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Abstract

Robotic surgery offers several advantages over traditional techniques, including improved precision, greater consistency, and
enhanced dexterity. Learning from demonstrations (LfD) is a promising approach for transferring expert skills to robots, thereby
alleviating clinicians’ physical workload. However, a major challenge in surgical robotics is that demonstration data often includes
suboptimal or failed behaviors due to human error, fatigue, or the inherent complexity of surgical tasks. Discarding such imperfect
data results in the loss of valuable information and hinders the scalability of data-driven surgical skill acquisition. In this work, we
propose a novel LfD optimization framework capable of learning from a broad spectrum of demonstrations—including successful,
suboptimal, and failed attempts. Our method employs a dual probabilistic modeling strategy to encode demonstrations and for-
mulates a multi-objective optimization problem under novel problem conditions to find an optimal reproduction. We validate our
approach on the standard ring-and-rail task, a representative surgical training task requiring high-precision and dexterous manipu-
lation. Real-world experiments using the da Vinci Research Kit (dVRK) show that, even in the presence of failure cases within the
demonstration set, our method produces optimized trajectories that enable the patient-side manipulator to successfully guide the
ring along the curved wire without contact. These results demonstrate the robustness and effectiveness of our approach in learning
from imperfect data, underscoring its potential for real-world deployment in robot-assisted surgery.
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1. Introduction

Robotic surgery holds significant promise for improving sur-
gical precision, consistency, and enabling minimally invasive
interventions. Despite this potential, the automation of surgical
tasks remains a formidable challenge due to their safety-critical
nature, high dexterity requirements, and operation within con-
strained anatomical environments. Unlike industrial tasks, sur-
gical subtasks—such as suturing [1], retraction [2], and mi-
crosurgery—require expert-level coordination and fine-grained
motion control [3]. Encoding such skills through hand-crafted
control policies is extremely difficult, as it requires anticipating
a vast number of edge cases. Likewise, trial-and-error learn-
ing approaches are generally infeasible due to the unacceptable
risks of failure and damage to tissue during the learning pro-
cess.

Learning from demonstration (LfD) has emerged as a com-
pelling paradigm for automating complex surgical tasks by
leveraging the expertise of skilled human operators. By al-
lowing robots to imitate human-provided trajectories, LfD cir-
cumvents the need for manual programming or unsafe explo-
ration, and instead leverages the expertise embedded in sur-
gical demonstrations. Prior work has applied LfD to various
surgical tasks, including suturing [4, 5], ultrasound scanning
[6, 7], retraction [8], tool navigation [9], and laparoscopic cam-
era positioning [10]. These studies typically assume access to

high-quality, flawless demonstrations to ensure reliable policy
learning.

Figure 1: Ring-and-rail task for training/assessing fundamental surgical skill.
The operator teleoperates the PSM to guide a rigid ring along a narrow, curved
metal wire without making contact. This surgical training task simulates critical
aspects of real surgical procedures, such as hand-eye coordination, fine motor
control, spatial planning, and operation within constrained environments.

However, in real-world surgical environments, collecting
consistent, high-quality demonstrations is non-trivial [11].
Even expert surgeons are susceptible to producing imperfect or
failed demonstrations due to occlusions, anatomical variability,
tool-tissue interaction complexity, or operator fatigue. As a re-
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sult, demonstration datasets often contain a wide spectrum of
trajectories, ranging from successful and near-optimal to com-
pletely failed attempts. While suboptimal behaviors are typi-
cally discarded in conventional LfD pipelines, they may con-
tain critical information about failure modes, unsafe regions, or
challenging aspects of the task [12]. This underscores the need
for learning frameworks that can effectively leverage both suc-
cessful and imperfect demonstrations to enhance the robustness
and generalizability of autonomous surgical skill learning.

