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Abstract

This paper proposes the design of a simultaneous order estimator and state observer for non-integer time-varying order
linear systems. Several lemmas and theorems pertaining to the stability of variable order systems are provided first. Next, a
theorem proposes an order/state estimator for linear variable order systems. Then, a simulation study is presented to verify
the theoretical results.
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1 Introduction

Differential equations involving derivatives of quanti-
ties are the most common tools for describing dynamic
events. A generalized version of calculus involves non-
integer order for differentiation or integration, namely
the fractional order or non-integer order calculus [3].
Fractional order calculus, mostly developed in the 19th

century, was considered a theoretical topic until recently
when the increased flexibility, generality, and degrees
of freedom in non-integer order differential equations
proved them powerful in better describing certain real-
world events as compared to integer-order differential
equations. Interesting applications of such dynamics
with real or even complex order have been reported in
modeling, physics, and engineering [17,14]. The non-
integer order dynamics have been used to model the
memory in electronic devices [11], viscoelastic damping
[35], the human’s ability to forget and remember [30],
and properties of tissue [28].

Email addresses: s.tabatabaei@aut.ac.ir (S. Sepehr
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mahdi.tavakoli@ualberta.ca (Mahdi Tavakoli).

1.1 Prior Art in Variable Order Dynamics

The order of a non-integer order system is not limited
to be a constant. It can vary depending on time, the
states of the system, or even has its own dynamics. The
concept of variable-order calculus was first developed in
[20]. Afterwards, the topic was studied from different as-
pects. In [8], the variable and distributed order operators
and their properties are studied. Variable order deriva-
tive and its numerical approximation are investigated in
[33]. The variable order derivation operator is redefined
in [23] for better accuracy in cases where the variable
order is not a continuous function of time. This opera-
tor is used in [24] to form a switching order derivative
operator. The problem of existence and uniqueness of
the response of variable order differential equations has
been studied in [16] and [37]. Extensions for the concepts
previously introduced for traditional dynamics, such as
variational calculus [12,31] and the Noether’s theorem
[13] have been also proposed for variable order dynamics.
From the application sight of view, some evidences have
been reported to relate the order of derivation to some
physical quantities [21,25]. The main interpretation of
the order is the memory. Such memory can belong to a
physical system. In [26], a study has been done to com-
pare the effect of constant order versus variable order on
the ability of a system to be influenced from the past,
which is in fact, relating the memory of a system to its
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order. Order is used to measure the memory of a sys-
tem in [5]. The word memory can also be related to the
human’s mental ability to remember. It is shown in [32]
that the order of an emotional dynamical system and
the human’s memory are strongly related. In [29], it is
proven that the variable order of derivation is consistent
with variable-length memory. Variable-order dynamical
systems are used in [29] to explain emotional behaviors
of human caused by the effect of memory on context.
There are some other applications and interpretations
for the non-integer order. In [36], the non-integer order
derivation operator is used to improve the image quality
by means of using spatial non-integer order derivative
instead of integer order one for edge preserving and vary-
ing the order with respect to the location of each pixel.
Describing state dependent viscoelasticity by the vari-
able order [28], describing two-dimensional cable equa-
tions [2], describing diffusion and sub-diffusion in differ-
ent cases [4,27], and explaining the behavior of ladders
and nested ladders [25] are some other application of
variable order dynamic systems.

1.2 Summary of Contributions

Since the order is a key characteristic of a non-integer
order system, for having a precise model describing spe-
cific dynamics, it is vital to estimate it with an accept-
able level of precision. In most previous works involv-
ing variable order dynamics, the order is assumed to be
known [4,2]. Some researchers have tried to propose an
estimation scheme for the order of a non-integer order
system, assuming a constant order. In [7], the order
is treated just like other system constant parameters in
the estimator which is not a real time approach. A nu-
merical method is used in [34] to find the constant order
of a non-integer system. In [22], a discrete technique is
used to estimate the constant order of a system using
Kalman filter. In [15], an adaptive estimation process is
introduced to estimate the constant order of non-integer
commensurate order systems. The approach proposed in
the current paper differs from the above in the following
aspects:
1. While the order is supposed to be constant in [15],
the order is allowed to be varying with time in this pa-
per. This is a significant useful generalization. In fact,
even when the order is a function of the states, it can
be considered as an implicit function of time. Hence, the
method proposed in this paper can be utilized in all cases
involving varying order dynamics.
2. A definite convergence proof is established in this pa-
per, guaranteeing that the estimation error for both or-
der and states can be made arbitrarily small.
3. While the prior art only deal with the order and other
system parameters, here, a state observer is designed for
the cases where the states of the systems are not avail-
able and only the output can be measured.
4. Theorem 1-3, which act as intermediate results to
prove the main result in Theorem 4, are useful for sta-

