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Abstract

This paper presents an adaptive system identification approach to identify
the order and parameters of a specific type of variable order systems, which,
as a motivating example, describes the stress-strain relation of viscoelastic
materials. First, the concept of non-integer order modeling will be intro-
duced. Next, the proposed order/parameter identification approach will be
presented. Afterwards, a simulation study is performed to validate the iden-
tification approach. Finally, the method will be applied on real data gathered
from an experimental study for further validation.

Keywords: Adaptive Identification, Order Identification, Parameter
Estimation, Variable Order Systems, Soft Tissue Modeling

1. Introduction

The concept of non-integer calculus is an extension of the traditional one
by considering a non-integer value as the order of derivation or integration.
Based on this, non-integer order differential equations and non-integer order
systems can be defined. The non-integer order has been used in modeling the
memory in electronic devices [1, 2], viscoelastic damping [3, 4], the human’s
ability to forget and remember [5, 6, 7], and lung tissues [8], control [9, 10, 11],
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and chaos modeling and control [12]. The order of a non-integer order system
is not required to be constant. It can vary depending on time or the states of
the system, and even can have its own dynamics. The definition of variable
order derivation and integration operators was first developed in [13].

The concept of variable-order calculus has been studied from different
aspects, e.g., in [14, 15, 16, 17]. Furthermore, from an application point of
view, evidence has been reported to relate the order of derivation to certain
physical quantities [18, 19].

The non-integer derivation operator can be defined in various ways [20,
21], the most common of which are the definitions in the sense of Caputo and
Riemann-Liouville [20]. The following shows a left sided non-integer order
derivation of order α(t) of signal x(t) in the sense of Caputo [14]:

C
0 D

α(t)
t x(t) = 1

Γ(1−α(t))

∫ t
0
(t− τ)−α(t) d

dτ
x(τ)dτ

0 < α(t) < 1,∀t ≥ 0
(1)

Here Γ(.) is the extension of the factorial function to non-integer arguments:

Γ(w) =

∫ ∞
0

rw−1e−rdr (2)

Choosing the Caputo definition -as used in this paper- leads to direct use
of the initial condition, just like the traditional case [20]. The use of non-
integer order calculus with constant order for describing viscoelastic materials
is very common [22, 23, 24, 25, 26]. The behavior of a viscoelastic material
varies between viscous and elastic ones. However, the behavior is strongly
dependent on many parameters. In fact, according to the tension amplitude,
its frequency, its rate, etc., the material can show a specific amount of elas-
ticity or viscosity [27]. Because of the huge number of affecting parameters
and the complexity of the way they influence the material stress-strain re-
lationship, it is difficult to figure out how much the material is elastic or
viscous at a certain condition. However, most of the time, the behavior can
be practically considered as a function of time. In fact, since in a dynami-
cal environment, stress, strain, force, etc. are all functions of time, even in
the case that the state of the material (i.e. the amount of its viscosity or
elasticity) is a function of some of these, it can be considered as an implicit
function of time. Hence, it makes sense to use time varying order model to
describe such materials.

2



Variable order dynamics are widely used in modeling various physical
phenomena. Such operators are used to develop mechanical laws in [28]. In
[29], the theory of viscoelasticity and the abilities of variable order calculus
build a framework for modeling viscoelastic behavior. In [30], variable or-
der differential equations are used to describe anomalous diffusion modeling.
The effect of tension on cable status is modeled in [31] using variable order
dynamics.

In the above mentioned papers, when non-integer order modeling is used
(especially in cases with varying order), the order or its functionality of the
states is supposed to be known [31, 4]. Here, an identification method is also
proposed to identify the model order and parameters effectively.

Since the order is a key characteristic of a non-integer order system for
having a precise model describing specific dynamics, it is vital to identify it
with an acceptable level of precision. Some papers have already proposed
estimation schemes for the order of a non-integer order system, assuming a
constant order. In [32], the order is treated just like other constant system
parameters in the estimator, which was not real time. A numerical method
is used in [33] to find the constant order of a non-integer system. In [34],
a discrete-time technique is used to estimate the constant order of a system
using a Kalman filter. A frequency domain system identification approach is
proposed in [35] based on continuous distributed-order. As an application,
the fractional model describing the lead acid battery is proposed in [36]. In
[37], an adaptive estimation process is introduced to estimate the constant
order of non-integer order systems. While the unknown order is supposed
to be constant in all of the above, the order is allowed to be time-varying
in this paper. This is a significant and useful generalization. In fact, even
when the order is a function of the states, it can be considered as an implicit
function of time. Hence, the method proposed in this paper can be utilized
in all cases involving varying order dynamics. This is a main novelty of the
proposed method. Allowing the order to vary with time gives the pair of the
identification approach and the model the ability of describing and identifying
various complicated phenomena such as viscoelastic material behavior. Also,
a definite convergence proof is presented in this paper, ensuring that the
order identification error can be made arbitrarily small.

