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Applications of Observers in Medical Robotics
Abstract: This paper presents the applications of ob-
servers in robot-assisted medical procedures, in which
robotic manipulators act in collaboration with surgeons
or therapists to improve the efficiency and accuracy of
the interventions. Observers can be considered as re-
placements for sensors to provide the surgeon and/or the
robots with information about the tissue, surgical tools,
and their interaction. This paper provides an overview
of the observation methods for estimating the tool pose,
tissue motion, and the interaction forces. Having a good
model for the system and guaranteeing the safety and
efficiency of the methods are the challenges involved in
using the observers in medical procedures. However, the
application-driven nature of the medical robotics provides
a thriving field of study for using the observers.
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1 Introduction
Robots have influenced the human’s life in different do-
mains such as manufacturing, medicine, transportation,
and entertainment. The main advantage of employing
robotic systems is the higher degree of accuracy, effi-
ciency, reliability, repeatability and higher power/force
that they provide. In recent years, robotic systems have
been widely used in medical applications. According
to [1], the medical robots can be classified as surgical
computer-aided design/manufacturing (CAD/CAM) sys-
tems and surgical assistants. CAD/CAM systems are
used for planning, registration and assessment of the pro-
cedures whereas surgical assistants are special tools that
are operated directly by the surgeon to make the surgery
collaborative by keeping the surgeon in the operation loop
to take advantage of both the surgeon’s and the robot’s
abilities and also to increase the safety of the operation
[2]. In other applications in which the assistant robots
are fully automated, the manipulators are usually pro-
grammed to precisely follow the desired pre-planned tra-
jectories.
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The application of robotic-assisted systems spans dif-
ferent procedures such as radiotherapy, minimally inva-
sive surgery (MIS) and tele-surgery [3]. Radiotherapy is
a treatment mostly against cancer, in which high energy
rays are used for destroying the cancerous tissue. In this
case, the radiation should be targeted toward the cancer-
ous tissue. Minimally invasive surgery is becoming very
popular due to its less patient pain, recovery time and
discomfort. In these procedures less trauma is imposed to
the tissue as unlike conventional surgeries, several small
incisions are made in the skin, through which the surgeon
can perform the operation on the target organ using long
and slender surgical tools. The surgeon is provided with
a real-time view of the surgical area using endoscopes or
ultrasound images. Remote surgery or tele-surgery is an
example of directly using telerobotic systems in medicine.
In telesurgery, the surgeon and the patient are not phys-
ically in the same location. In this case, the operation is
performed through master and slave robots. The surgeon
interacts with the master robot. The slave robot, which
is controlled to exactly follow the master’s motion, per-
forms the operation on the patient at a remote location.
Using haptics, the surgeon will be able to have a feeling
of the surgical site, i.e., tele-presence.

Other than surgeries, robotic manipulators can be
used in post-disability rehabilitation training to improve
the sensorimotor functions of the patient. Demonstrat-
ing a high degree of repeatability and providing objec-
tive measurements of patient performance, rehabilitation
robots are employed for assisting therapeutic procedures
and for performance assessment.

From control perspective, there are different chal-
lenges in controlling robot-assisted procedures. The ma-
nipulator kinematics and dynamics should be taken into
account in the design procedure. Besides, the measure-
ment tools and sensors need to be clinically approved
and should meet the sterilization and dimension issues
[4]. Imaging modalities are very important components
in medical procedures. Real-time images not only pro-
vide the surgeon with a view of the surgical site, can be
combined with image processing techniques [5] to con-
vert the visual information into numerical values, which
can be used by computers. This is useful mainly for posi-
tion tracking of an organ or a surgical tool during the
operation. When, due to occlusion, the desired object
might not be visible in all imaging frames, there is mo-
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tivation for using estimators and predictive schemes to
estimate the position. Furthermore, in any application
where the robot/human and/or robot-tissue interactions
are involved, measuring the interaction forces becomes
very important to both the safety and the performance
of the control system.