bility analysis of variable order systems and introduced
for the first time in this paper.
5. Based on item 4 above, the order/state estimator pro-
posed in Theorem 4 for variable-order systems includes a
Luenberger-type state observer for regular integer-order
systems. This means that the wealth of existing meth-
ods on observer gain selection, noise attenuation, etc.
can be easily extended to the state observer part of the
order/state estimator of a variable-order system.
6. The method presented in [15] is designed for the sin-
gle input single output systems, described in frequency
domain. However, the novel method proposed here can
be used in multi-input multi-output cases, as well.
The main achievement of this paper is a powerful esti-
mator for the variable order of any linear system in a
compact temporal interval [0 T ], even when its states
are not available. The estimator can be used to deter-
mine if a system is of constant or variable order or even,
whether it is of integer or non-integer order. The esti-
mation process is done in a real-time manner, so it can
be used in adaptive control or model predictive control
based approaches. Moreover, for the design of the pro-
posed estimator, some new lemmas and theorems are
proposed that are very useful in determining some of the
most important properties of variable order systems in-
cluding their stability. It is noteworthy to mention that
the algorithm works for any given T < ∞. Hence, de-
pending on the studied problem, when the final time is
free, T can be set large enough to provide the required
time for the convergence.
The rest of the paper is organized as follows: In Section
II, several definitions related to the non-integer order
field and the problem statement will be presented. Sec-
tion III is dedicated to proposing the adaptation rules
for estimating the order and the states. After presenting
some new and useful lemmas and theorems, the state ob-
server will be designed and combined with the order es-
timator to build a comprehensive order/state estimator.
In this Section, a case study is considered through a sim-
ulation study to show the effectiveness of the suggested
methods. Finally, Section IV concludes the paper.

2 Preliminaries

Definition 1 The definition of modified initialized left
non-integer variable order derivation with respect to time
in the sense of Caputo is

C
0 D

α(t)
t x(t) = 1

Γ(1−α(t))

∫ t
0
(t− τ)−α(t) d

dτ x(τ)dτ + Ψx
c (t)

0 < α(t) < 1,∀t ≥ 0

(1)
where Γ(.) is the extension of the factorial function to the
non-integer arguments:

Γ(z) =

∫ ∞
0

rz−1e−rdr (2)
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Ψx
c (t) = 1

Γ(1−α(t))

∫ 0

−c(t− τ)−α(t) d
dτ x(τ)dτ is a decaying

function capturing the effect of the values of the signal
x before t = 0, supposing that x begins from −c < 0
[9,18]. The use of this time varying initializing function
is necessary to avoid discontinuity.

Definition 2 The inverse of the variable derivation op-
erator is the variable order integration operator of the
same order, could be interpreted as

0I
α(t)
t x(t) = 1

Γ(α(t))

∫ t
0
(t− τ)α(t)−1x(τ)dτ

0 < α(t) < 1,∀t ≥ 0
(3)

In fact;
C
0 D

α(t)
t I

α(t)
t x(t) = x(t) (4)

Definition 3 Generally speaking, a non-integer order
dynamic system is a set of coupled non-integer order
differential equations in which the derivation operators
could be of different orders [1].

C
0 D

α1(t)
t x1(t) = f1

(
x1(t), . . . , xn(t), u(t))

...
C
0 D

αn(t)
t xn(t) = fn

(
x1(t), . . . , xn(t), u(t)

)
y(t) = g

(
x1(t), . . . , xn(t)

) (5)

Here, 0 < αi < 1, i = 1, 2, . . . , n are the orders and

u = [u1(t) u2(t) . . . up(t)]
T ∈ Rp is the exogenous input

vector, and y = [y1(t) y2(t) . . . yq(t)]
T ∈ Rq is the out-

put vector. The set of differential equations described in
(5) is equivalent to the following set of Volterra integral
equations [6,10,19]:

xi(t) = xi(0)

+
1

Γ(αi(t))

∫ t

0

(t− τ)αi(t)−1fi(x(τ), u(τ))dτ

+
1

Γ(αi(t))

∫ t

0

(t− τ)αi(t)−1Ψxi
c (τ)dτ, i = 1, 2, . . . , n

(6)

System (5) can be written as

C
0 D

ᾱ(t)x(t) = F
(
x(t), u(t)

)
, y(t) = g

(
x(t)

)
(7)

where x = [x1 x2 . . . xn]
T ∈ Rn is the state vector,

F (x, u) = [f1(x, u) f2(x, u) . . . fn(x, u)]T , and ᾱ(t) =

[α1(t) α2(t) . . . αn(t)]
T

is the order vector. When all
the orders are the same function of time (i.e., α1(t) =
α2(t) = · · · = αn(t) = α(t)), the system is said to be
commensurate order. Additionally, when F is linear with
respect to x and u, and g is linear with respect to x,
we have a Commensurate Linear variable order system

described as

C
0 D

α(t)x(t) = Ax(t) +Bu(t), y(t) = Cx(t) (8)