The contribution of this paper is two-fold. First, we introduce a time
varying order model to describe complex behavior of viscoelastic materials.
Actually, since the order is allowed to vary in time, it can effectively model
different variations in the material behavior. Such idea gives the model some
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more levels of precision. However, it leads to a complex problem: The behav-
ior of the material should be modeled and predicted in a real time manner.
Hence, an adaptive identification method with an acceptable level of preci-
sion should be used. The design of such an identification method is the main
contribution of the paper.

The approach proposed in the current paper differs from the former ones
in the following aspects:

1. While the order is supposed to be constant in the former papers, the
order is allowed to be varying with time in this paper. This is a significant
useful generalization. In fact, even when the order is a function of the states,
it can be considered as an implicit function of time. Hence, the method
proposed in this paper can be utilized in all cases involving varying order
dynamics.

2. A definite convergence proof is established in this paper, guaranteeing
that the identification error for both order and parameters can be made
arbitrarily small.

3. While most of the former papers propose offline methods, the method
developed here is an adaptive one. This makes it useful for real time appli-
cations.

Accordingly, the paper is organized as follows: After explaining the mo-
tivating example in Section II, the preliminaries and problem definition will
be introduced in the Section III. As the main outcome of the paper, Section
IV is about the order/parameter identification of a variable order model. In
Section V, a simulation study validates the theoretical results presented in
Section IV. Section VI provides an experimental study followed by conclusion
given in Section VII.

2. Motivating Example

A viscoelastic material is between the elastic and viscous ones in terms
of input/output dynamics. There are several interpretations for the word
“between”. The stress-strain relation of a pure elastic material (a Hookean
spring) is given by

σ = kε (3)

where stress and strain are indicated by σ and ε, respectively, and k is the
elasticity coefficient. For a pure viscous material (a Newtonian damper), the
stress-strain relation is

σ = bε̇ (4)
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where ε̇ = dε
dt

and b is the viscosity coefficient. The simplest explanation for
describing a material between these is to use the Kelvin-Voigt model, i.e.,
to consider a viscoelastic material as a parallel-series combination of ideal
Hookean springs and Newtonian dampers, [38]. This idea leads to a linear
relationship between the stress and strain of viscoelastic materials which, in
the simplest way, can be written as

σ = kε+ bε̇. (5)

There is a different interpretation for the word “between”. In this point of
view, (3) and (4) can be rewritten as

σ = kD0
t ε (6)

and
σ = bD1

t ε (7)

respectively. Here, Dn
t is defined as the nth derivation operator with respect

to time and the 0th derivative of a function is considered to be the function
itself. Now, if a material behaves between the ones described by (6) and (7),
its stress-strain relation can be considered as

σ = ηDq
t ε, 0 < q < 1. (8)

Equation (8) is the main idea of many recently published papers based on the
fractional (or, to be more precise, non-integer) order modeling of viscoelastic-
ity, of which some examples can be found in [39, 40, 41]. In (8), the operator
Dq
t is known as the non-integer order derivation operator. Choosing the open

interval q ∈ (0 1) is to avoid pure viscous or elastic materials. In fact, it
implies that the considered material is definitely a viscoelastic one. In this
paper, the great ability of the variable order operator is utilized to model
soft tissue behavior. To this aim, first, we propose an analytical adaptive
approach to identify the parameters of the above model and then, validate
the method by means of applying it on a set of data gathered from a real
tissue.

To the best knowledge of the authors, adaptive identification of the order
and parameters of a variable order system is not proposed yet, even for a
simple model like (8). Accordingly, this paper is the first work introducing
a method for identifying the variable order and parameter of a variable non-
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integer order system. As an application for such systems, the paper also
suggests a variable order model for describing a complex material such as
soft tissue.

3. Preliminaries

The variable order derivation operator was defined in (1). The inverse of
the variable derivation operator is the variable order integration operator of
the same order defined as

0I
α(t)
t x(t) = 1

Γ(α(t))

∫ t
0
(t− τ)α(t)−1x(τ)dτ

0 < α(t) < 1,∀t ≥ 0
(9)

In fact,
C
0 D

α(t)
t I

α(t)
t x(t) = x(t) (10)

Consider the following system:

C
0 D

α∗(t)
t x∗(t) = p∗Tu (11)

where 0 < α∗(t) < 1,∀t is the order, p∗ is the n × 1 parameter vector, u is
the n× 1 input vector, the scalar x∗ is the response of the system, T denotes
the transpose operator and the superscript ∗ indicates the nominal values.
The above equation is equivalent to the following Volterra integral equation
[42, 43]:

x∗(t)− x∗(0) =
1

Γ(α∗(t))