These examples show the importance of the mea-
surements in feedback control of the medical robots. Ob-
servers can be considered as a replacement for sensors.
Observers are special sort of estimators which use mathe-
matical models describing the behavior of the system, and
require some measurements of the system states to esti-
mate non-measurable states. As the name shows, an ob-
server, "observes" the value of the non-measurable states
using the measured ones. This requires to have some spe-
cific relation between the measured and non-measured
states, called the observability condition [6]. Observers
are also capable of estimating the measured states, which
can be used to remove the noise and smoothen the sig-
nals. A general estimator acts as a filter and does not
necessarily use a model. Also, the estimated variable can
be the same as the measured value. For example, mea-
suring the motion of an organ based on images without
using any models can be done by an estimator. Though
the application of observers and estimators seems to be
similar, they have different characteristics and in many
applications, they are used together.

The application of the robotics in medical procedures
is very task dependent. According to the application, ob-
servers can be used as a replacement for sensors or can be
used in situations where sensors are not applicable. In re-
habilitation applications replacing sensors with observers
provides a way to reduce the cost and the weight of the
devices. In these applications where the rehabilitation de-
vices (such as exoskeleton devices) are used by the patient
for a long duration, reducing the cost and the weight of
the devices is very advantageous. Moreover, due to the
limited space in some devices such as hand exoskeleton
[7], force sensors should be replaced by other measure-
ment or estimation methods. In MIS procedures, where
the fine tools are inserted into the body through small
incisions, placing measurement devices at the tip of the
surgical tools to be inserted into the body is not practical.
Besides, one of the important issues in surgical procedures
is the sterilization of the equipment, as well as the sensors.
Replacing sensors with observers relaxes this issue. There
are also different challenges in designing and using the ob-
servers. In medical procedures, safety is a very important
issue, which should also be considered in designing ob-
servers. The performance of the observer (convergence to
the real values) should be guaranteed to provide the sur-
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Fig. 1: Applications of estimators considered in this paper

geon/assistant robot with realistic values to ensure the
safety of the patient and the efficiency of the method.
Especially, when the observers are used to control the
assistant robots, the stability of the observer/controller
should be guaranteed. Besides, effective observers require
a good model describing the system’s behavior. In some
applications, finding such a model is not a trivial task.

This paper provides a review of the applications of
the observers in medical procedures. As shown in Fig .1,
this survey is performed for two main areas: 1) pose and
motion estimation 2) force estimation. The paper is orga-
nized as follows: In Section 2, the mainly used methods
for motion estimation in beating-heart surgeries and ra-
diotherapy as well as position and orientation estimation
in needle insertion procedures are presented. In Section
3, the problem of force estimation in surgeries, rehabilita-
tion training, and needle insertion therapies are discussed
for two cases of rigid and flexible tools. The concluding
remarks are presented in Section 4.

2 Pose and Motion Estimation
In medical applications, preoperative imaging provides
valuable information for diagnosis and performing plan-
nings of the operations. In minimally invasive surgeries,
intraoperative imaging using endoscopes and ultrasound
images, enable the surgeon to track the surgical instru-
ments as well as the organ’s motion. In robot-assisted
interventions, this visual information can be translated
into numerical values using image processing techniques
and used as feedback in the robot control loop. There
have been different methods proposed in the literature
for pose and motion tracking of the targeted organ and
the surgical tools. These two applications are represented
in the sequel.

2.1 Physiological Motion Estimation

To avoid inaccuracy during surgical interventions, it is de-
sired to remove any unwanted motions or disturbances.
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Even if the patient is still, there may be physiological
organ motion. There are two types of physiological mo-
tions: periodic motion such as the heartbeat and respi-
ration, and the non-periodic motions. The examples of
non-periodic motions, which are very relevant in surgi-
cal interventions, are the organ motion after opening the
body such as brain [8] and abdominal cavity during MIS
[9]. Using the imaging modalities, all these motions can be
captured from images processing techniques. If no model
of the motion is available, the motion can only be re-
trieved from the images following a point of interest (POI)
on the target organ. There have been different methods
proposed in the literature for estimating the physiological
motion using images and calculating the POI using image
registration. Image registration is a technique for finding a
transformation between the reference image and current
image to align all images in one coordinate [10]. Rigid
registration involves finding a rotation and translation to
describe the motion. On the other hand, non-rigid regis-
tration consists of defining a set of geometric features in
both coordinates and finding a transformation that mini-
mizes some distance function. Mani et al. provide a survey
on different methods in medical image registration [10].

