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Abstract 

In this paper, a novel control scheme is proposed to guarantee global asymptotic stability of bilateral teleoperation 
systems that are subjected to time-varying time delays in their communication channel and sandwich linearity in their 

actuators. This extends prior art concerning control of nonlinear bilateral teleoperation systems under time-varying time 
delays to the case where the local and the remote robots’ control signals pass through saturation or similar nonlinearities that 

belong to a class of systems we name sandwich linear systems. Our proposed controller is similar to the proportional plus 
damping (P+D) controller with the difference that it takes  into account the actuator saturation at the outset of control design 

and alters the proportional term by passing it through a nonlinear  function;  thus, we call the proposed method as nonlinear 
proportional plus damping (nP+D).The asymptotic stability of the closed-loop system is established using a Lyapunov-
Krasovskii functional under conditions on the controller parameters, the actuator saturation characteristics, and the maximum 

values of the time-varying time delays. To show the effectiveness of the proposed method, it is simulated on a variable-delay 

teleoperation system comprising a pair of planar 2-DOF robots subjected to actuator saturation. Furthermore, the controller is 

experimentally validated on a pair of 3-DOF PHANToM Premium 1.5A robots, which have limited actuation capacity, that 
form a teleoperation system with a varying-delay communication channel.  

Keywords: Nonlinear teleoperation, varying time delay, sandwich linearity, actuator saturation, asymptotic stability. 

 

1. Introduction 

In telerobotic applications with a distance between the local 

and the remote robots (e.g., telesurgery and space exploration), 
there will be a time delay in the communication channel of the 

system, which can destabilize the telerobotic (Sheridan (1993)). 

In practice, the communication delay can be time-varying and 
asymmetric in the forward and backward paths between the 

operator and the remote environment (Gao (2007) and Gao 
(2008)). There are a number of control schemes for time-

varying delay compensation in the literature, e.g., Nuño 
(2009b), Polushin (2008) and Hua (2010). On the other hand, in 

almost all applications of control systems including 
teleoperation systems, the actuator output (i.e., control signal) 
has a limited amplitude, i.e., is subject to saturation. Controllers 

that ignore actuator saturation may cause undesirable responses 
and even closed-loop instability (Kothare (1994)).Although it 

may be possible to avoid actuator saturation by using 
sufficiently high-torque actuators in robots, the large size of the 
actuators will cause further problems in robot design and 

control. Therefore, it is highly desirable to develop control 
methods that take any actuator saturation into account at the 

design outset and, therefore, allow for efficient and stable 

control with small-size actuators that inevitably possess a 
limited output capacity.  

In order to address the stability of the position control loop 
for a single robotic manipulator subjected to bounded actuator 

output, several approaches have been proposed in the literature. 
An anti-windup approach is presented to guarantee global 

asymptotic stability of Euler-Lagrange systems in Morabito 
(2004). In Loria (1997), a controller is proposed involving a 

gravity compensation term plus a saturating function through 

which the position errors pass. A velocity and position feedback 
method with adaptive gravity compensation is reported in 

Zergeroglu (2000) in which the velocity and position errors 
separately pass through two nonlinear saturating functions and 

the outputs are then added to an adaptive gravity compensation 
term. In Zavala (2006), a brief review of PD plus gravity 

compensation controllers is provided. None of the above 

research has been done in the context of teleoperation systems. 

Going beyond anti-saturation control for a single robot, there 
has been some attention paid recently to actuator saturation in 
bilateral teleoperation systems (Ahn (2001)). Combining wave 

variable with a nonlinear proportional controller, an architecture 
to handle actuator saturation is discussed in Lee (2010) for the 

case where the delay in the communication channel is constant. 
In Lee (2011), an anti-windup approach combined with wave 

variables is used for constant-delay teleoperation subjected to 

bounded control signals. 
In this paper, a control scheme is introduced to cope with 

actuator saturation in nonlinear bilateral teleoperation systems 
that are subjected to time-varying delays. Asymptotic stability 

of the position error in the teleoperation system is studied, 
resulting in conditions on the controller parameters, the actuator 
saturation characteristics and the maximum values of varying 

delays. The main advantage of the proposed nP+D controller is 
in unifying the study of actuator saturation and varying time 

delay in the same framework and in guaranteeing the stability 
of system in the presence of both time varying delays and 
actuator saturation. 

This paper is organized as follows. Section II states the 
preliminaries while the proposed control and main results are 

presented in Section III and IV respectively. In Section V, 

simulation and experimental results are provided followed by 
the conclusions in Section VI. 