∫ t

0

(t− τ)α
∗(t)−1p∗Tu(τ)dτ (12)

According to (12), the relationship between the response of the system and
the order is complicated. Hence, order identification is not as easy as the
estimation of the other parameters of the system. Fortunately, we can com-
pute the partial derivative of the system response with respect to the order.
For any function f , define:

zf (β, t) = z0 +
1

Γ(β(t))

∫ t

0

(t− τ)β(t)−1f(τ)dτ (13)
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Then,
∂zf (β, t)

∂β
=
−Γ′(β(t)

Γ2(β(t))

∫ t

0

(t− τ)β(t)−1f(τ)dτ

+
1

Γ(β(t))

∫ t

0

ln(t− τ)(t− τ)β(t)−1f(τ)dτ

=− ψ(β(t))

Γ(β(t))

∫ t

0

(t− τ)β(t)−1f(τ)dτ

+
1

Γ(β(t))

∫ t

0

ln(t− τ)(t− τ)β(t)−1f(τ)dτ

(14)

where

ψ(β) =
d

dβ
ln(Γ(β)) =

Γ′(β(t)

Γ(β(t))
. (15)

Hence, when the history of f in [0 t) and the value of β at t are known, the
above derivative can be computed. It will be shown that the above result
helps to design an order/parameter identification method. The next section
will provide the theoretical basis for the proposed approach.

4. Main Results

Without loss of generality, consider the model described in (11) with zero
initial condition. We will study the effect of the initial conditions later in
Remark 4. The following lemma provides the proposed parameter estimation
procedure in the case that the time-varying order is known.

Lemma 1. Consider the following equation which is an approximation for
(11) after substituting the unknown value p∗ with p = p(α∗, t):

C
0 D

α∗(t)
t x(t) = p(α∗, t)Tu (16)

Here, p(α∗, t) is an n×1 vector computed in real time through the following
least squares equation with forgetting factor (LSFF) approximation.

p(α∗, t) = P (α∗, t)

∫ t

0

e−λ(t−τ)x∗(τ)φ(α∗, τ)dτ (17)

where P (α∗, t) =
( ∫ t

0
e−λ(t−τ)φ(α∗, τ)φT (α∗, τ)dτ

)−1

.
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In (17), 0 < λ < 1 is the forgetting factor and φ(α∗, t) = φ(β, t)|
β=α∗

where φ(β, t) is defined as:

φ(β, t) =
1

Γ(β(t))

∫ t

0

(t− τ)β(t)−1u(τ)dτ (18)

Then, as long as φ(α∗, t) is Persistently Exciting (PE), (x− x∗)→ 0, or for
any arbitrary small positive value of ε there is Tε for which:

t > Tε ⇒ ‖x− x∗‖ < ε (19)

and p→ p∗.

Proof. Based on (11) and (16) the signals x and x∗ can be respectively written
as:

x∗(t) =

∫ t

0

(t− τ)α
∗(t)−1

Γ(α∗(t))
p∗Tu(τ)dτ

x(t) =

∫ t

0

(t− τ)α
∗(t)−1

Γ(α∗(t))
pTu(τ)dτ

(20)

According to the definition of φ, since the values of p and p∗ are both inde-
pendent from τ , the following linear-in-parameter equations are obtained:

x∗ = p∗Tφ

x = pT (α∗, t)φ
(21)

The rest of the proof is straightforward based on the proof of the regu-
lar forgetting factor parameter estimation case [44]. Define the error signal
e1 and parameter error p̃ as e1 = x − x∗ and p̃ = p − p∗, respectively.
Hence, e1 = p̃Tφ. By derivating (17) with respect to t it can be con-

cluded that ˙̃p = −Pφe1 [44]. Define the Lyapunov function V (p̃) = p̃TP−1p̃
2

.

Then, considering that Ṗ = −PṖ−1P , and the fact that as long as φ is PE

P (α∗, t) =
( ∫ t

0
e−λ(t−τ)φ(α∗, τ)φT (α∗, τ)dτ

)−1

> 0 [44], the time derivative

of V is calculated as V̇ = −e2
1 < 0 .Hence p̃→ 0, x→ x∗ and this completes

the proof.

Remark 1. Lemma 1 shows that, instead of x∗ = p∗Tφ one may use
x = p(α∗, t)Tφ with small enough error between x and x∗. This substitution
will be used in Theorem 1 when the derivation of the output with respect
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to the parameter is required to approximate the output error using Taylor
series.

Remark 2. The set of equations (17) are the well-known LSFF parame-
ter estimation formulation which, as will be seen in Theorem 1, can be used
in a real time adaptive manner.

