In other methods, the environment (human) behavior was
modeled to be non-passive with unknown parameters, while
the controller ensured the stability of the robot’s physical
interactions by adopting appropriate impedance adaptations.
As summarized in Table I, these beneficial aspects come true
without any interaction force measurement, having structures
of the robot and human behavior. Accordingly, it was demon-
strated that the robot would adjust its impedance in response
to various high- and low-frequency external disturbances.
The possible applications of these strategies were mentioned
service robotics, health care, manufacturing, construction, en-
tertainment and agriculture where the environment behavior
can be non-passive with unknown impedance and force [45],
[47], [49].

A human-like impedance adaptation strategy was proposed
and tested in [45], [46] to provide a flexible physical inter-
action between the robot and human while guaranteeing the
robot’s stability via a comprehensive Lyapunov analysis. The
following three-term model was considered for the physical
HRI torque:

τ e(t) = τ (t) + Kq(t)e(t) + Bq(t)ė(t) (37)

where the first term on the right-hand side is a feedforward
torque, and the second and third terms are stiffness-based and
damping-based torques of the human in physical interactions.
The position and velocity errors were also defined as e(t) =
q(t)− qd(t) and ė(t) = q̇(t)− q̇d(t).

In this bio-inspired adaptation method [45], optimum
impedance parameters and feed-forward force of HRI were
updated online without any force measurement through em-
ploying adaptation laws inspired by human behavior [85].
This resulted in robot stability in the execution of physical
tasks while the human environment has unknown interaction.
The state-dependent impedance update rules used to estimate
the variations of feedforward force, stiffness and damping
elements (characterized by δ) as [45], [47]

δτ̂ e(t) = Qτ (ε(t)− γ(t)τ̂ e(t)) (38)

δK̂q(t) = QK

(
ε(t)eT (t)− γ(t)K̂q(t)

)
(39)

Fig. 2. Schematic diagram of stability-based impedance adaptation methods
the robot’s joint space

δB̂q(t) = QB

(
ε(t)ėT (t)− γ(t)B̂q(t)

)
(40)

where the superscript ˆ is the estimation sign, and Qτ , QK and
QB are positive definite constant matrices as the adaptation
gains, and γ(t) = a

1+b‖ε(t)‖2 is the forgetting factor of this
adaptation in which a and b are positive constants. Also,
ε(t) = ė + κe (with κ > 0) was defined as the tracking
error dynamics in terms of the position and velocity errors (e
and ė). A schematic diagram of this stability-based impedance
adaptation control in the robot’s joint space is shown in Fig.
2.

By defining a Lyapunov function and formulating the
impedance adaptation laws (38)-(40) in terms of tracking
error to compensate for HRI torque, a bounded deviation
from the desired trajectory is permitted to ensure stability
and compliant behavior. The corresponding Lyapunov function
V (t) = Vp(t) + Vc(t) was defined as

Vp(t) =
1

2
εT (t)Mqε(t)

Vc(t) =
1

2

∫ t

t−Ts

[
τ̃Te (ρ)Q−1τ τ̃ e(ρ)

+vec(K̃q(ρ))TQ−1K vec(K̃q(ρ))

+vec(B̃q(ρ))TQ−1B vec(B̃q(ρ))
]
dρ

(41)

where Ts is sampling time for execution of the controller, and
vec(.) is the column vectorization operator.

It is notable that in [48], the strategy for impedance adap-
tation [45] was modified by taping into the online stiffness
estimation of the human arm based on EMG signals, which
was tested on the Baxter robot in a teleoperation system. More-
over, an extended version of this method [45] was proposed
in [49] for trajectory adaptation to enhance the biomimetic
autonomy of the robot via revising the desired trajectory in
hard contacts with obstacles. This approach was inspired by
humans behavior that change their path for obstacle avoidance
instinctively in addition to adapting their limb impedance when
running into rigid obstacles. For this purpose, the unknown
desired trajectory and its estimated reference one were defined
respectively as

ζd =K∗qqd + B∗q q̇d

ζr =Kqqr + Bqq̇r
(42)

where K∗q and B∗q are the unknown stiffness and damping
coefficients of the environment, respectively. Moreover, Kq

and Bq are the employed stiffness and damping parameters
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of the robot impedance being updated via the adaptation laws
(39) and (40), respectively. In this regard, they obtained the
following update rule for initially specified trajectory in terms
of the difference between the desired τ d and current τ e
feedforward forces of the interaction as