In this work, we investigate a fundamental question in robotic
surgical task learning: whether a robot can learn an optimal ex-
ecution policy from demonstration data that includes both suc-
cessful and failed attempts. This question is central to enabling
robust learning in realistic surgical settings, where high-quality,
error-free demonstrations are often limited. To this end, we pro-
pose a novel LfD framework that explicitly models and learns
from a mixture of successful, suboptimal, and failed demonstra-
tions. Our approach leverages a hybrid probabilistic representa-
tion: Gaussian Mixture Models (GMMs) are used to capture the
spatial-temporal patterns of successful behaviors, while Donut
Mixture Models (DMMs) [13] are introduced to explore the po-
tential expert behavior from failure-prone regions. By jointly
modeling perfect and imperfect demonstrations, our framework
learns a richer task representation and improves sample effi-
ciency. We formulate trajectory generation as a multi-objective
optimization problem that balances multiple criteria, includ-
ing imitation fidelity, smoothness, task compliance, and fail-
ure avoidance. Unlike Trajectory Learning from Failed and
Successful Demonstrations (TLFSD) [14] that subtract failed
data or require confidence scoring, our method integrates the
underlying structure of both successful and failed trajectories,
enabling it to discover actionable insights from failure cases and
fuse them constructively with successful data. Our key contri-
butions are as follows:

• This work is the first attempt to address the challenge of
learning from imperfect demonstrations in the ring-and-
rail task designed for surgical skill training.

• The proposed framework can extract latent successful be-
haviors from imperfect demonstrations, significantly im-
proving its practicality in real-world surgical learning sce-
narios where high-quality data is scarce.

• We propose a multi-objective optimization strategy that
jointly balances imitation fidelity, task compliance, and
failure avoidance to enable the acquisition of precise and
robust surgical skills.

To evaluate our proposed framework, we select the ring-and-
rail task, a widely adopted surgical skill training task to train or
assess surgical motion skills for both novice and experienced
surgeons. In this task, a surgeon is required to guide a ring along
a narrow and curved metal wire without making any contact.
The task emulates key aspects of real surgical procedures, in-
cluding hand-eye coordination, fine motor control, spatial plan-
ning, and constrained motion.

In real-world validation, we conduct experiments using the
da Vinci Research Kit (dVRK) [15], a widely adopted research
platform in surgical robotics. Our experimental setup includes a
Patient Side Manipulator (PSM) equipped with a grasper to ma-
nipulate the ring along the rail, simulating constrained surgical
motions. To detect task failures, we integrate an LED-based
contact sensing system that activates when the ring touches the
wire, as shown in Fig. 1. These experiments not only demon-
strate the practical viability of our method in real-world surgi-
cal contexts, but also highlight its potential to enhance surgical
training and execution—particularly in high-precision domains
such as microsurgery and neurosurgery.

2. Related Work

This work is inspired by the following topics from both the
autonomous surgical robots research community and imitation
learning from imperfect demonstrations.

Deep Learning for Surgical Task Modeling Deep learning
has driven substantial advances in surgical scene understand-
ing and control. Huang et al. [7] extracted attention regions
from expert demonstrations for carotid ultrasound scanning to
ensure smooth and robust transitions. Zhang et al. [16] devel-
oped a needle navigation system for retinal microsurgery using
convolutional neural networks to predict distance vectors. Gon-
zalez et al. [17] proposed a data-efficient action recognition sys-
tem for telesurgery, leveraging simulated data to reduce training
requirements. Qin et al. [18] designed a deep learning frame-
work to estimate both coarse and fine-grained surgical states
during robotic hernia repair. While impactful, these works re-
quire large-scale, clean, annotated datasets and do not address
policy learning from imperfect demonstrations. In contrast, our
approach circumvents the need for network training and instead
focuses on extracting optimal behaviors directly from mixed-
quality demonstrations.

Reinforcement Learning for Surgical Automation Rein-
forcement learning (RL) has been employed to learn surgical
policies through reward-guided exploration. Shahkoo et al. [19]
used deep RL to optimize tissue tensioning during robotic cut-
ting. Scheikl et al. [20] introduced an image-based RL frame-
work for deformable tissue manipulation. Ou et al. [21] ex-
plored deep RL for blood suction automation. Long et al. [22]
studied human-in-the-loop RL as a hybrid learning paradigm
for surgical systems, and Bi et al. [23] proposed a simulation-
based RL framework for navigating ultrasound probes to stan-
dard anatomical views. Despite their promise, RL approaches
face challenges in surgical contexts due to the difficulty of de-
signing suitable reward functions and the high sample com-
plexity of iterative policy refinement. Our framework mitigates
these issues by avoiding reward engineering and relying instead
on information-rich demonstrations.