In the work done by Pennec et al., 3D intra-operative
ultrasound images are used to track the brain deformation
to assist a neuro-surgical operation manipulator arm [11].
The brain shift can also be found using non-rigid surface
registration and combined with finite element methods to
estimate the 3D volumetric displacement [12]. Letteboer
et al. acquire the brain shift before and after opening the
dura using 3D ultrasound data and use as a basis for intra-
operative planning [13]. Hagemann et al. propose a non-
rigid finite element model for head to estimate the brain
deformations during the image-guided neuro-surgery [8].
Vijayan et al. use a non-rigid registration method based
on minimization of the image intensity changes over time
to estimate the organ movements using ultrasound images
in liver radiotherapy [14]. Hu et al. present a framework
for reconstructing the 3D surface of an organ using en-
doscopic images in MIS [9]. Maier et al. provide a survey
of the optical 3D reconstruction of the soft tissue surface
geometry in laparoscopic surgery [15]. These non-periodic
motions can be captured using CAD/CAM systems dur-
ing the pre- and intra-operative planning and are used by
the surgeon and/or the surgical assistants.

The imaging techniques are also used in estimating
the periodic motions. The two main sources of periodic
physiological motions are the respiration and the heart-
beat. Respiration causes low-frequency, large-amplitude
cyclic motions while heartbeat produces high-frequency,
small-amplitude semi-periodic motion in the heart. In ra-

diation therapy, in which the goal is to focus the high
energy beams on cancerous tissue, the motion caused by
respiration reduces the concentration of the dosage on
the targeted tissue. In cardiac surgery, the surgeon’s mo-
tion can be disturbed by heartbeat motions. To overcome
the heart beat motion, one possible way is to stop the
heart and use a heart-lung machine. However, by using
a heart-lung machine, the risk of stroke and long-term
cognitive loss is higher [16]. Another solution is the use
of stabilizers, which can only be used for the exterior sur-
face of the heart [17]. physiological motion can also be
dealt with by actively compensating for it in the con-
troller of the surgical robot. Regardless of radiotherapy
or beating-heart surgery, in active motion compensation,
it is desired to remove the relative motion between the
surgical/therapeutic tool and the targeted organ so that
they seem stationary with respect to each other [18]. This
can be performed by moving the patient, which may be
uncomfortable for the patient, or by moving the tool in
synchrony with the physiological motion. For these fast
periodic physiological motions, in order to have an ef-
fective compensation, the motion of the POI should be
retrieved in real-time. However, a big challenge in mea-
suring the POI motion using imaging modalities such as
Computer Tomography (CT), endoscopes and ultrasound
is the low update rate of the images. In these imaging
methods, since the update rate is much lower than the
high-frequency motion of the POI, the data loss is not
negligible.

There have been different methods proposed in the
literature for estimating the heart motion using images
and calculating the POI motion based on the transfor-
mation defined between the reference image and current
image. Sauv et al. consider two approaches based on land-
mark and texture tracking for 3D heart surface track-
ing [19]. Richa et al. employ a thin-plate spline warping
model (TPS) for 3D tracking of beating heart using en-
doscopic images [20]. TPS is a mapping function between
the pixel coordinates of a reference image and the cur-
rent image, minimizing the bending energy using a set of
control points. Yang et al. propose a robust 3D tracking
scheme based on two methods [21]. Using spatial-color
space and by defining a probabilistic similarity measure,
the region of interest can be tracked in a new image. The
second method is based on TPS model, for which the
optimal model parameters are found using an iterative
method. These two processes are computed in parallel to
form a 3D tracking scheme of the heart motion. To pre-
dict the heart motion, there are non-model based meth-
ods proposed in the literature which use a long embedding
vector of past measurements of the heart motion and pre-
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dict the motion by finding a previous embedding vector
similar to the current vector [17].