δζr(t) = L−TQr(τ d(t)− τ e(t)− ζr(t)) (43)

in which L and Qr are positive definite constant gain matrices.
As a result of this modification, the previous adaptation law
for the feedforward interaction force (38) proposed in [45] was
also amended in terms of the recent trajectory variation rule
(43) as

δτ e(t) = Qτ (ε(t)− γ(t)τ e(t) + QT
r δζr(t)) (44)

while the controller design in this strategy [49] is similar to
the one in [45] as illustrated in Fig. 2. In other words, the force
and trajectory adaptation rules in this study were coupled to
enhance the robot stability and compliance. This was proven
via the following Lyapunov function:

V (t) = Vr(t) + Vc(t) + Vp(t) (45)

where Vp(t) and Vc(t) are defined in [49] the same as the ones
presented in [45] by Eq. (41). However, Vr(t) was suggested
as follows:

Vr(t) =
1

2

∫ t

t−Ts

(ζr(ρ)−ζd(ρ))TQT
r (ζr(ρ)−ζd(ρ)) dρ (46)

As seen in (45) and (46), this Lyapunov function was inte-
grated with an additional quadratic function in comparison
with (41) in terms of the difference between ζd and ζr
trajectories. Note that other studies [86] were performed on
the trajectory adaptation or online path planning for obstacle
avoidance but without changing the impedance parameters
during task execution.

In another study [50], the human interaction force was mod-
eled by spring and damper elements (without any feedforward
force component that was considered in [45]):

τ e = Kh(t)e(t) + Bh(t)q̇(t) (47)

in which estimations of Kh(t) and Bh(t) were formulated
with similar impedance adaptation laws mentioned in Eqs. (39)
and (40) on the basis of a similar Lyapunov analysis (41).

It should be pointed out that some research work on the
impedance control employed adaptation rules to deal with
uncertain robot dynamics rather than using online impedance
variations during HRI. For instance, some neural-networks-
based [87], [88], [89], adaptive [90], [91], [92], [93], [94], [95]
and nonlinear [96] control strategies have been proposed for
HRI applications considering constant impedance elements.

IV. IMPEDANCE LEARNING METHODS

Various impedance learning policies have been presented
for different HRI tasks in the past decades [45], [61], [97],
which can be classified in three categories.

A. Learning from Demonstration (LfD) Approaches

Some LfD methods have been designed as powerful mathe-
matical tools for appropriate adjustment of the robot behavior
based on several initial demonstration steps resulting in proper
learning for the final execution (imitation) process. This con-
cept has also been broadened to physical HRI and impedance
control in recent years. Corresponding LfD-based impedance
control studies are described in this section. These methods
have been used mostly for learning position trajectories that are
similar to those of the human during the demonstration phase,
and then for the regulation of robot impedance parameters
based on this learning. Thus, they can be utilized in various
applications and tasks such as lifting, cutting and physical
therapy to achieve optimum path planning, flexibility adjust-
ment and obstacle avoidance [34], [51], [54], [57], [58], [98].
Although LfD-based approaches are model-free, they suffer
from lack of stability guarantee in most cases, as expressed in
Table I.

1) GMM- and GMR-based Strategies: Gaussian Mixture
Models (GMMs) are probabilistic tools that can present a data
set via finite numbers of Gaussian distributions. The possibility
of modifying Gaussian parameters makes them appropriate
for different learning purposes. A two-phase demonstration
was employed in [51] to learn both trajectory and impedance
of a therapist in a robot-assisted rehabilitation process using
a GMM-based strategy. In the first phase, the therapist and
patient performed a rehabilitation task simultaneously, and
in the second phase, the patient conducted the same task
without the therapist’s intervention. Their proposed admittance
controller [51] generated the desired movement based on the
measured force data and the following dynamics

fe = Md
xẍd + Bd

xẋd + Kd
xxd (48)

where Md
x, Bd

x, and Kd
x are the inertia, damping, and stiff-

ness parameters, respectively. The GMMs were expressed as
probability density functions in [52] to cluster data gathered
from the demonstration phase as