Movement Primitives in Surgical Skill Learning Move-
ment primitives (MPs) have long been a foundational approach
in surgical automation due to their favorable properties in terms
of safety, sample efficiency, and ease of generalization. Scheikl
et al. [24] combined diffusion-based imitation learning with
probabilistic dynamic movement primitives (DMPs) to handle
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deformable object manipulation. Su et al. [25] applied GMM-
based DMPs in the context of robot-assisted minimally inva-
sive surgery, enabling the encoding of smooth and adaptable
motion trajectories. Schwaner et al. [4] used DMPs to model
low-level surgical action primitives and compose more complex
behaviors. Pan et al. [26] utilized discrete DMPs to capture the
spatial-temporal structure of palm trajectories during teleoper-
ated control. However, traditional MP-based approaches are
sensitive to distribution shifts and compounding errors, partic-
ularly under noisy or inconsistent demonstrations. In contrast,
our method explicitly models both successful and failed demon-
strations, enabling robust policy learning even when the dataset
consists entirely of failed attempts.

Imitation Learning from Imperfect Demonstrations Re-
cent studies have explored learning from demonstrations of
varying quality. Cao et al. [27] introduced a hybrid met-
ric combining feasibility and optimality to assess the useful-
ness of suboptimal trajectories. Chou et al. [28] learned log-
ical task structures from imperfect demonstrations using lin-
ear temporal logic. Zhu et al. [29] proposed a ranking-based
imitation framework suitable for settings with sparse or de-
layed rewards. Donut distributions [13, 30] and subsequent
optimization-based methods [14] have shown potential in uti-
lizing suboptimal data by explicitly modeling negative regions.
However, many of these approaches either depend on manu-
ally assigned confidence scores or require a significant propor-
tion of expert demonstrations. Our method departs from these
paradigms by avoiding reliance on confidence estimation and
instead leveraging the internal structure of both successful and
failed demonstrations through probabilistic modeling.

3. Methodology

In this section, we present our proposed framework for learn-
ing from imperfect demonstrations. The methodology com-
prises three key components: (i) demonstration collection; (ii)
modeling successful and failed demonstrations; and (iii) gen-
eration of optimized reproductions via a multi-objective trajec-
tory optimization process.

3.1. Demonstration Collection

Given a set of mixed surgical task demonstrationD that con-
tain both successful, suboptimal and failed executions. The
dataset is partitioned into two subsets,Ds andD f , correspond-
ing to successful and failed demonstrations, respectively. For-
mally, we define:

D = {Ds,D f }, Ds = {X1
s , . . . , X

M
s }, D f = {X1

f , . . . , X
N
f }

(1)
where Xm

s and Xn
f denote successful and failed trajectories, and

M, N are the number of samples. Each trajectory X j is a
discrete, finite-length sequence represented in Cartesian task
space:

X j = [x1, x2, . . . , xT ]⊤ ∈ RT×Q (2)

where xt = [xt(1), xt(2), . . . , xt(Q)] ∈ RQ denotes the Q-
dimensional observation at time step t, and T is the trajectory
length.

To account for variations in execution timing across demon-
strations, we apply Dynamic Time Warping (DTW) to tempo-
rally align the raw trajectories. The aligned trajectories are then
uniformly resampled for consistent modeling. When dealing
with a mixed set of demonstrations that includes both success-
ful and failed trajectories, TLFSD [14] proposes to avoid fail-
ure by subtracting the distribution of failed behaviors from that
of successful ones. In contrast, our approach aims to extract
and preserve the informative motion patterns embedded within
failed demonstrations, enhancing them through integration with
successful trajectories rather than discarding them outright.

3.2. Demonstration Modeling

To effectively learn from demonstrations of varying qual-
ity—including successful, failed, and intermediate cases—we
adopt a dual probabilistic modeling approach. This section out-
lines the formulation used to model and learn from such mixed-
quality demonstration datasets.

3.2.1. Modeling Successful Demonstrations with Gaussian
Mixture Models

Let the set of successful demonstrations Ds = {X1
s , . . . , X

M
s }

consist of M trajectories, where each trajectory Xm
s ∈ RT×Q

is a sequence of T time-aligned Cartesian observations in Q-
dimensional space. To model the distribution of these trajecto-
ries, we employ GMMs that captures the joint probability den-
sity over time t and observation x ∈ RQ [31]:

p(t, x) =
K∑

k=1

πkN(t, x | µk,Σk), (3)

where K is the number of Gaussian components, πk is the prior
probability of the kth component, andN(t, x | µk,Σk) is the mul-
tivariate Gaussian distribution with mean µk = [µk

t , µ
k
x]T and

covariance matrix Σk =

[
Σk

tt Σk
tx

Σk
xt Σ

k
xx

]
.