However, these methods lack the required robustness
and accuracy, since they are only based on the images
and no information about the dynamics of the heart mo-
tion and the respiratory system are taken into account.
Also, imaging methods fail to predict the motion in case
of any occlusions such as surgical instrument, blood, and
smoke. Another issue in retrieving the heart motion only
based on images is data acquisition delay. The delay in
the position data is caused by image update rate, which
depends on the utilized sensor, and the processing time.
Using the delayed position data in the robot feedback loop
may cause the control loop become unstable, leading to
undesirable performance. In this case, predictive strate-
gies can be used to compensate for the data acquisition
and processing delay.

According to the nature of the physiological motion,
a quasi-periodic model can be used to estimate the heart
and respiratory motion, which can be further updated to
predict the POI motion. The quasi-periodic motion is de-
fined as a time-varying Fourier series, for which the coeffi-
cients can be estimated using different methods [22] [23].
Extended Kalman filter (EKF) is an estimation method
in which the current measurements and the mathematical
model are simultaneously used to estimate the unknown
variables, which also overcomes the low update rate of the
images and can be used to predict the motion in case of
any occlusions. Consider the following state space model
that evolves through a random walk:

x(t + ∆t) = A(∆t)x(t) + µ (1a)
z(t) = y(x(t)) + v (1b)

y(x(t)) = c +
m∑

l=1

rl sin θl(t) (1c)

A(∆t) =



Im+1 0

0

1
∆t 1
2∆t 0 1

...
. . .

m∆t 1


(1d)

in which µ and v are independent Gaussian noise terms.
The vector x =

[
c(t), rl(t), ω(t), θl(t)

]T and z repre-
sent the state vector and the noisy measurements, re-
spectively and y(x(t)) is the output function defining
the quasi-periodic motion of the heart. In this equation,
θl(t) = l

∫ t

0 ω(τ)dτ + φl(t), where ω(t) and φl(t) repre-
sent the heart rate and the harmonic phases, respectively

Prediction

Initial Estimates

Update

Fig. 2: The block diagram of Extended Kalman Filter. The equa-
tions for x, z and H are given in (1) and (2), respectively.

and m is the number of the harmonics. The estimation
process can be then divided into prediction and update
stages as shown in Fig. 2.

In prediction stage, in the first iteration, the initial
guess values for x+ and P + are used to make the first
prediction x− and P − to be used in the next stage. In
the update stage, the values of x+ and P + are updated
and fed back to the prediction stage for the next iteration.
In this figure, Q is the process noise covariance matrix, R

is the observation noise covariance matrix and H can be
found as

H = ∂y

∂x

∣∣∣∣
x−

(2)

Bowthorpe and Tavakoli have considered the quasi-
periodic model for the heart motion and found the coef-
ficients using the Extended Kalman filter [24]. Similarly,
in the work done by Yuen et al., the heart motion is esti-
mated and is used to predict the future heart motion [25].
To model both the breathing and heart beat motions,
Richa et al. [26] and Yang et al. [27] propose the sum-
mation of two Fourier series and use Extended Kalman
filtering method for estimating the parameters.

2.2 Tool Pose Estimation

In robotic-assisted surgeries, where the surgical tool is
manipulated by a robotic system, the position and ori-
entation of the surgical tool are valuable information for
controlling the robotic manipulator. Some of that infor-
mation can be obtained from imaging modalities. Ultra-
sound imaging is a cost-effective and widely used imaging
modality, which has been employed in many applications.
There have been different methods proposed in the liter-
ature for localization (position estimation) of the surgical
instruments and needles inside the body using ultrasound
images. In this paper, the focus is on the localization of
needles in needle insertion procedures such as brachyther-
apy, biopsy and neurosurgery. In these methods, long hol-
low beveled tip needles are inserted into the human body
for diagnosis, drug delivery or sample removal. As the
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Needle

Fig. 3: Needle in 3D space. The position and orientation of the
needle is defined as the position and orientation of the moving
frame {B} with respect to fixed frame {A}.

needle is inserted into the tissue, the needle/tissue inter-
action forces cause the needle to bend toward the bevel
orientation and move on a curved path in 3D space.