In this paper, we will focus on systems of the form (8)
and suppose that the order in (8) is unknown. Also, we
will assume that the states of the system (8) are not
available. The system is supposed to be at rest in t < 0.
By the phrase “at rest” we mean that when t < 0; 1. all
the states and their derivatives are equal to zero. 2. Since
we are dealing with a variable order system, the order
is considered to be equal to zero. Considering these hy-

potheses Ψx
c (t) = 1

Γ(1−α(t))

∫ 0

−c(t− τ)−α(t) d
dτ x(τ)dτ =

1
Γ(1)

∫ 0

−c
d
dτ x(τ)dτ |

dx(τ)
dτ

=0
= 0. We will design an or-

der/state estimator for such a system.

3 Adaptive Order/State Estimation

3.1 Main Results

Although the order can be considered a parameter of the
system (8), it can be deduced from (6) that the relation-
ship between the response of the system and the order is
complicated. Hence, the order estimation is not as easy
as the estimation of the other parameters of the system.
Fortunately, we can compute the partial derivative of the
system response with respect to the order. Consider the
following integral equation as a definition for zf (t, β):

zf (t, β) = z0 +
1

Γ(β(t))

∫ t

0

(t− τ)β(t)−1f(τ)dτ (9)

Then,

∂zf (t, β)

∂β
= −ψ(β(t))

Γ(β(t))

∫ t

0

(t− τ)β(t)−1f(τ)dτ

+
1

Γ(β(t))

∫ t

0

ln(t− τ)(t− τ)β(t)−1f(τ)dτ

(10)
where

ψ(β) =
d

dβ
ln(Γ(β)) =

Γ′(β(t)

Γ(β(t))
(11)

Hence, when the history of f in [0 t) and the value of β
at t is known, the above derivation can be computed.

Lemma 1 Suppose that x and x̂ are defined as

x(t) =

∫ t

0

(t− τ)α(t)−1

Γ(α(t))
f(τ)dτ

x̂(t) =

∫ t

0

(t− τ)α̂(t)−1

Γ(α̂(t))
f(τ)dτ

(12)
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Then, the value of x− x̂ could be evaluated according to
the following equation:

x− x̂ =
∂zf (t, β)

∂β
|
β=α̂

(α− α̂) +K(t)(α− α̂)2 (13)

where zf is defined according to (9).

Proof Define H(t, τ, β) = (t−τ)β−1

Γ(β) . Since H is contin-

uous and analytical with respect to β when 0 < β < 1

and 0 < τ < t, and ∂H
∂β ,

∂2H
∂β2 are both bounded in this in-

terval, the Taylor Series Expansion Theorem can be used
to rewrite the above formula as:

x− x̂ =

∫ t

0

( (t− τ)α(t)−1

Γ(α(t))
− (t− τ)α̂(t)−1

Γ(α̂(t))

)
f(τ)dτ

=

∫ t

0

(∂H(t, τ, β)

∂β
|
β=α̂

(α− α̂)

+
∂2H(t, τ, β)

∂β2
|
β=α0

(α− α̂)2
)
f(τ)dτ

(14)
for some α0 ∈ [min(α, α̂) max(α, α̂)]. Since the values
of α and α̂ are not related to the integration variable, τ ,
it can be deduced that:

x− x̂ = (α− α̂)

∫ t

0

∂H(t, τ, β)

∂β
|
β=α̂

f(τ)dτ

+ (α− α̂)2

∫ t

0

∂2H(t, τ, β)

∂β2
|
β=α0

f(τ)dτ

(15)

Consequently,

x− x̂ =
∂zf (t, β)

∂β
|
β=α̂

(α− α̂) +K(t)(α− α̂)2 (16)

where
∂zf (t,β)
∂β |

β=α̂
can be computed through (10) and

K(t) =
∫ t

0
∂2H(t,τ,β)

∂β2 |
β=α0

f(τ)dτ .

Lemma 2 Suppose that t belongs to the closed bounded
interval [0 T ] and f is continuous. Then, in (16) K is
bounded.

Proof Since f is continuous (and so is |f |), ac-
cording to the Extreme Value Theorem, |f | attains
a maximum in this interval, here defined as Mf .