Notation. We denote the set of real numbers by � =�−∞,∞�, the set of positive real numbers by ��	 = �0,∞�, and 

the set of nonnegative real numbers by ��	 = �0,∞� . Also, ‖�‖� and ‖�‖� stand for the Euclidian ∞-norm and 2-norm of 

a vector ����×�, and |�|denotes element-wise absolute value 

of the vector � . The ℒ�  and ℒ�  norms of a time function 
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�:	��	 → ��×�  are shown as ‖�‖ℒ� = ������	,��‖�� �‖�and ‖�‖ℒ� = !" ‖�� �‖��# �	 $	.&
, respectively. The ℒ� and ℒ� spaces 

are defined as the sets '�:	��	 → ��×�, ‖�‖ℒ� < +∞* and '�:	��	 → ��×� , ‖�‖ℒ� < +∞* , respectively. For simplicity, 

we refer to ‖�‖ℒ�  as ‖�‖�  and to ‖�‖ℒ�  as ‖�‖� . We also 

simplify the notation +,-�→� �� � = 0	to �� � → 0. 

2. Preliminaries 

2. A. Teleoperation System Dynamical Model 

Consider the master (local) and slave (remote) robots with 
saturated inputs as follows: ./!0/� �$01/� � + 2/!0/� �, 03/� �$03/ +4/!0/� �$ = 56� � − 7!5/� �$	  (1) 

.8!08� �$018� � + 28!08� �, 038� �$038� � +48!08� �$ = 7!58� �$ − 59� �  (2) 

Here, 0: , 03:  and 01:���×� for ,�'-, �* are the joint positions, 

velocities and accelerations of the master and slave robots, 

respectively. Also, .:�0:� ��	�	��×� , 2:�0:� �, 03:� ��	�	��×� , 

and 4:�0:� ���	��×� are the inertia matrix, the 

Coriolis/centrifugal matrix, and the gravitational vector, 

respectively. Moreover, 56  and 59�	��×�  are the torques 
applied by the human operator and the environment, 

respectively. Lastly, 5/  and 58�	��×�  are the control signals 

(torques) for the master and the slave robots skewed by the 

vector function 	7: ��×� → ��×�, which can be nonlinear. 

Important properties of the nonlinear dynamic models (1) 
and (2), which will be used in this paper, are (Kelly (2005) and 

Spong (2005)) 

P-1. For a manipulator with revolute joints, the inertia matrix .�0�  is symmetric positive-definite and has the 

following upper and lower bounds: 0 < ;/:�!.�0� ��$< ≤ .�0� �� ≤ ;>?@!.�0� ��$< ≤ ∞ 

where <���×� is the identity matrix. 

P-2. For a manipulator, the relation between the 
Coriolis/centrifugal and the inertia matrices is as follows: .3 �0� �� = 	2�0� �, 03 � �� +	2A�0� �, 0� �� 

P-3. For a manipulator with revolute joints, there exists a 
positive η bounding the Coriolis/centrifugal term as 

follows: ‖2�0� �, B� ��C� �‖� 	≤ 	D‖B� �‖�‖C� �‖� 
P-4. The time derivative of 2�0� �, 03 � �� is bounded if 03 � � 

and 01 � � are bounded. 

P-5. For a manipulators with revolute joints, the gravity vector 4!0� �$  is bounded. (there exist positive constants EF 

such that every elements of the gravity vector, GF!0� �$, H = 1,⋯ , K, satisfies LGF!0� �$L ≤ EF). 

2. B. Actuator Model with Sandwich Linearity 

In the following, sandwich linearity of the actuator as a 

vector function 7�∙� is introduced. It is assumed that n is the 

number of joints in the master and slave robots and the elements 

of	7��� , where � ≜ �B� ⋯B�OA, are �F!BF$: � → �,H = 1,⋯ , K, 

defined by  

With this definition of	7���, it is possible to define different 

sandwich linearity characterizations for different joints of the 

manipulator. Note that the function �F!BF$ is only required to be 

linear for−.F ≤ BF ≤ .F, and can be nonlinear (unbounded or 

bounded) for LBFL > .F . An example of such a function is 

saturation. 

It is imperative to have 	EF < .F, H = 1,⋯ , K, where EF is the 

upper bound of LGF!0� �$L . This condition implies that the 

actuators of each of the master and the slave manipulators have 

the capacity to overcome the corresponding robot’s gravity 

within their workspaces. 