The desired needle path is task dependent. In biopsy,
it is desired to reach a final point regardless of the trav-
eled path. In brachytherapy, which is a type of radiother-
apy, it is desired to move the needle on a straight path
and deliver some radioactive seeds on the needle track
during the retraction. If there are any obstacles on the
needle path, such as bones or nerves, the needle should
follow a curved path to avoid any collisions with the ob-
stacles. The steering problem can be addressed using mo-
tion planning or control algorithms. In motion planning
methods, the necessary actions for steering the needle at
the current and future times are determined offline using
mathematical models, while the desired trajectory can be
updated during the insertion to compensate for unantici-
pated tracking errors. Control algorithms use a feedback
loop structure, in which the controller determines the re-
quired actions online. Different issues in needle steering
can be found in the work done by Rossa et al. [28].

The motion of the needle can be described by the po-
sition of the origin of the moving frame {B} attached to
the needle tip with respect to a fixed frame {A} as shown
in Fig. 3. The orientation of the needle tip can also be de-
fined as the rotation matrix, relating the moving frame to
the fixed frame. To find the position of the needle during
the insertion, the needle can be tracked in the images. To
this end, there are different researches done in the litera-
ture which are based on parallel projections and are rela-
tively computationally expensive [29] [30]. A more robust
algorithm, random sample consensus (RANSAC), is pro-
posed for finding polynomial curves in a 3D environment
[31]. RANSAC is an iterative algorithm for estimating the
model parameters using a set of observed data with out-
liers. This method can also be used to fit the polynomial
curve and combined with Kalman filters to reduce the
search area [32] [33]. Waine et al. employ this algorithm

to estimate the needle tip position using 2D transverse ul-
trasound images [34]. To improve the accuracy, Malekian
et al. combine a denoising method with RANSAC [35].
These methods are able to localize and track the needle
position in real time during the insertion. Asadian et al.
design a high gain observer for estimating needle tip ve-
locity from noisy position signals [36].

According to needle kinematics [37], the three fixed
angles of roll, yaw, and pitch, representing the needle tip
orientation, are highly involved in the system motion and
having knowledge of them is very beneficial for controlling
the needle tip position. However, due to the small diame-
ter of the needle and the low resolution of the ultrasound
images, it is not possible to measure the needle tip orien-
tation from ultrasound images. This motivates the idea
of designing state observers for estimating the needle tip
orientation using the needle tip position obtained from
ultrasound images. There are a few researches on estimat-
ing the needle tip orientation using observation methods.
In the sliding mode controller proposed by Rucker et al.,
the needle tip orientation is required for calculation of
the control action [38]. In this work, a 5 DOF magnetic
tracking sensor is used which is combined with a Kalman
filter to find the full information about the needle tip po-
sition and orientation. This may work in a lab setting but
is not clinically feasible due to sterilization issues.

Considering the planar case, in which the needle is
inserted in the z direction and deflects in the x direction,
the needle’s kinematic equations can be written as

ẋ = v sin β, (3a)
β̇ = kv sin γ, (3b)
γ̇ = −kv cos γ tan β + u (3c)

where x is the Cartesian needle tip position along the
x axis, which is perpendicular to the insertion direc-
tion, and β and γ represent the pitch and roll an-
gels, respectively. v is the insertion velocity and k is
the needle path curvature, which is constant. While x

can be measured from ultrasound images, β cannot be
measured in that way and needs to be observed using
the equations in (3). Using the nonlinear transformation
s =

[
x sin β − cos β sin γ

]T , (3) can be written in
state space, comprising a linear and a nonlinear part with
state vector s and output y as

ṡ = As + Bφ (4a)
y = Cs (4b)



6 Bita Fallahi, Ron S. Sloboda, and Mahdi Tavakoli, Applications of Observers in Medical Robotics

with

A =

0 v 0
0 0 −vk

0 0 0

 , B =

0
0
1

 , C =
[
1 0 0

]
(5a)

φ = kvs2 ∓ u

√
1 − (s2

2 + s2
3) (5b)