The complete set of GMM parameters is denoted as θ =
{K, {πk, µk,Σk}

K
k=1}. These parameters are estimated using the

Expectation-Maximization (EM) algorithm to maximize the
likelihood of the observed successful trajectories. The optimal
number of components K is determined using the Bayesian In-
formation Criterion (BIC) to balance model fit and complexity.

After training the GMM, we apply Gaussian Mixture Regres-
sion (GMR) to estimate the conditional distribution of x given
time t. The conditional distribution is defined as:

p(x | t) = N(x; µ̂x(t), Σ̂x(t)), (4)

where the conditional mean and covariance are computed
as: µ̂x(t) =

∑K
k=1 πk

(
µk

x + Σ
k
xt(Σ

k
tt)
−1(t − µk

t )
)
, Σ̂x(t) =∑K

k=1 πk

(
Σk

xx − Σ
k
xt(Σ

k
tt)
−1Σk

tx

)
. The optimal reproduction trajec-

tory is given by the sequence of predicted means, i.e., XGMM =

µ̂x(t).
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Figure 2: Overview of the proposed framework for surgical skill reproduction in the surgical training task. Demonstrations are collected via teleoperation using
the MTM to control the PSM of the dVRK. Both perfect and imperfect executions are modeled through probabilistic encodings and used in a multi-objective
optimization process. The optimized trajectory is then autonomously executed by the PSM.

This approach yields smooth and consistent trajectories that
closely follow the statistical tendencies of expert demonstra-
tions. However, GMMs trained solely on successful data can-
not capture or correct for suboptimal behaviors when trained on
mixed-quality data. This limitation motivates the integration of
failure modeling, as addressed in the subsequent section.

3.2.2. Modeling Failed Demonstrations with Donut Mixture
Models

Let the set of failed demonstrations D f = {X1
f , . . . , X

N
f }

consist of N trajectories, where each trajectory Xn
f ∈ RT×Q

is a sequence of T time-aligned Cartesian observations in Q-
dimensional space. To model the structure of these failed ex-
ecutions and uncover latent successful behavior, we employ
DMMs, which provide a principled approach to probabilisti-
cally represent failure-prone data while retaining informative
motion cues.

DMMs, introduced by Grollman et al. [13], are designed to
model deviations from expert-like behavior in failed demon-
strations. Unlike GMMs, which model successful data directly,
the DMM leverages the Donut distribution—a distribution con-
structed as the difference between two Gaussians sharing the
same mean but differing in covariance:

D(x | µα,µβ,Σα,Σβ, γ) = γN(x | µα,Σα)

− (γ − 1)N(x | µβ,Σβ),
(5)

where γ > 1 controls the relative weighting between the two
Gaussian components. To simplify the formulation, we assume
both components share the same mean, i.e., µα = µβ = µ.
The corresponding covariance matrices are scaled versions of
a shared base covariance Σ, defined as:

Σα =
1
r2
α

Σ, Σβ =
1
r2
β

Σ,

where rα and rβ are scalar spread parameters that control the
”thickness” of the Donut distribution. Substituting these defini-
tions, the Donut distribution becomes:

D(x | µ,Σ, rα, rβ, γ) = γN(x | µ,Σ/r2
α)

− (γ − 1)N(x | µ,Σ/r2
β).

(6)

To control the degree of exploration during inference, we in-
troduce an exploration parameter ϵ ∈ [0, 1], which modulates
the spread of the distribution. When ϵ = 0, the Donut distri-
bution approximates a standard Gaussian. Conversely, when
ϵ = 1, the distribution encourages maximal deviation from the
observed failures. The spread parameters rα and rβ are defined
as functions of ϵ:

ro(ϵ) = (1 − ϵ) · (ro(0) − ro(1)) + ro(1), (7)

where ro ∈ {rα, rβ}. This formulation allows for smooth transi-
tions between conservative and exploratory trajectory represen-
tations.