Remark 3. Choosing LSFF instead of other versions of the Least Squares
algorithm makes it possible to estimate smooth time varying parameters, as
well. In fact, LSFF concentrates on the most recent history of the signals
by weighting the recent samples more then the previous ones. This property
makes it possible to deal with the time varying parameters.

Remark 4. In Lemma 1 the zero initial condition was assumed for the
system. However, in the case that x∗(0) 6= 0 it is still available and the
model initial condition x(0) is available as well. Hence, we can easily define
the auxiliary variables X∗ = x∗ − x∗(0) and X = x − x(0) satisfying (21).
Accordingly, the above lemma and also, the upcoming lemmas and theorems
all hold with arbitrary initial conditions. However, for the sake of simplicity,
we will consider the system and the model with zeros initial conditions.

In the previous lemma, it was assumed that the order α∗ is known. The
following lemma provides a more general relationship between the actual and
estimated responses when the order is not known and α̂ 6= α∗ is used as an
approximation for it.

Lemma 2. Suppose that x and x̂ are defined in the interval t ∈ [0 T ] as:

x∗(t) =

∫ t

0

(t− τ)α
∗(t)−1

Γ(α∗(t))
p∗Tu(τ)dτ

x̂(t) =

∫ t

0

(t− τ)α̂(t)−1

Γ(α̂(t))
pT (α̂, t)u(τ)dτ

(22)

where

p(β, t) = P (β, t)

∫ t

0

e−λ(t−τ)x∗(τ)φ(β, τ)dτ

P (β, t) =
(∫ t

0

e−λ(t−τ)φ(β, τ)φT (β, τ)dτ
)−1

(23)

Then, for any given ε, there is a time Tε such that the value of x∗− x̂ can be
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evaluated according to the following at any time t > Tε:

x∗ − x̂ =

(
pT (α̂, t)

∂φ(β, t)

∂β
|
β=α̂

+
∂pT (β, t)

∂β
|
β=α̂

φ(α̂, t)

)
(α∗ − α̂)

+K(t)(α∗ − α̂)2 + e

(24)

where |e| ≤ ε and K(t) = ∂2y(β,t)
∂β2 |β=α0 for some α0 ∈ [min(α, α̂) max(α, α̂)].

Proof. Define H(t, τ, β) = (t−τ)β−1

Γ(β)
. So, φ(β, t) =

∫ t
0
H(t, τ, β)u(τ)dτ . Then,

we have:
x∗ = p∗Tφ(α∗, t)

x̂ = pT (α̂, t)φ(α̂, t)
(25)

Define the following auxiliary variables:

y(β, t) = pT (β, t)φ(β, t)

and

x = pT (α∗, t)φ(α∗, t).

Then, x = y(α∗, t) and x̂ = y(α̂, t). H is continuous and analytical with
respect to β when 0 < β < 1 and 0 < τ < t. Therefore, ∂H

∂β
, ∂

2H
∂β2 are

both bounded in the interval 0 < τ < t. According to the definition of φ,
∂kφ(β,t)
∂βk

=
∫ t

0
∂kH(t,τ,β)

∂βk
u(τ)dτ . So, while u is bounded and continuous, ∂φ

∂β
and

∂2φ
∂β2 are both bounded and continuous.

Noting that ∂P (β,t)
∂β

= −P ∂P−1(β,t)
∂β

P , the value of ∂p(β,t)
∂β

can be calculated
through the following equations:

∂p(β, t)

∂β
=
∂P (β, t)

∂β

∫ t

0

e−λ(t−τ)x∗(τ)φ(β, τ)dτ

+ P (β, t)

∫ t

0

e−λ(t−τ)x∗(τ)
∂φ(β, τ)

∂β
dτ

∂P (β, t)

∂β
= −P (β, t)

(∫ t

0

e−λ(t−τ)
(
φ(β, τ)

∂φT (β, τ)

∂β

+
∂φ(β, τ)

∂β
φT (β, τ)

)
dτ
)
P (β, t)

(26)
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Hence, when t ∈ [0 T ], as long as φ(β, t) and ∂φ(β,t)
∂β

are bounded, so is ∂p(β,t)
∂β

.
Now, Taylor series expansion can be applied on the function y to calculate

x− x̂ as

x−x̂ = (α∗ − α̂)
∂y(β, t)

∂β
|
β=α̂

+ (α∗ − α̂)2∂
2y(β, t)

∂β2
|
β=α0

=
(
pT (α̂, t)

∂φ(β, t)

∂β
|
β=α̂

+
∂pT (β, t)

∂β
|
β=α̂

φ(α̂, t)
)

(α∗ − α̂) +K(t)(α∗ − α̂)2

(27)

for some α0 ∈ [min(α, α̂) max(α, α̂)], where K(t) = ∂2y(β,t)
∂β2 |β=α0 .