Assuming φ is fully known, Kallem and Cowan de-
sign a linear state observer as ˙̂s = Aŝ + Bφ + L(y − ŷ),
where L is the observer gain to make A + LC Hurwitz
and ˆ represents the estimated values [37]. This observer
is then combined with a state feedback controller. How-
ever, due to the singularities of the nonlinear system, the
designed observer-controller is only capable to stabilize
the needle in one plane. In other words, the closed-loop
equations are only convergent in a neighborhood of zero.
Motaharifar et al. combine the same observer with other
controllers [39]. In the work done by Fallahi et al. [40], the
nonlinear terms are also considered in the observer design
and the observer is given by ˙̂s = Aŝ+ φ̂+∆θL(ŷ−y) with
∆θ = diag{θ, θ2, θ3} and θ > 1. However, since the non-
linearities do not satisfy the Lipschitz continuity condi-
tion, the observer is convergent under certain assumptions
to keep the system states bounded. Since there are only
a few researches done in the literature for using observers
in estimating the needle tip orientation, this problem still
remains open for further studies.

3 Force Estimation
When it comes to human-robot interaction, using force
control methods become crucial to providing a safe and
effective environment for the human and prevent any ex-
cessive damage or trauma to patient’s body [41]. In robot-
assisted surgeries or telesurgeries, the robot is in direct
contact with the soft tissue. In this case, it is important
to detect the contact and measure the force applied by the
robot on the soft tissue. In rehabilitation tasks, in which
the goal is to rehabilitate the musculoskeletal system, the
robot is also in interaction with the patient.

In the case of the direct contact, the motion con-
trol of the robotic manipulator will be effective only if
the exact model of the robot, tissue and all their pa-
rameters are known and incorporated in the controller
design. In most of the cases, the contact surface is the
non-homogeneous body soft tissue, for which the exact
model and the parameters are unknown and any mod-
elling encounter some degrees of uncertainty. Contact mo-
tion control in the presence of such uncertainties finally

leads to actuator saturation or tissue damage, which both
are equivalent to the failure of the process. In such cases,
force control strategies provide better solutions for con-
trolling the robotic manipulators [3].

In teleoperation tasks, where the surgeon is perform-
ing the operation remotely by manipulating a master
robot, displaying the contact force information to the
surgeon can provide him/her with a more realistic sit-
uation. The contact force information can be transferred
to the surgeon’s hand through the master robot in the
form of haptic feedback. Incorporating the force feedback
in the control loop improves the performance by giving
the surgeon the feeling of the remote site [42]. Obviously,
in these control schemes, first, the contact force should
be measured. However, in most of the medical applica-
tions, robot-mounted force sensors are not practical as
they need to be clinically approved [3].

In addition to robot-assisted surgeries, there have
been different types of wearable exoskeleton robots de-
veloped for rehabilitation of upper and lower limbs [43],
spine [44], knee [45], hand [46], etc. These robots are de-
signed to improve the functionality of body joints and
limbs after stroke or other disability events [47] [48] [49].
These devices are designed to measure the joint position
and orientation as well as the forces applied by the pa-
tient and drive the exoskeleton device and train the tar-
geted limb. Unmodeled dynamics, friction and external
forces which act as disturbances on these devices make
the device control very challenging, compared to the sit-
uation where no uncertainty is present. Due to safety is-
sues, these devices should be controlled precisely to pre-
vent any further damage to the affected limb. These de-
vices demonstrate another example of direct interaction
between a robot and human, in which measuring the in-
teraction forces is imperative. In some applications, due
to the limited space on the device (e.g. hand exoskele-
ton [7]), narrow bandwidth of the force sensors and cost
issues, it is desired to move from using force sensors to
force estimation methods.

In both of aforementioned applications, using sensor-
less methods would be beneficial to decrease the costs and
increase the applicability of the designed devices; how-
ever, the difficulty arises in terms of designing observers
and estimators and analysis of the effects of the estima-
tion error on combined observer/control strategies, and
guaranteeing stability, safety and efficiency. In the follow-
ing, the force estimation problem in medical applications
is divided into two main groups. First, the interaction
forces in rehabilitation devices and the forces between
rigid surgical tools and tissue are discussed and next, the
interaction forces in the presence of flexible tools such as
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needles are studied. These applications benefit from using
disturbance observers and Kalman filtering methods.