The full Donut Mixture Model is constructed analogously to
the GMM:

pDMM(x) =
K∑

k=1

π̂k D(x | µ̂k, Σ̂k, ϵ), (8)

where π̂k, µ̂k, and Σ̂k denote the mixture weight, mean, and base
covariance matrix of the kth Donut component.

However, obtaining a closed-form analytical solution for the
maximum of the DMM is generally intractable due to the non-
convex nature of the distribution. To address this, the gradient
ascent strategy is employed to iteratively converge toward a lo-
cal maximum within the parameter space. The gradient of the
DMM with respect to the input is computed as the weighted
sum of the gradients of its constituent components and is given
by:

∇xD(x|µ,Σ,rα, rβ, γ) =

D(x|µ,Σ, rα)Σ−1
α (x − µ)+

(γ − 1)D(x|µ,Σ, rβ)Σ−1
β (x − µ)

(9)

The objective of the DMM is to produce locally valid tra-
jectories that intentionally diverge from regions associated with
failure. Since failed demonstrations highlight areas to avoid,
identifying a local optimum outside these regions is sufficient
to guide the generation of safe and reliable trajectories.

In this work, we leverage the exploration parameter ϵ to ef-
fectively control the distance between the synthesized repro-
duction and the original failed data, enabling recovery of task-
relevant motion patterns otherwise overlooked in traditional im-
itation frameworks.
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3.2.3. Multi-Objective Optimization
Let the set of mixed surgical task demonstration D =

{Ds,D f } contain both perfect and imperfect demonstrations.
Based on the learned models (GMMs for Ds, DMMs for D f ),
we seek to synthesize a trajectory X = {X1, . . . ,XT }, where
each Xt ∈ RQ, that is safe, executable, and task-compliant.

To this end, we formulate trajectory reproduction as a multi-
objective optimization problem. The objective function incor-
porates constraints and priors from both successful and failed
demonstrations, along with motion regularity and dynamic be-
havior alignment. The trajectory optimization problem is de-
fined as:

J(X) = Jimit(X) + Javoid(X) + Jsmooth(X) + Jgrad(X), (10)

where each cost term contributes to a specific aspect of motion
generation, as described below.

Imitation Cost Jimit(X): This term encourages adherence to
expert-like behavior while avoiding failure-indicative motion.
Let ms(t) and m f (t) denote the time-dependent mean trajecto-
ries derived from GMM and DMM models, respectively. The
imitation cost is defined as:

Jimit(X) = α1

T∑
t=1

∥Xt −ms(t)∥2 + α2

T∑
t=1

∥∥∥Xt −m f (t)
∥∥∥2 , (11)

where α1 and α2 are positive scalar weights balancing attraction
to expert data and repulsion from failure modes.

Failure Avoidance Cost Javoid(X): To promote safety, we pe-
nalize proximity to observed failure points F = {x(n)

t f
}, derived

fromD f . A safety margin dmax ensures sufficient clearance:

Javoid(X) = α3

T∑
t=1

∑
x(n)

t f
∈F

(∥∥∥∥Xt − x(n)
t f

∥∥∥∥ − dmax

)2
, (12)

where α3 is a penalty coefficient that enforces a soft con-
straint against failure-prone regions. Defective segments, such
as obstacle contacts or failure, are explicitly handled through
the failure avoidance cost, which penalizes proximity to states
observed in failed demonstrations. The entire demonstration
trajectory is processed, rather than isolating only the defec-
tive segments. This preserves temporal continuity and allows
the optimization to incorporate both successful and failure-
prone regions, ultimately encouraging safe, coherent, and task-
compliant trajectory reproduction.

Smoothness Cost Jsmooth(X): We incorporate a second-order
difference penalty to ensure smooth and physically feasible mo-
tions. This term regularizes trajectory accelerations:

Jsmooth(X) = α4

T−1∑
t=2

∥Xt+1 − 2Xt + Xt−1∥
2 , (13)

where α4 controls the degree of motion regularization.

Gradient Alignment Cost Jgrad(X): To match not only the tra-
jectory shape but also its temporal evolution, we align direc-
tional motion patterns. Let {x(n)

t }
Ns
n=1 denote time-aligned suc-

cessful demonstrations. The gradient alignment cost is:

Jgrad(X) = α5

Ns∑
n=1

T−1∑
t=1

∥∥∥(Xt+1 − Xt) − (x(n)
t+1 − x(n)

t )
∥∥∥2 , (14)

where α5 is a positive scalar weight promoting similar motion
flow.