Since x∗−x̂ = (x−x̂)+(x∗−x), where, x is defined as x = pT (α∗, t)φ(α∗, t).
After defining e = x∗ − x, we have:

x∗ − x̂ =
(
pT (α̂, t)

∂φ(β, t)

∂β
|
β=α̂

+
∂pT (β, t)

∂β
|
β=α̂

φ(α̂, t)
)

(α∗ − α̂)

+K(t)(α∗ − α̂)2 + e

(28)

where, according to Lemma 1, |e| < ε

Lemma 3. Suppose that u is continuous and t belongs to the closed bounded

interval [0 T ]. Then, in (24), K = ∂2y(β,t)
∂β2 |β=α0 is bounded.

Proof. Since u is continuous (so is ‖u‖), according to the Extreme Value
Theorem, |u| attains a maximum in the aforementioned interval, here defined

as Mu. The functions Γ(β), ψ(β) and ψ′(β) = dψ(β)
dβ

are all bounded in 0 <

β(t) < 1 and H ≥ 0. Furthermore, the integrals
∫ t

0
|H|dτ ,

∫ t
0
|ln(t− τ)H|dτ

and
∫ t

0
|ln2(t− τ)H|dτ all converge for 0 < β(t) < 1:∫ t

0

|H|dτ =

∫ t

0

Hdτ =
tβ(t)

β(t)Γ
(
β(t)

)
∫ t

0

|ln(t− τ)H|dτ =


tβ(t)(1−β(t)ln(t))

β2(t)Γ
(
β(t)
) , t ≤ 1

2+tβ(t)(β(t)ln(t)−1)

β2(t)Γ
(
β(t)
) , t > 1∫ t

0

|ln2(t− τ)H|dτ =
tβ(t)

(
1 + β2(t)ln2(t)− 2β(t)ln(t)

)
β3(t)Γ(β(t))

Now, it should be noted that based on the definition of H,
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∂H

∂β
= (−ψ(β) + ln(t− τ))H

∂2H

∂β2
= −ψ′H + (−ψ(β) + ln(t− τ))

∂H

∂β

= −ψ′H + ψ2(β)H − 2ψ(β)ln(t− τ)H + ln2(t− τ)H

Hence, for any given T , there are positive scalars M0
H(T ), M1

H(T ), and

M2
H(T ) such that

∫ t
0

∣∣H(t, τ, β)
∣∣dτ ≤ M0

H(T ),
∫ t

0

∣∣∂H(t,τ,β)
∂β

∣∣dτ ≤ M1
H(T ), and∫ t

0

∣∣∂2H(t,τ,β)
∂β2

∣∣dτ ≤M2
H(T ),∀t ∈ [0 T ]. Therefore,∥∥∥φ(β, t)

∥∥∥ ≤M0
HMu ≡M0

φ∥∥∥∂φ
∂β

∥∥∥ ≤M1
HMu ≡M1

φ∥∥∥∂2φ

∂β2

∥∥∥ ≤M2
HMu ≡M2

φ

Now, after defining G(β, t) =
∫ t

0
e−λ(t−τ)

(
φ(β, τ)∂φ

T (β,τ)
∂β

+ ∂φ(β,τ)
∂β

φT (β, τ)
)
dτ

and Q(β, t) =
∫ t

0
e−λ(t−τ)x∗(τ)φ(β, τ)dτ , based on the definitions of P and p

and considering (26) we have:
∂G

∂β
=

∫ t

0

e−λ(t−τ)
(
φ(β, τ)

∂2φT (β, τ)

∂β2

+ 2
∂φ(β, τ)

∂β

∂φT (β, τ)

∂β
+
∂2φ(β, τ)

∂β2
φT (β, τ)

)
dτ

∂Q

∂β
=

∫ t

0

e−λ(t−τ)x∗(τ)
∂φ(β, τ)

∂β
dτ

∂2Q

∂β2
=

∫ t

0

e−λ(t−τ)x∗(τ)
∂2φ(β, τ)

∂β2
dτ

∂2P

∂β2
= −∂P

∂β
GP − P ∂G

∂β
P − PG∂P

∂β

∂2p

∂β2
=
∂2P

∂β2
Q+ 2

∂P

∂β

∂Q

∂β
+ P

∂2Q

∂β2

Since φ, ∂φ
∂β

and ∂2φ
∂β2 are all bounded and continuous, so are P , G, Q, ∂G

∂β
, ∂Q
∂β

,
∂2Q
∂β2 and ∂2Q

∂β2 and finally p, ∂p
∂β

and ∂2p
∂β2 are bounded, i.e., there are positive

scalars M0
p , M1

p and M2
p such that ‖p‖ ≤ M0

p ,
∥∥∥ ∂p∂β∥∥∥ ≤ M1

p ,
∥∥∥ ∂2p∂β2

∥∥∥ ≤ M2
p , t ∈

[0 T ].
Considering all the above results together, we have:
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|K| =
∣∣∣∂2y(β, t)