3. Proposed Control Law 

In this paper, a nonlinear Proportional plus Damping (nP+D) 
controller that incorporates gravity compensation is proposed 

for the master and the slave robots as 

Where Q���:	��×� → ��×�  is a vector on linear function 

with elements �F!BF$:� → �. The function �F!BF$ is required to 

be strictly increasing, bounded, continuous, passing through the 

origin, concave for positive B and convex for negative	B, with 

continuous first derivative around the origin, such that L�F!BF$L ≤ LBFL and �F!−BF$ = −�F!BF$. 

Under the above assumptions, we will have the following 

properties for �F!BF$: 

P-I. For any B, C��, L�F�B� − �F�C�L ≤ 2�F�|B − C|� 
P-II. For any B, C��, if  B < C then �F�B� < �F�C� 

P-III. For any B, C���	, �F�B + C� ≤ �F�B� + �F�C� 

P-IV. For any B��,  +,-S→	 �F�TB� = +,-S→	 T�F�B� 

P-V. For any B, C��, B�F�C� ≤ B�F�B�+ C�F�C� 
P-VI. For any B�� , L�F�B�L ≤ -,KU|B|,VFW  where VF ≜���@�X �F�B� 

P-VII. For any 	B� ��� , time derivative of �F�B� �� is 

bounded. 

P-VIII. For any B��, B�F�B� ≥ 0 

4. Main Results 
Let us start by a few preliminary lemmas that will be needed 

in the proof of our first main result in Theorem I. For 

simplicity, we use 4/�∙� , 48�∙� , Q/�∙�  and Q8�∙�  instead of  4/!0/� �$ , 48!08� �$ , Q!0/� �− 08� − Z�� ��$  and Q!08� �− 0/� − Z�� ��$, respectively. Similarly, we denote 

by G/[�∙�, G8[�∙� , �/[�∙�  and �8[�∙� the j
th element of 4/�∙� , 48�∙�, Q/�∙� and Q8�∙�, respectively. 

Lemma I. Given G/[�∙� ≤ EF < .F , G8[�∙� ≤ EF < .F , �/[�∙� ≤ VF ≤ .F − E: and �8[�∙� ≤ VF ≤ .F − E: , for positive-

definite diagonal matrices \/ and \8the following inequalities 

hold: 03/A !7�4/�∙� − Q/�∙� − \/03/� − �4/�∙� − Q/�∙��$ ≤ 0 
(6) 038A!7�48�∙� − Q8�∙� − \8038�− �48�∙� − Q8�∙��$ ≤ 0 

Lemma II. For any Z� �ϵ��	, B� �ϵ��	, we have 

�: ^_ B�5�#5�
�`A��� a ≤ _ �:!B�5�$#5�

�`A���  (7) 

Lemma III. For any vector functions 0/� � ≜ b0/�� �⋯0/�� �cA  and 08� � ≜ b08�� �⋯ 08�� �cA  and for 

any positive time-varying scalars Z�� � and Z�� �, the following 

inequality holds: 03/A � � dQ!0/� �− 08� �$ − Qe0/� � − 08! − Z�� �$fg ≤
2|03/� �|A " Q�|038�5�|�#5��`Ah��� 		

�F!BF$i > .F,				if BF > .F= BF,			if −.F ≤ BF ≤ .F< −.F,				if BF < −.F
.F > 0 (3) 

5/� � = −4/!0/� �$ + Qe0/� � − 08! − Z�� �$f +\/03/� � (4) 

58� � = 48!08� �$ − Q!08� �− 0/� − Z�� ��$ −\8038� � (5) 



038A� � eQ!08� �− 0/� �$ − Q!08� � − 0/� − Z�� ��$f ≤2|038� �|A " Q�|03/�5�|�#5��`Al���                                               (8) 

where 03/� � and 038� � are the time derivatives of 0/� �  and 08� �, respectively.  

Lemma IV. For any vectors m� � ≜ �n�� �⋯ n�� �OA  and o� � ≜ �p�� �⋯p�� �OA  and for any bounded time-varying 
scalar 0 ≤ Z� � ≤ Z/, the following inequality holds: 

mA� �_ Q!o�5�$#5�
�`A��� − _ oA�5�Q!o�5�$#5�

�`A���  

≤ Z/mA� �Q!m� �$ 

(9) 

Proofs of the above four lemmas are provided in Appendix. 