The functions Γ(β), ψ(β), ψ′(β) = dψ(β)
dβ are all

bounded in 0 < β(t) < 1 and H ≥ 0. Further-

more, the integrals
∫ t

0
|H|dτ ,

∫ t
0
|ln(t − τ)H|dτ and∫ t

0
|ln2(t − τ)H|dτall converge for ∀β(t), 0 < β(t) < 1:

∫ t

0

|H|dτ =

∫ t

0

Hdτ =
tβ(t)

β(t)Γ
(
β(t)

)
∫ t

0

|ln(t− τ)H|dτ =


tβ(t)(1−β(t)ln(t))

β2(t)Γ
(
β(t)
) , t ≤ 1

2+tβ(t)(β(t)ln(t)−1)

β2(t)Γ
(
β(t)
) , t > 1∫ t

0

|ln2(t− τ)H|dτ =
tβ(t)

(
1 + β2(t)ln2(t)− 2β(t)ln(t)

)
β3(t)Γ(β(t))

Now, it should be noted that based on the definition of H,
∂H

∂β
= (−ψ(β) + ln(t− τ))H

∂2H

∂β2
= −ψ′H + (−ψ(β) + ln(t− τ))

∂H

∂β

= −ψ′H + ψ2(β)H − 2ψ(β)ln(t− τ)H + ln2(t− τ)H
Hence, for a given T , there is a bound MH(T )

such that
∫ t

0

∣∣∂2H(t,τ,β)
∂β2 |

β=α0

∣∣dτ < MH . Therefore,

|K| =
∣∣∣ ∫ t

0

∂2H(t, τ, β)

∂β2
|
β=α0

f(τ)dτ
∣∣∣

≤
∫ t

0

∣∣∂2H(t, τ, β)

∂β2
|
β=α0

∣∣|f(τ)|dτ < MHMf ≡MK

implying that K is bounded.

Lemma 3 For any signal x, for which the non-integer
order derivative C0 D

β(t)x exists, as long as that the signal
is at rest in t < 0,we have:

C
0 D

β(t)(xT (t)x(t)) ≤ 2xT (t)C0 D
β(t)x(t) (17)

Proof We have to show that

2xT (t)C0 D
β(t)x(t)− C

0 D
β(t)(xT (t)x(t)) ≥ 0 (18)

It is straightforward to compute the left hand side term
using integration by parts:

2xT (t)C0 D
β(t)x(t)− C

0 D
β(t)(xT (t)x(t))

=
2

Γ(1− β(t))

∫ t

0

(t− τ)−β(t)
(
x(t)− x(τ)

)dx(τ)

dτ
dτ

=
1

Γ(1− β(t))

((
x(t)− x(τ)

)2
(t− τ)−β(t)

)
|
τ=t

τ=0

+
β(t)

Γ(1− β(t))

∫ t

0

(
x(t)− x(τ)

)2
(t− τ)β(t)+1

dτ

+ 2xTΨx
c (t)−ΨxT x

c (t)
(19)

Since x is supposed to be at rest in t < 0, so is xTx
and the initializing functions both vanishes. The term

β(t)
Γ(1−β(t))

∫ t
0

(
x(t)−x(τ)

)2
(t−τ)β(t)+1 dτ is always non-negative, be-

cause Γ(1 − β(t)) and (t − τ)β(t)+1 are non-negative
when 0 < β(t) < 1 and 0 ≤ τ ≤ t. At τ = 0,

the first term 1
Γ(1−β(t))

((
x(t)−x(τ)

)2
(t−τ)−β(t)

)
is equal to
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1
Γ(1−β(t))

((
x(t)−x(0)

)2
t−β(t)

)
which is also non-negative be-

cause 0 < β(t) < 1. However, there is a singularity in
this term at τ = t, where H’opital method is used:

lim
τ→t

((
x(t)− x(τ)

)2
(t− τ)−β(t)

)
= lim
τ→t

(
d
dτ

(
x(t)− x(τ)

)2
d
dτ (t− τ)−β(t)

)

=

(
2
(
x(t)− x(τ)

)dx(τ)

dτ
β(t)(t− τ)β(t)+1

)
= 0

(20)
Hence, (19) is non-negative and proof is completed.

Corollary 1 For the positive definite function V =
xTPx with a Hermitian positive definite matrix P , the
inequality turns to C

0 D
β(t)(xTPx) ≤ 2xTPC0 D

β(t)x.

Proof The proof is straightforward using the result of
the recent Lemma and the change of variable z = P

1
2x,

where P
1
2 is a Hermitian positive definite matrix such

that P
1
2P

1
2 = P .

xTPx = xTP
1
2P

1
2x = zT z

⇒C
0 D

β(t)(xTPx) = C
0 D

β(t)(zT z)

≤ 2zT C0 D
β(t)z = 2xTP

1
2C

0 D
β(t)(P

1
2x)

= 2xTP
1
2P

1
2C

0 D
β(t)x

Thus,

C
0 D

β(t)(xTPx) ≤ 2xTPC0 D
β(t)x and this completes the

proof.