P (x) =

Nk∑
k=1

p(k)p(x|k) (49)

where x in [51] denotes the data vector that contains the
robot’s position, p(k) is the prior, p(x|k) is the conditional
density function and Nk is the number of Gaussian com-
ponents. The Gaussian parameters [πk, µk, Σk] represent
the prior probabilities, mean vectors and covariance matrices,
respectively, that were calculated using the Expectation Max-
imum (EM) algorithm. Given these parameters, the activation
weight of ith Gaussian function will be obtained as

wi =
πiN (x|µi,Σi)∑Nk

k=1 πkN (x|µk,Σk)
(50)

The input force to the admittance model (48) was defined
as the summation of the environment (E), patient (P ) and
therapist (T ) forces and then simplified as a spring force:

fe = (KE + KP + KT )(xf − x) (51)
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where KE , KP , and KT are the stiffness coefficients of the
environment, patient and therapist, and x is the position of
robot end-effector and xf is the average of demonstration
trajectories. Two combinations of these stiffness values (KE+
KP + KT and KE + KP ) were investigated from the first
and second phases of demonstration, respectively. The spring
constant KT of the therapist limb could also be calculated
as the difference between the two values described above.
The Weighted Least Square method (WLS) was employed to
estimate the therapist stiffness coefficient associated with each
Gaussian component as [51], [53]

Kd
Ti

=
[(

XTWiX
)−1

XTWiFT

]
(52)

in which X = [(xf − x1) , . . . , (xf − xN )]
T , Wi =

diag([wi1 , wi2 , ..., wiN ]), and FT = [fT1
, fT2

, ..., fTN
], where

N is the number of data samples from all demonstrations.
Having the stiffness constants, the approximated therapist
force was formulated in the reproduction phase as

fT =

Nk∑
i=1

wi[K
d
Ti

(xf − x)] (53)

A similar approach was developed in [54]; however, the
stiffness matrix was estimated by minimizing Euclidean norm
of residuals:

rt
(
Kd
xi

)
= wi

(
Kd
xi

x̃i − v(t)
)

(54)

where t is the time step, Kd
xi

is the unknown state-dependent
stiffness parameter, and x̃i is the deviation with respect to the
mean position trajectory corresponds to ith Gaussian function.
The right side of this equation represents the designated
impedance model in which v(t) = ẍ + Bd

xẋ− fe in which fet
is the measured force signal, and Bd

x is a preset damping coef-
ficient. Then, a convex optimization problem was formulated
in accordance with (54) as follows:

min
Kd

xi

∥∥rt (Kd
xi

)∥∥
2

s.t. Kd
xi
� 0

(55)

Note that interior-point method was adopted in [54] to estimate
the stiffness matrix through solving the proposed optimization
problem (55). In another study [98], a Bayesian parameter
estimation method was adopted to determine the unknown
stiffness of the human arm and realize it for the robot as a
time-varying element of the impedance model. Similarly, the
GMM and EM methods were used to estimate the desired
trajectory and the expected force based on the acquired data
through demonstrations [55].

The Gaussian Mixture Regression (GMR) was also utilized
in [99], [100], [56], [101] to extract the mean trajectory and
its covariance (µi and Σi) by GMMs to be implemented
in the imitation (reproduction) phase. A Linear Quadratic
Regulator (LQR) formulation was defined in [56] to estimate
the stiffness and damping matrices via backward integration
of the Riccati equation and having a time-varying weighting
factor Q in their cost function for trajectory tracking. A
similar GMM-GMR approach was devised in [102], [103] to
investigate the average and variability of robot trajectories in

rehabilitation and movement therapy tasks. Note that the pro-
posed impedance models in [99], [100], [103] were designed
with constant parameters (without having any time-varying
change). However, an impedance variation rule was suggested
in [102] in terms of the trajectories covariance for physical
therapy tasks. The reason behind this variation was mimicking
the therapist’s interaction stiffness, which is usually selected
inversely proportional to the demonstrated variability in order
to limit the patient’s deviation within the range of demon-
strated covariance relative to the mean trajectory [102]. Figure
3 demonstrates the structure of these impedance learning
methods in which all GMM-GMR calculations and impedance
updating laws can be summarized in the ”Impedance Learning
Rules” block.