Theorem I. Assuming the human operator and the environment 
are passive, in the bilateral teleoperation system (1)-(2) with 

controllers (4)-(5), the velocities 03/  and 038  and the position 

error 0/ − 08 are bounded for any bounded time-varying time 

delays Z�� � and Z�� � provided that 

1) Z�/?@ +Z�/?@ ≤ `qr>stu�vswx  

2) 2�Z�/?@ + Z�/?@� < \8 

3) 2�Z�/?@ + Z�/?@� < \/ 

4) EF + VF ≤ .F  

In the above ./:� ≜ -,KU.FW  and V/?@ ≜ -nBUVFW for H = 1⋯K . Also, #/ ≜ ����@,y��Xu×l×Xu×l‖4/�B� − Q�C�‖� , #8 ≜ ����@,y��Xu×l×Xu×l‖48�B� − Q�C�‖� ,and # ≜-nB'#/ , #8* . Lastly, Z�/?@ ≜ �����X Z�� � and Z�/?@ ≜�����X Z�� �. 
Proof of Theorem I: 

Applying controller (4)-(5) to the system (1)-(2), we have 

following closed loop dynamics ./!0/� �$01/� � + 2/!0/� �, 03/� �$03/� � + 4/!0/� �$ =	 −7e−4/!0/� �$+ Q!0/� �− 08� − Z�� ��$+ \/03/� �f +56� �	 (10) 	.8!08� �$018� �+ 28!08� �, 038� �$038� � + 48!08� �$ = 

+7d48!08� �$ − Qe08� � − 0/! − Z�� �$f −\8038� �g −59� � (11)  

To show the stability of the system (10)-(11), define B� = B� + z� , as the state of the system where B� � ≜�0/� � 03/� � 08� � 038� �O, −Z/?@ ≤ z ≤ 0  and Z/?@ =-nB	�Z�/?@ , Z�/?@� , (Chopra (2006) and Hale (1993)). So 

Lyapunov-Krasovskii functional {�B�� can be defined as  {�B�� = {��B�� + {��B��+ {|�B�� + {}�B�� (12)

{��B�� = 1203/A � �./!0/� �$03/� � 
(13)+12038A� �.8!08� �$038� � 

{��B�� = _ �−03/�5�56�5�+ 038�5�59�5���
	 #5 (14)

{|�B�� = ~_ �F!EF$�s[ ���`��[���
	 #EF�

F��  (15)

{}�B � = 2_ _ 03/A �D�Q!03/�D�$#D�
�r� #E	

`Alswx  

(16) +2_ _ 038A�D�Q!038�D�$#D�
�r� #E	

`Ahswx  

 

Note that based on the assumption of passivity of the 
operator and the environment, {��B��  is a lower-bonded 

function. In other words, there exist positive constants �/ and �8  such that " !−03/�5�56�5�$�	 #5 + �/ ≥ 0 and " !038�5�59�5�$�	 #5 + �8 ≥ 0
Considering property P-2, the time derivative of {�� � is 

simplified to 

{3��B�� = 03/A � � ^−7 dQ e0/� �− 08! −Z�� �$f −
4/!0/� �$ + \/03/� �ga+ 03/A � � e56� �− 4/!0/� �$f  

+038A� �d7 e48!08� �$− Q!08� �− 0/� − Z�� ��$−
\8038� �fg+038A� � e−59� � − 48!08� �$f  

(17) 

The time derivatives of {�� � and {|� � are {3��B�� = 03/� �56� � − 038� �59� � (18) {3|�B�� = !03/� � − 038� �$Q!0/� �− 08� �$ (19) 

By adding and subtracting each of 03/� �Q!0/� � −08� − Z�� ��$  and 038� �Q!08� �− 0/� − Z�� ��$  to and 

from {3� and noting that Q�−�� = −Q���, it is possible to see 

that {3��B��+ {3��B��+ {3|�B�� = 03/A � � �7 d4/!0/� �$ − Qe0/� � − 08! − Z�� �$f − \/03/� �g 

−d4/!0/� �$ − Q e0/� �− 08! − Z�� �$fg� +03/A � � �Q!0/� � − 08� �$ − Q e0/� � − 08! − Z�� �$f� +038A� ��7 e48!08� �$− Q!08� �− 0/� − Z�� ��$− \8038� �f −e48!08� �$ − Q!08� � − 0/� − Z�� ��$f� +038A� �UQ!08� �− 0/� �$ − Q!08� � − 0/� − Z�� ��$W     (20) 

Considering Lemma I, it is easy to see that there exist 

positive �/ and �8such that {3��B�� +{3��B��+ {3|�B�� ≤ −�/\/03/A � �03/� � +03/A � ��Q!0/� � − 08� �$− Q e0/� � − 08! − Z�� �$f� −�8\8038A� �038� �+ 038A� �UQ!08� �− 0/� �$ −Q!08� �− 0/� − Z�� ��$W
(21)  