Optimization Procedure: The final trajectory X∗ is obtained
by solving the unconstrained optimization problem:

X∗ = arg min
X

J(X). (15)

This formulation enables robust trajectory synthesis by
jointly minimizing task deviation, failure risk, motion disconti-
nuity, and dynamic inconsistency. The result is a safe, smooth,
and task-compliant trajectory, even in the presence of noisy or
imperfect demonstrations. The overall framework of the pro-
posed method is shown in Fig. 2.

4. Experiments and Results

In this section, we validate the feasibility and effectiveness
of the proposed framework through both simulation studies
and real-world experiments. The simulation evaluations are
designed to assess and compare the accuracy of the repro-
duced trajectories, while the real-world ring-and-rail experi-
ments demonstrate the practical applicability of our approach
in a representative surgical task setting.

4.1. Simulation Validation

To evaluate the effectiveness of the proposed framework in
handling imperfect demonstrations, we conducted simulation
experiments involving two representative trajectory patterns:
sinusoidal and cosinusoidal. Each scenario consists of six
synthetic demonstration trajectories, a subset of which inten-
tionally contains failure-prone segments to simulate subopti-
mal executions. These simulations provide a controlled en-
vironment to assess the robustness of different learning-from-
demonstration methods under mixed-quality data conditions.

Figure 3 presents the reproduction results obtained using
three approaches: (1) GMMs baseline trained on all demonstra-
tions without distinguishing failures, (2) TLFSD [14], which
attenuates failure influence by subtracting their distribution
from that of successful demonstrations, and (3) the proposed
method, which models successful and failed demonstrations
separately via GMM and DMM, and combines them through
multi-objective optimization.

In the sine trajectory task (Fig. 3a), the GMM-based repro-
duction closely follows failure-affected trajectories and fails to
remain within the safety threshold. TLFSD partially reduces
the impact of failures but still produces segments that violate
the safety margin. In contrast, the proposed method maintains
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(a) Sine function simulation
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(b) Cosine function simulation

Figure 3: Trajectory reproduction results using GMM, TLFSD, and the pro-
posed method. Dashed lines indicate failure thresholds. The proposed method
consistently remains within the safe region and more accurately approximates
the reference trajectory.

the entire trajectory within the safe region, effectively filtering
out failure-related deviations. Similar trends are observed in the
cosine trajectory task (Fig. 3b). The proposed method generates
trajectories that are both more accurate and safety-compliant,
whereas GMM and TLFSD exhibit either overshooting or un-
derfitting behaviors in critical segments.

Quantitative evaluation is performed using Root Mean
Square Error (RMSE) with respect to the reference (ground-
truth) trajectory. The results are as follows: Sine Simulation:
0.021 for proposed method, 0.202 for GMM,0.081 for TLFSD;
Cosine Simulation: 0.123 for proposed method, 0.173 from
GMM, 0.244 for TLFSD; These results indicate that the pro-
posed method achieves the lowest reproduction error in both
tasks. Compared to GMM and TLFSD, it improves accuracy
by approximately 1.4–9.6 times, while maintaining adherence
to safety constraints.

Overall, the simulation results support the central claim
of this work: explicitly modeling both successful and failed
demonstrations enables more accurate and robust trajectory re-
production. In contrast to existing methods that either ignore or
heuristically down-weight failed demonstrations, the proposed
approach leverages both sources of information through a prin-
cipled optimization framework, resulting in improved perfor-
mance under imperfect training conditions.

4.2. Real-world Experiment

To assess the practical applicability of the proposed frame-
work in a real robotic surgical task, we conduct experiments
using the dVRK on the ring-and-rail task. This task is widely
used in surgical training to evaluate dexterity, trajectory accu-
racy, and motion control under constrained conditions for both
novice and experienced surgeons. It presents challenges anal-
ogous to those encountered in surgical procedures, including
spatial constraints and collision avoidance.