∂β2
|
β=α0

∣∣∣
≤
∣∣∣(∂2pT (β, t)

∂β2
φ(β, t) + 2

∂pT (β, t)

∂β

∂φ(β, t)

∂β
+ pT (β, t)

∂2φ(β, t)

∂β2

)
|
β=α0

∣∣∣
≤M2

p (T )M0
φ(T ) + 2M1

p (T )M1
φ(T ) +M0

p (T )M2
φ(T ) ≡MK

implying that K is bounded.

Now, based on the above lemmas, the upcoming theorem provides a si-
multaneous order/parameter identification method for the system described
in (11).

Theorem 1. Consider the model described by (11) in the interval t ∈ [0 T ]
with unknown time varying order 0 < α∗(t) < 1, ‖α̇∗(t)‖ ≤M , and unknown
parameter vector p∗. The following set of adaptation rules identifies the order
and the parameter with arbitrary small error:

˙̂p = Pφ(x∗ − x)

Ṗ = −λP + Pφ(α̂, t)φT (α̂, t)P, P (0) = I

˙̂α = γΛ(x∗ − x̂)

C
0 D

α̂(t)
t x̂(t) = p̂Tu

(29)

where,

Λ =
(
pT (α̂, t)

∂φ(β, t)

∂β
|
β=α̂

+
∂pT (β, t)

∂β
|
β=α̂

φ(α̂, t)
)

(30)

and 0 < λ < 1 is the forgetting factor, γ is a positive scalar and p(β, t) =
P (β, t)

∫ t
0
e−λ(t−τ)x∗(τ)φ(β, τ)dτ , and φ(β, t) is defined in (18). Furthermore,

when u is in a way that φ(β, t) is PE for all functions 0 < β(t) < 1, then
p̂→ p∗.

Proof. First, it worths mentioning that φ(β) = zu(β, t), z0 = 0 in (13) and
∂p
∂β

can be computed using (14) and (15). Also, ∂φ
∂β

can be computed as (26).
The integrations are all computed using a numerical method.

By derivating both equations of (23) with respect to t, the first two equa-
tions in (29) are obtained which are the real time equivalent of the LSFF
algorithm (23) for β = α̂ [44]. Actually, p̂ = p(α̂, t). Hence, (24) in Lemma
2 holds.
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Consider the Lyapunov function V = 1
2
(α∗ − α̂)2. Then,

V̇ = α̇∗(α∗ − α̂)− γΛ(α∗ − α̂)(x∗ − x̂) (31)

Substituting x∗ − x̂ from (24), according to Lemma 1, there is Tε such that
for t > Tε:

V̇ ≤ (M + εγ‖Λ‖)‖α∗ − α̂‖ − γΛ2(α∗ − α̂)2 + γ‖Λ‖‖K(t)‖‖α∗ − α̂‖3

(32)
The term with negative sign can be split to two and all the terms can be
grouped as:

V̇ ≤

{
(εγ‖Λ‖+M)‖α∗ − α̂‖ − γ

2
Λ2‖α∗ − α̂‖2

}

+

{
γ‖Λ‖‖K(t)‖‖α∗ − α̂‖3 − γ

2
Λ2‖α∗ − α̂‖2

} (33)

Suppose that Λ 6= 0. So, a positive value Λ0 exists such that ‖Λ‖ > Λ0.
Then,

1. The first group is negative when ‖α∗− α̂‖ > 2M
γ‖Λ‖2 + 2ε

‖Λ‖ . By setting a

small enough value for ε, the value of ε1 = 2ε
Λ0

can be made arbitrarily small.

Furthermore, ‖α∗ − α̂‖ > 2M
γΛ2

0
+ ε1 guarantees that ‖α∗ − α̂‖ > 2M

γΛ2 + 2ε
‖Λ‖ .

2. The second group is negative when ‖α∗ − α̂‖ < ‖Λ‖
2‖K‖ . As long as

‖Λ‖ > 0 , since ‖K‖ is bounded, there is a positive real number MK such

that ‖α∗ − α̂‖ < Λ0

2MK
yields ‖α∗ − α̂‖ < ‖Λ‖

2‖K‖ .