Theorem 1 (Lyapunov Stability of Variable Order
Systems) Consider a variable order system C

0 D
β(t)x =

f(x), 0 < β(t) < 1,∀t and the system is at rest in t < 0.
Suppose that V ≥ 0 is a positive definite scalar continu-
ous function of x such that V (x) = 0 ⇐⇒ x = 0. Then,
the origin of the system is stable in the sense of Lya-
punov if C0 D

β(t)(V ) ≤ 0 in a non-empty domain ∆ ⊂ Rn
containing the origin. Additionally, if C0 D

β(t)(V ) < 0,
the origin is asymptotically stable.

Proof The condition V (x) = 0 ⇐⇒ x = 0 implies
that because x is at rest in t < 0, V is also at rest
and ΨV

c (t) = 0. Since C
0 D

β(t)(V ) ≤ 0, we can write
C
0 D

β(t)(V ) = −w(t), w(t) ≥ 0,∀t. Hence, using Volterra
integral equation, the values of V at any time t can be
calculated:

V (x(t)) = V (x(0))− 1

Γ(β(t))

∫ t

0

(t− τ)β(t)−1w(τ)dτ

+
1

Γ(β(t))

∫ t

0

(t− τ)β(t)−1ΨV
c (τ)dτ

= V (x(0))− 1

Γ(β(t))

∫ t

0

(t− τ)β(t)−1w(τ)dτ

(21)
The terms 1

Γ(β(t)) , (t − τ)β(t)−1 and w(τ) are all

non-negative for 0 ≤ τ ≤ t, 0 < β(t) < 1,∀t. So,

V (x(t)) ≤ V (x(0)),∀t . The rest of the proof is similar
to the proof of Lyapunov stability for traditional integer
order systems:
Suppose that r1 > 0 is given. Pick r ∈ (0, r1] such that
Br = {x, ‖x‖ ≤ r} ⊂ ∆. Define Vmin = min

‖x‖=r
V (x).

Choose ρ, 0 < ρ < Vmin. Because of the continuity of V ,
the set Φρ = {x ∈ Br, V (x) ≤ ρ} is not empty. If r0 is
chosen in a way that ‖x(0)‖ < r0 implies that x(0) ∈ Φρ
(which is possible due to the continuity of V and the fact
that V (x = 0) = 0), since V (x(t)) ≤ V (x(0)) ≤ ρ, then,
x(t) ∈ Φρ. So, V (x(t)) < Vmin, i.e., always x(t) ∈ Br.
As a result, x cannot escape from the ball Br. So, for
any given r1, (‖x(0)‖ < r0) ⇒ (‖x(t)‖ < r ≤ r1) and
the Lyapunov stability is proven.
For the asymptotic stability, it should be shown that
for any r2 > 0, there is a T such that for t > T ,
x ∈ Br2 = {x, ‖x‖ ≤ r2}. For the sake of contra-
diction, suppose that x 6∈ Br2 ,∀t. Hence, since the
sufficient conditions for Lyapunov stability hold, x
belongs to the compact set Br1 − Br2 . In the case
that C

0 D
β(t)(V ) is strictly negative, there is a posi-

tive constant µ where −w(t) < −µ,∀t implying that:

V = V (x(0))− 1

Γ(β(t))

∫ t

0

(t− τ)β(t)−1w(τ)dτ

< V (x(0))− 1

Γ(β(t))

∫ t

0

(t− τ)β(t)−1µdτ

= V (x(0)) +
µ

Γ(β(t))

(
(t− τ)β(t)

β(t)

)∣∣∣τ=t
τ=0

= V (x(0))− µ

Γ(β(t))

tβ(t)

β(t)
Letting t → ∞, we will face a contradiction. V is sup-
posed to be positive inside Br1 , however, V (x(0)) −

µ
Γ(β(t))

tβ(t)

β(t) → −∞ as t → ∞. Hence, it can be deduced

that there is a positive value T for which x ∈ Br2 , t > T ,
i.e., the origin is asymptotically stable.

Remark: Other properties such as ultimate bounded-
ness, inverse Lyapunov test for instability, etc. hold be-
cause in traditional integer order case, these properties
are all based on the fact that V̇ (t) ≤ 0 implies that
V (x(t)) ≤ V (x(0)). Here, as shown during the proof,
C
0 D

β(t)V ≤ 0 implies the same.

Theorem 2 (Stability of Linear Variable Order Com-
mensurate Systems) A sufficient condition for the stabil-
ity of the linear system C

0 D
β(t)x = Ax is that A is Hur-

witz. In this case x→ 0 as t→∞.