4.2.1. Experimental Setup
The experimental platform is designed to evaluate the effec-

tiveness of the proposed framework in a realistic robotic sur-
gical task that mimics surgical training. As shown in Fig. 4,
the setup consists of a curved metallic wire rail mounted hor-
izontally on a planar workspace. The task requires the robot

Figure 4: Ring-and-rail experimental platform used for evaluating learning
from imperfect demonstrations. The dVRK PSM manipulates a rigid ring along
a curved metallic wire while avoiding contact. The setup integrates an LED-
based contact detection circuit, triggered by a microcontroller upon voltage
drop when the ring touches the wire. This mechanism enables real-time failure
detection and automatic labeling of demonstration quality.

(a) Rail geometry for trajectory execution

(b) Segmented view for illustration of curvature complexity

Figure 5: Curved wire geometry of the ring-and-rail task. The path includes
regions of varying curvature and narrow passages, requiring high-precision mo-
tion.

(a) LED ON: contact detected (b) LED OFF: no contact

Figure 6: Contact detection using an LED-based sensing circuit. A contact
event between the ring and the wire triggers a voltage drop, activating the LED
(left). In the absence of contact, the LED remains off (right). This binary signal
enables automated annotation of failure segments during demonstration.
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to guide a rigid ring along the rail while avoiding any physical
contact. This setup simulates common challenges in surgical
procedures, such as constrained motion, fine motor control, and
contact avoidance.

The platform is built on the dVRK, comprising a Master
Tool Manipulator (MTM) and a PSM. During teleoperation, the
MTM is controlled by a human operator to collect demonstra-
tion trajectories. For autonomous execution, the learned poli-
cies are deployed on the PSM, which reproduces the desired
motion without manual intervention.

To enable real-time detection of contact events, a
microcontroller-based sensing system is integrated into the rail.
When the ring touches the wire, a voltage drop occurs in the cir-
cuit, triggering a light-emitting diode (LED) as shown in Fig. 6.
An overhead camera monitors the LED state throughout task
execution, allowing frame-level annotation of contact events.
This automatic labeling process supports consistent classifica-
tion of demonstrations into successful and failed segments. The
rail geometry is illustrated in Fig. 5 to illustrate the complexity
of the ring-and-rail task. The wire follows a continuous, curved
path with varying curvature and narrow clearances, which in-
creases the difficulty of trajectory execution.

4.2.2. Demonstration Collection
To emulate variability and operational challenges commonly

encountered in surgical settings, controlled disturbances were
applied during the teleoperated demonstrations. Perturbation
forces were introduced at the end-effector of the MTM to sim-
ulate conditions such as reduced visibility or transient tool in-
stability. Five demonstrations were collected, each beginning
from a consistent initial pose and following the ring-and-rail
path. The PSM was controlled via the MTM during teleoper-
ation. A contact detection system, based on an LED-triggered
voltage sensor, was used to identify ring-wire contact events in
real time. Binary labels were assigned to each time step accord-
ing to the LED state. The resulting dataset contains a mixture of
successful and failure-prone segments, reflecting realistic vari-
ability in surgical task execution.

4.2.3. Optimal Trajectory Reproduction
The reproduction results based on the collected demonstra-

tions are presented in Figs. 7–11, illustrating both Cartesian and
rotational motion characteristics of the executed trajectories.

Figure 7 displays the end-effector trajectory in the X–Y
plane. The proposed method accurately follows the rail path
while consistently maintaining a safe clearance from the wire.
Notably, the trajectory remains fully within the failure-free re-
gion, demonstrating the framework’s effectiveness in extracting
safe motion profiles from imperfect training data. In contrast,
the GMM-based method exhibits noticeable drift and deviation,
particularly in sections of high curvature. These deviations fre-
quently lead to contact with the rail, as indicated by overlapping
with failure regions. TLFSD improves over GMM by attenuat-
ing failure-prone deviations, but still results in trajectory over-
shoot near sharp bends, compromising task safety and comple-
tion.

-0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06

X Axis (m)

-0.02

-0.01

0

0.01

0.02

0.03

Y
 A

x
is

 (
m

)

Demonstration trajectory

Wire touches in demonstrations

-0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06

X Axis (m)

-0.01

0

0.01

0.02

0.03

Y
 A

x
is

 (
m

)

Trajectory generated by GMM

Trajectory generated by TLFSD

Trajectory generated by proposed method

Figure 7: Reproduced trajectory in the X–Y plane. The proposed method
closely follows the rail geometry while avoiding contact. Baseline methods
(GMM, TLFSD) show drift and overlap with failure regions, particularly in
curved segments.