2) DMP-based Strategies: Dynamic Movement Primitives
(DMPs) were firstly developed in [104], [105] as a learning
tool for autonomous nonlinear dynamical systems. In this
regard, EMG signals obtained from able-bodied people have
been analyzed in [57], [34], [58] to identify the stiffness (or
impedance) and movement of the human limb, and design
the robot control objectives based on them. In [34], [58], a
DMP-based strategy was presented using nonlinear Gaussian
functions formulated for the stiffness regulation as

kdx(s) =

N∑
i=1

γiφi(s) (56)

where γi is the weighting factor, and φi(s) is the normalized
radial basis function having the width of hi from the center
of ci:

φi(s) =
exp

(
−hi(s− ci)2

)∑N
j=1 exp (−hj(s− cj)2)

(57)

In addition, s in Eqs. (56) and (57) is the state response of a
first-order canonical dynamics system defined as

τ ṡ = −αss (58)

in which τ and αs are constant parameters. In other words,
s ∈ [0, 1] is the phase variable as the normalized version of
the time t such that s(0) = 1 and s→ 0 as t→∞. This also
means that the considered Gaussian function (56) will vanish
as t→∞. In their learning algorithm, the best estimations of
weighting factors γi were obtained by minimizing the error
norm of the human stiffness determined from the measured
external force compared with the modeled one by DMPs (56)
using an optimized reinforcement learning algorithm.

Another DMP-based method [59] was investigated in which
a cost function was designed to minimize the position error,
control gains and end-effector acceleration as

J =

tN∫
ti

103dis(x) + 10−2
n∑
j=1

(
kdxj
− kdmin

xj

)
+ 10−3|ẍ| dρ

(59)

where dis(x) is the distance from the robot end-effector to
the line path connecting start and end points of movement,
kdx is the controller’s proportional gain, kdmin

xj
is the minimum

stiffness value of jth joint, and ẍ is the end-effector acceler-
ation. In [59], DMPs were taken into account to organize the
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trajectory formation, and a reinforcement learning approach
was employed to update the parameters of DMPs by mini-
mizing the cost function (59). In other words, updating DMPs
coefficients led to the modification of the desired trajectory
and the stiffness value.

B. Optimization-based Approaches

Some impedance learning schemes have been investigated
based on the optimization of cost functions regarding linear
robot impedance and environment/human limb models in the
state space. In these studies, the robot dynamics was not
taken into account, and optimum coefficients of the desired
impedance model have been adjusted via minimizing cost
functions (in terms of motion variables and interaction forces),
via choosing a human-limb model with known structure
but uncertain parameters. Thereby, these impedance-learning
strategies were described to be beneficial in various robot
interactions with dynamically uncertain environments (human
limbs). However, the robot stability was not guaranteed via
their corresponding optimal policies in the absence of an
analysis of the robot’s closed-loop dynamics (as clarified in
Table I).

In [60], an unknown time-varying environment (e.g., human
limb) was modeled via a second-order differential equation
(mass-damper-spring dynamics) as

Me(t)q̈(t) + Ce(t)q̇(t) + Ge(t)q(t) = τ e(t) (60)

in which Me(t), Ce(t) and Ge(t) are unknown time-varying
matrices and τ e(t) is the HRI torque. For further analyses, Eq.
(60) was rewritten in the state space considering ξ1(t) = q(t),
ξ2(t) = q̇(t) and ξ3(t) =

∫ t
0
τ e(σ)dσ as three variables:

ξ̇(t) = A(t)ξ(t) + B(t)u(t)

v(t) = C(t)ξ(t)
(61)

where u(t) = τ e(t) and v(t) are the input and output signals
of this system. Based on the Betterment Scheme [60], they
proposed a lemma to iteratively update the input as

τ je(t) = τ j−1e (t)− α′
(
v̇j(t)− v̇d(t)

)
(62)

in which the parameter α
′

satisfies ‖I − α′
B(t)C(t)‖ < 1.