Hence, for t > Tε, V̇ is negative inside the interval 2M
γΛ2

0
+ ε1 < ‖α∗ −

α̂‖ < Λ0

2MK
. The value of Tε is dependent on κ. It can be adjusted in a

way that Tε << T implying that ε1 rapidly tends to zero and V̇ < 0 in
2M
γΛ2

0
≤ ‖α∗ − α̂‖ ≤ Λ0

2MK
in the most part of the interval [0 T ].

This implies the locally ultimate boundedness of the error. In fact, since
V̇ < 0 in 2M

γΛ2
0
< ‖α∗ − α̂‖, as soon as α − α̂ tends to leave the area ‖α∗ −

α̂‖ ≤ 2M
γΛ2

0
, it is pulled back inside. Thus, the error α∗ − α̂ remains bounded

with maximum bound of 2M
γΛ2

0
. Accordingly, if the initial condition α̂(0) is

properly chosen, the identification error can be made arbitrarily small. The
convergence speed is related to the matrix κ and the scalar γ.
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Consider the interval BL < ‖α∗−α̂‖ < BU with the lower bound BL = 2M
γΛ2

0

and the upper bound BU = Λ0

2MK
. It should be noted that as long as BL < BU

the aforementioned interval is never empty, i.e., for γ > 4MMK

Λ3
0
3 there exist

a region such that if the initial condition is chosen inside it, the adaptation
rules converge to an identification with bounded error. Also, a larger γ leads
to a smaller ultimate bound on ‖α∗ − α̂‖. So, a large enough γ ensures the
convergence with an acceptable error in (29).

Moreover,
1. For the constant order case where M = 0, if the initial value is properly

chosen, the identification error asymptotically converges to zero.
2. As K → 0, the upper bound tends to infinity i.e., the identification

error will be globally bounded.
3. Since the set {α̂,Λ(t) = 0} is not an invariant set for the system (i.e.

it does not yield ˙̂α = 0,∀t), so the trajectory will leave this set. Hence, only
the case Λ 6= 0 is considered in the stability analysis.

Consequently, α̂ → α∗ and, due to the continuity of p(β, t) with respect
to β, p(α̂, t)→ p(α∗, t). When φ(β, t) is PE for all β, then φ(α̂, t) is PE and
according to Lemma 1, p(α∗, t) → p∗. Hence, p(α̂, t) → p(α∗, t) → p∗ and
this completes the proof.

The above theorem proposes a scheme to identify the order and param-
eters of the variable order system in (11). Fig. 1 shows this procedure as a
block diagram.

5. Simulation Study

In this section, the identification method introduced in (29) is applied
on a multiple-input, single-output system of the form (11). It is noteworthy
to mention that in order to demonstrate the effectiveness of the proposed
method, we have chosen a noisy system with an additive measurement noise.
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Figure 1: Block diagram of the proposed method for the order/parameter identification
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Figure 2: The actual and identified order (α∗ and α̂)

Consider the following:

C
0 D

α∗(t)
t x∗(t) = p∗Tu, ν ∼ N(0, 0.25)

u =

[
sin(0.5t)
cos(0.2t)

]
α∗(t) = 0.15e−0.02t

(
cos(0.2t) + 2

)
+ 0.4

p∗ =

3 + 4
(
1− e−0.1(t−150)

)
Θ(t− 150)

−5


λ = 0.9

(34)

where Θ(.) denotes the Heaviside step function and ν is a white Gaussian
noise. Accordingly, there is a smooth jump in the first entry of the parameter
vector at t = 150. The actual and identified order, output and parameters
are shown in Fig. 2, Fig. 3 and Fig. 4, respectively. Figs 2-4 show that
the proposed algorithm efficiently identifies the order and the parameters
even in a noisy situation. It identifies the order, the output and parameters
with bounded error. This simulation study validates the effectiveness of the
theoretical methods. In the next Section, the stress-strain relationship for a
real beef tissue will be modeled and identified using the proposed method.
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Figure 3: The actual and identified output (x∗ and x̂)

6. Experimental Study

As mentioned in Section I, describing the dynamic behavior of viscoelastic
materials can be done using the variable order model σ = ηD

q(t)
t ε, 0 < q(t) <

1 which is of the form (11) with α∗ = q, x∗ = ε, u = σ, and p∗ = 1
η
.