Figure 8 shows the quaternion-based orientation of the end-
effector across the trajectory. To further analyze rotational
behavior, we decompose the orientation into roll, pitch, and
yaw angles in Figs. 9–11. These results reveal clear differ-
ences between the methods. The proposed approach maintains
smooth, continuous angular transitions across all three axes,
indicative of stable and coordinated tool alignment. In con-
trast, both GMM and TLFSD exhibit sharp transitions and os-
cillations, particularly in the roll and yaw axes. Such abrupt
angular changes can lead to tool misalignment and instability,
especially in tasks involving constrained motion near sensitive
anatomical structures.

The experimental results provide clear evidence of the pro-
posed framework’s ability to generate safe, accurate, and sta-
ble trajectories from a mixed demonstration set. In Cartesian
space, the reproduced trajectory remains entirely within the
failure-free region, indicating successful avoidance of contact
with the wire even in areas with complex curvature. This per-
formance contrasts with that of the GMM and TLFSD base-
lines, which both exhibit deviation and overshoot, particularly
in high-curvature segments. While TLFSD shows partial im-
provement by suppressing failure-prone regions, it still fails to
ensure complete task safety. In terms of orientation, the pro-
posed method achieves smooth and continuous angular transi-
tions across roll, pitch, and yaw. By comparison, both GMM
and TLFSD result in irregular and abrupt orientation changes,
especially in the roll and yaw axes, which can lead to tool mis-
alignment and operational instability. Together, these demon-
strate that the proposed approach not only improves trajectory
fidelity but also ensures rotational control, validating its suit-
ability for applications requiring both spatial precision and mo-
tion robustness.

The results from both simulation and real-world experiments
confirm the effectiveness of the proposed framework for learn-
ing from imperfect demonstrations, specifically within the con-
text of the ring-and-rail task. This surgical training task cap-
tures key characteristics of surgical subtasks—such as con-
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Figure 8: Quaternion representation of end-effector orientation. The proposed
method produces a smooth and stable orientation profile throughout the task.
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Figure 9: Roll angle of the end-effector. The proposed method maintains stable
roll behavior, while baseline methods exhibit discontinuities.
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Figure 10: Pitch angle across the trajectory. Smooth transitions reflect consis-
tent control and reduced orientation noise.
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Figure 11: Yaw angle (rotation about the Z-axis). The proposed method avoids
abrupt heading changes that could destabilize motion in planar tasks.

strained tool motion, fine motor control, and the need for col-
lision avoidance—and is widely used as a proxy for evaluating
robotic surgical skill acquisition. Despite a limited number of
demonstrations, including several containing execution errors,
the proposed method is able to infer a safe and task-compliant
trajectory. The effectiveness of the proposed method suggests
its applicability to a wider range of robotic surgical tasks that
involve constrained tool motion and heterogeneous demonstra-
tion quality. Its robustness to execution variability makes it par-
ticularly well suited for both autonomous assistance during sur-
gical procedures and as a training aid for skill acquisition in
surgical education.

5. Conclusion and Future Work

This paper presents an optimization-based framework for
learning from imperfect demonstrations in robotic surgical
tasks. The approach integrates Gaussian Mixture Models
(GMMs) to represent successful motion patterns and Donut
Mixture Models (DMMs) to encode failure-prone behaviors.
These models are incorporated into a multi-objective trajectory
optimization formulation that enables the generation of task-
compliant and contact-free motions from mixed-quality data.
The framework is evaluated through simulation and real-world
experiments on the ring-and-rail task, a standard surgical train-
ing task for assessing surgical precision and dexterity. Results
demonstrate that the method reliably produces safe and smooth
trajectories, even when trained on a limited set of demonstra-
tions containing execution errors.

Despite its demonstrated effectiveness, the proposed frame-
work has several limitations. First, it relies on binary failure la-
bels at the time-step level, which currently require task-specific
instrumentation such as contact sensors. This dependency may
restrict applicability in uninstrumented or more complex sur-
gical environments where failure events are difficult to de-
tect or define reliably. Second, the framework assumes tem-
porally aligned demonstrations, which may not generalize to
multi-phase procedures or tasks with variable execution tim-
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ing. Third, the current implementation is limited to single-arm,
position-controlled tasks with constrained planar motion.
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