On the other hand, employing a gradient-based scheme for
optimizing a cost function Γ(t), the following update rules
was presented for the interaction torque:

τ je(t) = τ j−1e (t)− β

(
∂Γj(t)

∂τ je(t)

)T
(63)

where β is a positive scalar. Then, comparing (62) and (63)
resulted in the following relation between the cost function
differentiation and the time-derivative of the output variable:(

∂Γj(t)

∂τ je(t)

)T
= α

(
v̇j(t)− v̇d(t

)
)T (64)

Fig. 3. Schematic diagram of optimization-based learning-based admittance
control methods

in which α is defined as α
′
/β. Moreover, the gradient-

based optimization of the cost function Γ(t) also led to these
adaptation laws for the robot impedance parameters (5):

Bd,j
x (t) = Bd,j−1

x (t)− βB

(
∂τ je (t)

∂Bd,j
x (t)

)T (
∂Γj(t)

∂τ je(t)

)T

Kd,j
x (t) = Kd,j−1

x (t)− βK

(
∂τ je (t)

∂Kd,j
x (t)

)T (
∂Γj(t)

∂τ je(t)

)T
(65)

where the learning rates βB and βK are positive scalars.
Substituting (64) into (65) yielded to the final impedance
adaptation laws:

Bd,j
x (t) = Bd,j−1

x (t)− αβB ėj(t)
(
v̇j(t)− v̇d(t)

)T
Kd,j
x (t) = Kd,j−1

x (t)− αβKej(t)
(
v̇j(t)− v̇d(t)

)T (66)

As seen, the final impedance update rules were obtained in
terms of the position and velocity tracking errors (e and ė)
with an additional multiplier (v̇j − v̇d) based on the specific
consideration of the unknown environment dynamics (61).
This learning method is schematically depicted in Fig. 3.

An optimal control problem has also been investigated
further to obtain effective impedance of the robot and identify
the best approximation of the human impedance during HRI.
Accordingly, a linear second-order impedance model with an
adaptive term was designed for the robot in [61] as

Md
q q̈m + Bd

q q̇m + Kd
qqm = Khfe + l̄(qd) (67)

where Md
q , Bd

q , and Kd
q are the desired inertia, damping, and

stiffness matrices, respectively. Also, fe is the human control
effort and Kh is defined as the human force gain in the robot’s
joint space. The auxiliary input was formulated as l̄(qd) =
Md

qud + Kd
qqd. Then, a viscoelastic first-order dynamics was

considered for the human arm as

ḟe = Ahfe + Ehēd (68)

in which Ah and Eh are unknown constants and the position
tracking error is defined as ēd = q̄d − q̄, where q̄d =[
qTd q̇Td

]T
and q̄ =

[
qTm q̇Tm

]T
. Having the robot impedance

dynamics (5) and presenting it in the error form relative to the
reference trajectory, one can write:

˙̄ed = Aqēd + Bque,

Aq =

(
0 I
0 0

)
, Bq =

(
0
I

)
ue =

(
Md

q

)−1 (
τ e +

[
Kd
q Bd

q

]
ēd
) (69)
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Considering Eqs. (67), (68) and (69), the state-space model of
the combined system of the human limb and robot impedance
was proposed as follows:

ẋ =

(
Aq 0
Eh Ah

)
︸ ︷︷ ︸

A

x +

(
Bq

0

)
︸ ︷︷ ︸
B

ue (70)

in which x = [ēd, fe]
T . The performance index was also

explained in terms of states and control effort as

J =

∫ ∞
t

(
xTQx + uTe Rue

)
(71)

where Q and R are positive symmetric matrices. The dynamic
equation (70) and the performance index (71) were analyzed
in an optimal control design by solving an algebraic Riccati
equation (ARE) computationally using an integral reinforce-
ment learning (IRL) algorithm. In their iterative policy [61],
constant impedance parameters are assumed for the human
limb that were estimated over time, and the corresponding
robot impedance model was updated as a result of this online
estimation.

It is worth mentioning that a similar optimal control problem
was adopted in [62] resulted in an ARE solution. Besides,
some studies have taken optimal policies for impedance and
trajectory adaptation but with model-free reinforcement learn-
ing approaches (e.g., the Q-learning method [63]).

C. AI-based Learning Approaches

This section is focused on neural networks (NNs) and fuzzy
algorithms for learning the optimum time-varying impedance
of the robot for complicated and delicate HRI tasks such
as robotic-assisted surgery that needs accurate positioning
and velocity control [67], [68]. As highlighted in Table I,
to mimic the intelligent decision making process and the
physical behavior pattern of human operators, NNs and fuzzy
algorithms were utilized to determine and change the robot
impedance during the task [64], [65], [66], [67], [68], [69].