3.1 Rigid Tool

Due to the nonlinear dynamics of rigid robots, nonlinear
disturbance observer (NDOB) are used. The main task
of a disturbance observer (DOB) is to estimate the dis-
turbances and modelling uncertainties [50]. To design an
NDOB, the robot’s unmodeled dynamics are considered
as additive uncertainties. All these uncertainties and ex-
ternal forces are lumped into one disturbance vector. Con-
sider the dynamics of a robotic manipulator as [51]

M̂(q)q̈ + N̂(q, q̇) = τ + τd (6)

where q and q̇ represent the manipulator joint angle and
velocity vectors, respectively. M̂ is the nominal inertia
matrix and N̂ is the nominal value of the summation of
Coriolis, centrifugal and gravity vectors. τ and τd rep-
resent the control torque and the lumped external force
and disturbance, respectively. In the conventional NDOB,
where it is assumed that the joint accelerations are mea-
sured, the NDOB equations can be written as [52]

˙̂τd = −Lτ̂d + L{M̂(q)q̈ + N̂(q, q̇) − τ} (7)

in which L is the observer gain and should be designed
properly. However, in most of the cases, there are no ac-
celeration sensors available and it is not also practical
to derive the acceleration signals by taking time deriva-
tive of noisy velocity measurements. In such cases, an ad-
vanced NDOB [53] provides a suitable structure, in which
no acceleration measurement is required. To this end, an
auxiliary variable is defined, whose derivative cancels the
acceleration term in the observer equations. Using this
technique, the observer equations are found as

ż = −L(q, q̇)z + L(q, q̇){N̂(q, q̇) − τ − p(q, q̇)} (8a)
τ̂d = z + p(q, q̇) (8b)

where
d

dt
p(q, q̇) = L(q, q̇)M̂(q)q̈ (9)

The above has the same estimation error dynamics as (7).
A systematic method for designing the nonlinear observer
and finding the observer gain for robotic manipulators
can be found in the work done by Mohammadi et al.
[50]. This strategy has been used for estimating the robot-
environment contact forces. Li et al. use a NDOB at slave
side to estimate the external forces at the forceps tip [54].
Liang et al. utilize a DOB for estimating the contact force

in an ear surgery and for detecting sensor failure [55].
Emre and Kouhei propose a force control strategy based
on a DOB for estimating the disturbance forces [56]. The
estimated disturbance forces are then canceled in an inner
loop and the effects of the dynamics of the DOB on the
performance is analyzed. The work done by Amini et al. is
a bilateral teleoperation study, in which DOBs are used
both at master and slave sides to estimate the human
and the environment forces [57]. The proposed structure
provides bounded estimation errors, for which a sliding
mode controller is designed.

Disturbance observers have also been employed in es-
timating the external forces in rehabilitation applications
[58] [59]. Mohammed et al. use a DOB for estimating the
patient muscular torque and combine it with a siding-
mode controller to improve the bandwidth and tracking
precision for controlling a knee joint orthosis [58]. Popescu
et al. employ three observers for estimating velocity, ex-
ternal forces and, disturbances [7]. Two disturbance ob-
servers are used for estimating the human finger force
and the external disturbances. In order to estimate the
interaction forces between the user and the rehabilitation
device, Chen et al. use the conventional form of a DOB
[60]. In this work, the controller is an impedance-based
controller combined with a passive velocity controller to
moderately assist the patient and guarantee the safety
of the system. Ugurlu et al. propose an upper body ex-
oskeleton for shoulder and elbow rehabilitation, in which
the human force is estimated and cancelled to improve
the position control performance [59].