The material we have chosen is a symmetrical slice of real beef tissue. It is
indented in one dimension using a needle insertion robot shown in Fig. 5.
The setup consists of a robotic system with two degrees of freedom (DOF)
for translational and rotational motions of the needle. Forces and torques are
measured at the needle base using a 6-DOF force sensor. After we replace
the needle with a blunt indenter, the setup can be used to apply controlled
force or displacement to the tissue for indentation tests. The apparatus
can record images of the needle inside tissue to track the needle position.
However, we have used the encoder data to record the displacement and
calculate the strain. Since the tissue is symmetric, we will just consider the
indentation direction to get one dimensional stress-strain data. The data
gathering process is done through obtaining force and displacement data
from the force sensor and the encoder and converting them to stress and
strain, respectively, using the one dimensional equations

σ =
F

a
, ε =

d

l
(35)
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Figure 4: The actual and identified parameters. Top: p∗1 vs. p̂1, Bottom: p∗2 vs. p̂2
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Tool
Encoder

Figure 5: Data gathering apparatus

where F is force, d is displacement, a is area, l is tissue length, σ is stress
and ε is strain.

We have used controlled tissue displacement with various profiles. Bio-
logical tissue is a highly complex system. Accordingly, small changes in dis-
placement profiles may lead to huge difference in the measured force. This
strange behavior makes it difficult to identify it through an experiment and
used the estimated parameters for another experiment. Fig. 6 shows that
two displacement profile in similar ranges have been applied to same tissue,
the first one with and the second one without pauses. Although the displace-
ment range and the type of tissue are the same the way the displacement
is applied causes a big different in tissue behavior. In the left hand side
plots (Experiment 1) the stress remains until the final time. i.e., the tis-
sue is behaving like an elastic material, while in the right hand side plots
(Experiment 2) the stress is being gradually disappeared, similar to viscous
materials. Consequently, the modeling and identification method should be
able to model both behaviors. Hence, it makes more sense to identify the
tissue in each experiment in a real time way. This is the reason why the
adaptive identification method is needed in practical applications.
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Figure 6: Stress and strain for a tissue in two different experiments. Left hand side:
Experiment 1 with paused applied displacement. Right hand side: Experiment 2 with
non-paused applied displacement.
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Figure 7: Applying the proposed model and identification method on data gathered from
experiment 1. Top-Left: Measured and Identified Strain (Output). Top-Right: Stress
(Input). Bottom-Left: Identified Order. Bottom-Right: Estimated Parameter
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Figure 8: Applying the proposed model and identification method on data gathered from
experiment 2. Top-Left: Measured and Identified Strain (Output). Top-Right: Stress
(Input). Bottom-Left: Identified Order. Bottom-Right: Estimated Parameter

Now, considering model (8), we find different behaviors for the order q and
parameter η in each experiment. The method proposed in Theorem 1 is ap-
plied on the data from the above experiments. Fig. 7 and 8 show the results.
It can be seen that the output identification error is small. Also, although
the tissue behavior is different in each experiment, the proposed model and
identification approach effectively identifies the order and parameter in both
cases.

7. Conclusion

In this paper, an adaptive order/parameter identification approach is in-
troduced for identifying the order and parameters of a variable order sys-
tem. After proving some Lemma, Theorem 1 provides the main result. This
method is validated using a simulation study. Afterwards, an experimental
study is done based on the theoretical results. The experimental study uses
an apparatus recording indentation force-displacement data.

Fitting the proposed model on the stress-strain data gathered from a real
beef tissue and applying the identification approach validate the modeling
concept and show the effectiveness of the identification method. Future works
in this topic may be done pertaining to extending the presented results in
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order to design an order/state/parameter identification method for variable
order system. Practical extension may be done regarding to modeling and
identification of multi-dimensional viscoelastic materials.
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tional system identification for lead acid battery state of charge estima-
tion. Signal processing 2006; 86(10):2645–2657.

[37] Rapaic MR, Pisano A. Variable-order fractional operators for adaptive
order and parameter estimation. Automatic Control, IEEE Transactions
on 2014; 59(3):798–803.

[38] Jamison C, Marangoni R, Glaser A. Viscoelastic properties of soft tissue
by discrete model characterization. J. Manuf. Sci. Eng. 1968; 90(2):239–
247.

[39] Mainardi F. An historical perspective on fractional calculus in linear
viscoelasticity. Fract. Calc. Appl. Anal. 2012; 15(4):712–717.

[40] Shen JJ, Li CG, Wu HT, Kalantari M. Fractional order viscoelasticity in
characterization for atrial tissue. Korea-Aust. Rheol. J. 2013; 25(2):87–
93.

[41] Mainardi F. Fractional calculus and waves in linear viscoelasticity: an
introduction to mathematical models. World Scientific, 2010.

[42] Esmaeili S, Shamsi M, Dehghan M. Numerical solution of fractional
differential equations via a volterra integral equation approach. Open
Physics 2013; 11(10):1470–1481.

[43] Samko SG. Fractional integration and differentiation of variable order.
Analysis Mathematica 1995; 21(3):213–236.

26



[44] Ioannou PA, Sun J. Robust adaptive control. Courier Corporation, 2012.

27