A neural network (NN) was designed with multi-layers to
adjust the damping element of the robot admittance controller,
which was trained to minimize the error between the Carte-
sian velocity of the robot end-effector and the velocity of
minimum jerk trajectory [64]. An NN-based controller with
adaptive gains was developed in [65] to realize a prescribed
robot impedance, while the impedance model was modified
online through a linear quadratic regulator (LQR) technique
in order to minimize the human effort. Note that multi-layer
neural networks (NNs) have considerable computation costs
in some medical and industrial applications with complicated
and delicate HRI tasks. Accordingly, fuzzy logic systems have
been recently employed by researchers to reduce the state
dimension for the kinematics and dynamics analyses of any
physical HRI and diminish the computational complexity to
achieve rapid training cycles [68].

To this end, the damping coefficient of the robot’s admit-
tance controller was regulated in [66], [67] using a Fuzzy
Inference System (FIS), having the measurement of the in-
teraction point’s velocity and the external force applied by

the human operator. The optimum variation of the damping
for point-to-point reaching movements was investigated by
minimizing the trajectory jerk in two consecutive segments:
a rapid motion with low positioning accuracy, and converging
to the target with a lower velocity and higher precision [66].
A fuzzy Sarsa (λ)-learning method was developed in [68],
[69] for the same purpose of online damping adjustment
in a virtual admittance model for robotic-assisted minimally
invasive surgery. However, the individual handling behavior
of each human operator was learned through a reinforce-
ment strategy to maximize the overall compliance index of
the robot. This method was also advanced with a particle-
swarm-optimization-based (PSO-based) algorithm to shorten
the online training duration [68], [69].

V. CONCLUDING REMARKS

A. Current Research Trends

Based on this systematic review of impedance variation and
learning for robotic systems during their physical interactions
with humans, the following contributions can be delineated.

Linear first- and second-order dynamical systems (including
mass, damping and spring elements) have been considered
in most studies for the human limb and impedance models
due to their simplicity and possibility of implementation in
robots, which themselves have second-order nonlinear dynam-
ics. However, more complicated linear impedance models with
viscoelastic property and time-varying parameters have also
been suggested. This topic is still of paramount importance
for formulating and evaluating more realistic human limb and
impedance models in HRI applications.

Employing time-varying impedance affects robot stability
during physical interactions, although this effect was ignored
in some studies. Other studies dealt with stability analyses
and investigated allowable levels or appropriate functions, for
impedance variation and/or learning, considering the human
passivity. In a few other strategies, the robot stability was
analyzed in the presence of unstable interactions with the
environment (human), while specified dynamic models have
been taken into account for the human limb. Accordingly, the
stability conditions for implementing time-varying impedance
values have been studied with different assumptions, and will
remain an active area for future investigations.

Some impedance learning strategies have been augmented
by learning the required skills to execute any task. In this
regard, appropriate task-specific position trajectories were
identified and learned in addition to suitable impedance pa-
rameters. In some LfD-based algorithms, a mean trajectory
was investigated for the task, and then the impedance variation
method was devised based on this trajectory and its covariance.
Thus, integrating path planning with impedance adjustment
has been explored in recent studies on physical HRI for
enhancing robot autonomy in completing tasks via having
human-like skill learning.

B. Future Ideas and Challenges

State-of-the-art strategies provide three methodologies for
the development of robot impedance skills: optimal and
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adaptive control and machine learning. However, due to the
restrictions of dynamic modeling in designing model-based
controllers and learning from limited kinesthetic signals, more
research will be needed to resolve these issues. Areas for future
investigation that can advance the progress of impedance
learning and variation for HRI applications are presented
below.

More realistic but sophisticated dynamic modeling can be
developed for the human limb interacting with the robot. For
instance, using higher- or fractional-order dynamical systems
for the soft human tissue and non-passive human behavior,
more advanced time-varying impedance learning/variation will
be required. New impedance control strategies with corre-
sponding stability analyses can be explored with more complex
and accurate modeling of the human limb.