Proof Consider the Lyapunov function V (x) =
1
2x

TPx, P > 0. According to Lemma 3,

C
0 D

β(t)V =
1

2
C
0 D

β(t)(xTPx) ≤ xT C0 PDβ(t)x (22)

5



where

xTPC0 D
β(t)x = xTPAx

=
1

2

(
xTPAx+ xTATPx

)
=

1

2
xT
(
PA+ATP

)
x

(23)
If A is Hurwitz, the algebraic Lyapunov equation PA +
ATP = −Q holds for a positive definite matrix Q. So,

C
0 D

β(t)V ≤ −xTQx < 0 (24)

Now, according to Theorem 3, V > 0 and C
0 D

β(t)V < 0,
the system is stable in the sense of Lyapunov. Also, since
C
0 D

β(t)V is strictly negative, the system is asymptotically
stable and x→ 0 as t→∞.

Theorem 3 When A is Hurwitz, the system C
0 D

β(t)x =
Ax + v, x(0) = x0 is BIBO stable and as t → ∞ this
system is equivalent to C

0 D
β(t)x = v, x(0) = 0.

Proof Consider the Lyapunov function V (x) = 1
2x

Tx.
Obviously,

C
0 D

β(t)V ≤ xT C0 Dβ(t)x = xT (Ax+ v)

≤ 1

2
xT
(
A+AT

)
x+ ‖x‖‖v‖ = −1

2
xTQx+ ‖x‖‖v‖

≤ σmin(Q)‖x‖2 + ‖x‖‖v‖
(25)

where σmin(Q) is the smallest singular value of the ma-
trix Q and Q relaxes the algebraic Lyapunov equation
(PA+ATP = −Q) with P = I. Since Q = −(A+AT ),

σmin(Q) = 2σmin(A). Therefore, for ‖x‖ > ‖v‖
2σmin(A) ,

C
0 D

β(t)V is negative. So, the states will remain in the

bound ‖x‖ ≤ ‖v‖
2σmin(A) . Also, as long as ‖v‖ is bounded,

so is ‖x‖ and this implies BIBO stability.
Moreover, the variable order derivation operator is lin-
ear. So, superposition condition holds and the response
can be divided to the zero state and zero input responses.
Accordingly, the response of the main system is the sum
of the responses of two systems C0 D

β(t)x = Ax, x(0) = x0

and C
0 D

β(t)x = v, x(0) = 0. Based on Theorem 2, the
response of the former goes to zero as t → ∞ implying
that in the steady state, the main system is equivalent to
C
0 D

β(t)x = v, x(0) = 0 and this completes the proof.

Corollary 2 Suppose that x = 0I
β(t)
t (Ax)+w,w(0) = 0

and A is Hurwitz. Then, as t→∞, x→ w.

Proof Based on the Volterra equivalent integral, after
applying the operator C

0 D
β(t) on both sides of the above

equation, using (4) we have C
0 D

β(t)x = Ax + v, x0 =
0, where v = C

0 D
β(t)w. Now, since A is Hurwiz, the

previous Theorem implies that as t → ∞, C
0 D

β(t)x =
v = C

0 D
β(t)w, x(0) = w(0) = 0, or, x→ w.

As the final result of this paper, the next Theorem
presents the order/state estimation of a commensurate
variable order linear system with unavailable states in
the compact interval [0 T ] for any given T .

Theorem 4 Consider the linear commensurate variable
order system C

0 D
α(t)x = Ax + Bu with unknown order

0 < α(t) < 1 in the compact interval t ∈ [0 T ] with
‖α̇(t)‖ ≤ M and only the output y is available. Sup-
pose that the pair of (A,C) is observable and L is chosen
such that A − LC is Hurwitz. Then, the following esti-
mation approach guarantees that the estimation error is
ultimately bounded and could be made arbitrarily small.

C
0 D

α̂(t)x̂ = Ax̂+Bu+ L(y − Cx̂), ŷ = Cx̂

˙̂α = γ sgn
(∂zφ̂(t, β)

∂β
|
β=α̂

)T
CT (y − ŷ), γ > 0

φ̂(τ) = Ax̂(τ) +Bu(τ) + L(y(τ)− Cx̂(τ))

(26)

where sgn(.) is the sign function.