Kalman filters also provide another approach for es-
timating the interaction forces. Mitsantisuk et al. use
a Kalman-filter based state observer for estimating the
hand and wrist forces of the patient in robot-assisted re-
habilitation [61]. Pehlivan et al. employ a Kalman filter
and Lyapunov analysis to provide a stable and fast force
estimation in upper limb rehabilitation [62]. Fakoorian
et al. use extended Kalman filter as well as unscented
Kalman filter (UKF) for estimating robot states and the
ground reaction forces in a prosthetic leg [63]. Mitsan-
tisuk et al. propose a method that takes the advantage
of both DOB and Kalman filter [64]. In this work, a dis-
turbance observer is combined with a Kalman filter to
estimate the system states and the interaction forces in
human stiffness estimation application. The mentioned
works represent examples of the application of DOB and
EKF in estimating the human/robot interaction forces.
In the following, the application of observation methods
for estimating the needle/tissue interaction forces are pre-
sented.
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Table 1: Summary of the discussed methods

Observers

Motion/Pose
Beating-Heart Surgery EKF [24]-[27]

Needle Insertion Linear/Nonlinear [37],[39],[40]

Force
Tele-surgery DOB [54]-[57]

Rehabilitation DOB/EKF [58]-[64]
Needle Insertion DOB/EKF [65],[66]-[67]

Tissue

Friction 

Tissue Force

Cutting Force

Needle

Fig. 4: Needle/tissue interaction forces. The cutting force is at
the needle tip, friction forces act along the needle shaft and tissue
forces depends on tissue stiffness.

3.2 Flexible Tool

As stated before, in order to increase the efficiency of
needle insertion procedures, accurate steering algorithms
are required. Since the needle bends as a result of forces
acting on the needle, any information about the nee-
dle/tissue interaction will be helpful for steering the nee-
dle. The needle/tissue interaction forces are composed of
cutting, stiffness and friction forces [68] as shown in Fig.
4. The cutting force is the force at the needle tip causing
the needle to slice the tissue and move through it, which is
a constant value. The friction force acts along the needle
shaft during the insertion and the stiffness force depends
on the tissue properties. Since there are no clinically ap-
proved needle mounted sensors available, it is not possible
to measure the needle/tissue interaction forces. However,
a needle-based-mounted force sensor provides a practical
way for measuring the total forces acting on the needle
at its base.

The force estimation methods in needle insertion pro-
cedures are mainly the techniques described in the pre-
vious sections. In these methods, the force data is found
using the deflection information and the forces measured
at needle base. Asadian et al. model the interaction forces
base on LuGre [69] model and estimate the parameters
online using multiple EKFs [65]. Fukushima et al. employ
a DOB and the recursive least squares (RLS) technique
to find the tip and friction force acting on the needle [66].
Maghsoudi et al. propose two methods for estimating the
forces; a DOB and a model-based method [70]. The two
methods are then compared in a needle insertion control

loop and the results show the robustness of DOB to un-
certainties. Having the total force acting on the needle,
Suzuki et al. combine a reaction force observer [67] with
the RLS method to find the stiffness force of the tissue
in a stiffness assessment task in liver teleoperation biopsy
[71].

4 Concluding Remarks
In this work, a classification and applications of ob-
servers and estimation methods in medical robotics are
presented. To this end, the most relevant and used tech-
niques are introduced and their applications in motion
and force estimation in beating-heart surgeries, needle in-
sertion procedures, telesurgeries and rehabilitation inter-
ventions are studied as summarized in Table. 1. Different
formats of Kalman filters have been used in robot-assisted
procedures for motion and force estimation. Disturbance
observers (DOB) also provides an effective approach for
estimating the disturbance and external forces. The ad-
vanced form of the DOB has more application in robot-
assisted applications since in this method there is no re-
quirement for acceleration measurements.

This study shows that employing observers in
robotic-assisted procedures can be helpful to simplify the
procedures, relax the size constraint and reduce the costs
of the equipment. However, the application of observers in
medical robotics is very task-dependent and varies based
on the procedure and equipment. It should also be noted
that not all the mentioned methods are clinically ap-
proved as there are still challenges in guaranteeing the
safety and the performance of such system. However, the
application-driven and multi-disciplinary nature of this
field open a wide research area for using the observers in
medical robotics.
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