The challenging trade-off between robot stability and in-
teraction performance still needs to be balanced and requires
further investigation. Some studies have focused on improving
the human operator’s haptic sense and the performance of
different HRI tasks. Other research studies were elaborated
on manipulating the impedance parameters to guarantee robot
stability. Taking these two essential aspects of physical HRI
into account simultaneously and achieving a compromise
between them would be technically significant.

In some special applications of HRI, including surgery and
imaging, the physical interaction of the robot with tissue could
be enhanced by image processing and corresponding learning
methods. Accordingly, learning algorithms and update rules
for robot impedance can be modified and integrated with
tissue image analyses. In rehabilitation, movement therapy and
other collaborative tasks having social HRI, speech processing
and gesture recognition can also be taken into account for
impedance adaptation. In these tasks, the human operator can
have a variety of choices as the control inputs to the robot
in comparison with the current state-of-the-art strategies that
employ interaction force and position feedback. With this
feature (integrating physical and social HRIs), the robot can
comprehend the user’s behavior and intention through speech
and body language in addition to kinesthetic data. Higher
levels of autonomy and new combined learning strategies
based on mechanical, visual and vocal data can be areas of
future studies.

Impedance learning/variation methods can also be extended
for more complex robotic systems. These include tele-robotic
systems having two or more leader and follower robots
communicating with each other and interacting with human
operators and other environments. Further research can ad-
dress theoretical and technical challenges faced with stability
guarantees due to having multiple ports of interaction and
impedance models, and the presence of communication delays
that potentially increase the instability of a teleoperation
system.
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dependent variable impedance control in human-robot interaction,”
in IEEE 14th International Conference on Automation Science and
Engineering (CASE), 2018, pp. 1328–1335.

[30] A. Ajoudani, N. Tsagarakis, and A. Bicchi, “Tele-impedance: Teleop-
eration with impedance regulation using a body–machine interface,”
The International Journal of Robotics Research, vol. 31, no. 13, pp.
1642–1656, 2012.

[31] L. Masia and V. Squeri, “A modular mechatronic device for arm stiff-
ness estimation in human–robot interaction,” IEEE/ASME Transactions
on Mechatronics, vol. 20, no. 5, pp. 2053–2066, 2014.

[32] W. Gallagher, D. Gao, and J. Ueda, “Improved stability of haptic
human–robot interfaces using measurement of human arm stiffness,”
Advanced Robotics, vol. 28, no. 13, pp. 869–882, 2014.

[33] Y.-J. Kim, C.-K. Park, and K. G. Kim, “An emg-based variable
impedance control for elbow exercise: preliminary study,” Advanced
Robotics, vol. 31, no. 15, pp. 809–820, 2017.

[34] C. Yang, C. Zeng, C. Fang, W. He, and Z. Li, “A dmps-based
framework for robot learning and generalization of humanlike variable
impedance skills,” IEEE/ASME Transactions on Mechatronics, vol. 23,
no. 3, pp. 1193–1203, 2018.

[35] A. Ajoudani, C. Fang, N. Tsagarakis, and A. Bicchi, “Reduced-
complexity representation of the human arm active endpoint stiffness
for supervisory control of remote manipulation,” The International
Journal of Robotics Research, vol. 37, no. 1, pp. 155–167, 2018.

[36] S. Grafakos, F. Dimeas, and N. Aspragathos, “Variable admittance
control in phri using emg-based arm muscles co-activation,” in IEEE
International Conference on Systems, Man, and Cybernetics (SMC),
2016, pp. 1900–1905.

[37] C. Ott, Cartesian impedance control of redundant and flexible-joint
robots. Springer, 2008.

[38] F. Ferraguti, C. Secchi, and C. Fantuzzi, “A tank-based approach
to impedance control with variable stiffness,” in IEEE International
Conference on Robotics and Automation (ICRA), 2013, pp. 4948–4953.

[39] C. Schindlbeck and S. Haddadin, “Unified passivity-based cartesian
force/impedance control for rigid and flexible joint robots via task-
energy tanks,” in IEEE International Conference on Robotics and
Automation (ICRA), 2015, pp. 440–447.

[40] F. Ferraguti, N. Preda, A. Manurung, M. Bonfè, O. Lambercy,
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