Proof According to the Volterra integral we can write:

x− x̂ =
(
x(0)− x̂(0)

)
+

∫ t

0

(
(t− τ)α(t)−1

Γ(α(t))

(
(A− LC)(x− x̂)

)
+
( (t− τ)α(t)−1

Γ(α(t))
− (t− τ)α̂(t)−1

Γ(α̂(t))

)
φ̂

)
dτ

(27)
with an approach similar to the one used to prove Lemma
1:

x− x̂ =
(
x(0)− x̂(0)

)
+

∫ t

0

(
(t− τ)α(t)−1

Γ(α(t))

(
(A− LC)(x− x̂)

)
dτ

+
∂zφ̂(t, β)

∂β
|
β=α̂

(α− α̂) + K̂(t)(α− α̂)2

(28)

where K̂(t) = [K̂1(t) . . . K̂n(t)]T and
∂zφ̂(t,β)

∂β |
β=α̂

are

both n× 1 vectors. According to the solution existence of
variable order systems [16], x̂ is continuous. Therefore,

if u is continuous, so is φ̂ and according to Lemma 2,
K̂i(t) < ∞ for i = 1, ..., n and 0 ≤ t ≤ T . Using the

Volterra integral and defining w =
∂zφ̂(t,β)

∂β |
β=α̂

(α− α̂) +

K̂(t)(α− α̂)2,

x− x̂ = w +0 I
α
t

(
(A− LC)

(
x− x̂

))
(29)

Now, define V (α̂) = 1
2 (α− α̂)2. Since y − ŷ = C(x− x̂)
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we have:

V̇ (α̂) = α̇(α− α̂)− γsgn
(∂zφ̂(t, β)

∂β
|
β=α̂

)T
CT (y − ŷ)

= α̇(α− α̂)− γsgn
(∂zφ̂(t, β)

∂β
|
β=α̂

)T
CTC(x− x̂)(α− α̂)

(30)
Substituting x− x̂ from (29):

V̇ ≤

(
γ‖C‖2

∥∥∥0I
α
t

(
(A− LC)

(
x− x̂

))∥∥∥+M

)
‖α− α̂‖

− γCT sgn
(∂zφ̂(t, β)

∂β
|
β=α̂

)T(∂zφ̂(t, β)

∂β
|
β=α̂

)
C(α− α̂)2

+ γ‖CTC‖‖K̂(t)‖‖α− α̂‖3
(31)

Define η(t) = sgn
(
∂zφ̂(t,β)

∂β |
β=α̂

)T(∂zφ̂(t,β)

∂β |
β=α̂

)
which

is non-negative for all t. Now, the negative term is split
and all the terms are grouped as follows:

V̇ ≤

{(
γ‖C‖2

∥∥∥0I
α
t

(
(A− LC)

(
x− x̂

))∥∥∥+M

)
‖α− α̂‖

− γ

2
η(t)‖C‖2‖α− α̂‖2

}

+

{
γ‖C‖2‖K̂(t)‖‖α− α̂‖3 − γ

2
η(t)‖C‖2‖α− α̂‖2

}
(32)

In the above, the groups are identified by {}.
1. The first group is negative in the following interval:

‖α− α̂‖ > 2M
γη‖C‖2 +

2

∥∥∥0I
α
t

(
(A−LC)

(
x−x̂
))∥∥∥

η

According to Corollary 2, as t→∞, in (29) x→ w and

0I
α
t

(
(A − LC)

(
x − x̂

))
→ 0, i.e., for any given ε0 > 0

there is a value T0 such that
∥∥∥0I

α
t

(
(A−LC)

(
x− x̂

))∥∥∥ <
ε0 for t > T0. The value of T0 is dependent to the poles
of (A − LC). If L is designed in a way that T0 << T ,

then
∥∥∥0I

α
t

(
(A − LC)

(
x − x̂

))∥∥∥ ≈ 0 almost everywhere

on t ∈ (0 T ].
2. The second group is negative when ‖α − α̂‖ < η

2‖K̂‖ .

As long as η > 0 (i.e. the positive value η0 exists such

that η > η0), since ‖K̂‖ is bounded there is a positive
real number MK̂ such that ‖α − α̂‖ < η0

2MK̂
implies that

‖α− α̂‖ < η

2‖K̂‖ .

Hence, for t > T0, V̇ is negative inside the interval
2M

γη0‖C‖2 < ‖α − α̂‖ < η0
2MK̂

almost everywhere on t ∈
[0 T ].
This implies the locally ultimate boundedness of the er-

ror. In fact, since V̇ < 0 in 2M
γη0‖C‖2 < ‖α− α̂‖, as soon

as α− α̂ tends to leave the area ‖α− α̂‖ ≤ 2M
γη0‖C‖2 , it is

pulled back inside, thus, the error remains bounded with
maximum bound of 2M

γη0‖C‖2 .

Accordingly, if the initial condition is properly chosen,
the estimation error can be made arbitrarily small. The
convergence speed is related to the matrix A−LC. Also,
according to (28) and (29), for a given ε > 0, there is an
ε1 > 0 such that if ‖α − α̂‖ < ε1 then ‖x − x̂‖ < ε. It
means that γ can be chosen in a way that ‖x − x̂‖ < ε.
So, the state vector and the order can both be estimated
with desired levels of precision.
Consider the above interval with the lower bound BL =

2M
γη0‖C‖2 and the upper bound BU = 2M

γη0‖C‖2 . It should

be noted that as long as BL < BU the aforementioned

interval is never empty i.e. for γ >
4MMK̂

η20‖C‖2
there exist a

region such that if the initial condition is chosen inside
it, the adaptation rules converge to an estimation with
bounded error. Also, larger γ leads to smaller ultimate
bound. So, large enough γ ensures the convergence with
an acceptable error. Moreover,
1. For the constant order case where M = 0, if the initial
value is properly chosen, the estimation error asymptot-
ically converges to zero.
2. As K̂ → 0, the upper bound tends to infinity i.e. the
estimation error will be globally bounded.
3. Since {α̂, η(t) = 0} is not an invariant set for the sys-

tem (i.e. it does not yield ˙̂α = 0,∀t), so the trajectory
will leave this set. Hence, this case can be neglected in
stability analysis.
4. Although the proposed method requires temporal com-
pactness, the final time T can be arbitrarily chosen. Ac-
tually, for any given value of T <∞, the proposed algo-
rithm works in the interval [0 T ]. Hence, the only con-
straint we are dealing with is T 6= ∞, which from the
practical sight of view does not cause a problem.

Theorem 4 implies that for simultaneous estimation of
the order and the states, a set of two combined systems
should be used, one for estimating the order and the
other for estimating the states. These two systems are
in a high level of interaction with each other. The block
diagram shown in Figure 1 illustrates this concept.

3.2 Simulation Study

As the first simulation study, consider the following case
study (33) which is an unstable multi-input multi-output
system. We aim to estimate the order and the states
while only the input and output vectors are available.
Figure 2 and 3 show the simulation results. Clearly, the
figures show that although the main system is unstable
method works properly and the ultimate errors for esti-
mating both the order the states are small enough. This
verifies the effectiveness of the method proposed in The-
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ˆ ( ) ˆ ˆ ˆx x (y Cx)

ˆ x̂

tD A Bu L

y C

α = + + −
=

ˆ ˆ(y y)α = Λ −ɺ

ˆ ˆ, xy

Main System

y
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α̂

α̂

Fig. 1. The simultaneous order/state estimator block dia-
gram
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Fig. 2. The actual and estimated order.

orem 4.

u =

[
1− e−0.1t

tanh
(
0.1(t− 16)

)
]

]
α(t) = 0.7− 0.2e−0.05tsin(0.5t)

A =


0.3 0.1 0.1

−0.1 −0.2 0.4

−0.3 −0.5 −0.1

 , B =


1 0

2 1

−2 −1



C =

[
1 0 0

0 0.5 0.5

]
, L =


0.30 0.20

−0.10 0.08

−0.30 −0.67



(33)

In the second simulation study, an additive measure-
ment noise is also taken into account. Consider the fol-
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Fig. 3. The actual and auxiliary states. top: x1 vs. x̂1, middle:
x2 vs. x̂2, bottom: x3 vs. x̂3.

lowing system.

C
0 D

α(t)x(t) = Ax(t) +Bu(t)

y(t) = Cx(t) + ν, ν ∼ N(0, 0.01)

u = 1− e−0.1tsin(0.6t)

α(t) = 0.7e−0.1t(0.5cos(0.5t) + 0.7)

A =

[
0.3 −0.1

−0.2 −0.4

]
, B =

[
1

2

]

C =
[
1 0.5

]
, L =

[
0.1138

−0.4234

]
(34)
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Fig. 5. The actual and estimated order for a noisy system.

where ν is a white Gaussian noise. The only available
signals are the input and the noisy output. Figures 4-6
show that the proposed algorithm effectively estimates
all unavailable signals even in the presence of noise.

4 Conclusion

This paper solved the unknown order estimation prob-
lem for non-integer order systems, in combination with
designing a state observer for such systems. The suffi-
cient conditions and the designing procedure of the esti-
mator were introduced as well as the convergence proof.
As the simulation studies show, even in the presence of
the measurement noise, the presented method works and
leads to an acceptable estimation error. Because of differ-
ent applications of variable order dynamics, the results
of this paper could be used in a number of applications
especially for estimating the order which is supposed to
be known is most of the previous works.
During the process of designing the estimator, some
lemma and theorems were proven about the topic of non-
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Fig. 6. The actual and auxiliary states for a noisy system.
top: x1 vs. x̂1, bottom: x2 vs. x̂2.

integer order system, which, to the best knowledge of
the authors, have not been reported before. These re-
sults can be used to investigate the stability properties
of the variable order systems.
Future works in this topic may be done pertaining to
extending the presented results in order to design an or-
der/state estimator for nonlinear variable order system
or designing an adaptive order/parameter/state estima-
tor for variable order linear systems. Also, as a more
general case, a method can be designed to estimate the
order vector of an incommensurate order system.
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