Where �/ and �8 are defined as �/ ≜ −1\/‖03/� �‖�� 03/A � �U7!4/!0/� �$ 

−Qe0/� �− 08! − Z�� �$f − \/03/� �g 

−d4/!0/� �$ − Q e0/� �− 08! − Z�� �$fg�,     ‖03/� �‖� ≠ 0 

�8 ≜ −1\8‖038� �‖�� 038A� �U7!48!08� �$ 

−Q!08� �− 0/� − Z�� ��$ − \8038� �f 

−d48!08� �$− Q e08� � − 0/! − Z�� �$fg�,          ‖038� �‖� ≠ 0 

                                                                                                (22)   
Applying the result of Lemma III to the last two terms in the 

right hand side of (21), we get {3��B�� +{3��B��+ {3|�B�� ≤ −�/\/03/A � �03/� � 
−�8\8038A� �038� �+ 2|03/� �|A _ Q�|038�5�|�#5�

�`Ah���  

+2|038� �|A _ Q�|03/�5�|�#5�
�`Al���  

(23) 

On the other hand, the time derivative of {}�B�� is 



{3}�B�� = 2Z�/?@03/A � �Q!03/� �$− 2_ 03/A �5�Q!03/�5�$#5�
�`Al���  

+2Z�/?@038A� �Q!038� �$ − 2_ 038A�5�Q!038�5�$#5�
�`Ah���   (24)

Considering (23) and (24) together, we have {3 �B�� ≤ −�/\/03/A � �03/� �− �8\8038A� �038� � 

+2|03/� �|A _ Q�|038�5�|�#5�
�`Ah���  

+2|038� �|A _ Q�|03/�5�|�#5�
�`Al��� + 2Z�/?@03/A � �Q!03/� �$ 

−2_ 03/�5�Q!03/�5�$#5�
�`Al��� + 2Z�/?@038A� �Q!038� �$ 

−2_ 038A�5�Q!038� �$#5�
�`Ah���  (25) 

Applying Lemma IV to (25), we get {3 �B�� ≤ −�/\/03/A � �03/� �− �8\8038A� �038� � +2�Z�/?@ + Z�/?@�03/A � �Q!03/� �$ +2�Z�/?@ + Z�/?@�038A� �Q!038� �$                                         (26) 

Defining D/ and D8 as  

D/ = 03/A � �Q!03/� �$‖03/� �‖�� 	,																					‖03/� �‖� ≠ 0 (27)

D8 = 038A� �Q!038� �$‖038� �‖�� 	,																									‖038� �‖� ≠ 0 (28)

we have {3 �B�� ≤ −��/\/ − 2�Z�/?@ + Z�/?@�D/�03/A � �03/� � −��8\8 − 2�Z�/?@ + Z�/?@�D8�038A� �038� � (29) 

Now, let us find conditions on �/ and �8 such that {3 �B�� ≤ 0. 
It is possible to see from (29) that a sufficient condition for {3 �B�� ≤ 0 is �/\/ ≥ 2�Z�/?@ + Z�/?@�D/ (30) �8\8 ≥ 2�Z�/?@ + Z�/?@�D8 (31) 

Next, we will investigate conditions under which the 
inequalities (30) and (31) are satisfied. Given the definitions 

of 	D/  and D8  in (27) and (28) and using property P-VI of 

function P(.), we have 

D/ ≤ -,Ki1,∑ �03/[� ��VF�F��‖03/� �‖�� � 

 (32) 

D8 ≤ -,K i1,∑ �038[� ��VF�F��‖038� �‖�� � 

To study the lower bounds of �/ and �8 for replacement in 

(30)-(31), let us consider two regions �� and �� as 

�� ≜ �03/� �:	�03/[� �� ≤ .F − #F\/ 		H = 1⋯K� (33) 

�� ≜ �03/� �:	�03/[� �� > .F − #F\/ 		H = 1⋯K� (34) 

where #F ≜ ����@,y��X×XLGF�B� − �F�C�L . We distinguish the 

following two cases: 

• Case 1: 03/� �ϵ�� 

Based on G/[�. � − �F�. � − \/03/[� � ≤ G/[�. � − �F�. � +\/ �03/[� �� ≤ G/[�. � − �F�. � +.F − #F ≤ .F  and the 

definition of �/ in (22), we have �/ = 1. Also, from (32), we 

know that D/ ≤ 1. 

Applying �/ = 1  and D/ ≤ 1  to (30), the following 

inequality is found as a sufficient condition for (30): 

Therefore (35) is a sufficient condition to have −��/\/ −2�Z�/?@ + Z�/?@�D/�03/A � �03/� � ≤ 0. 

• Case 2: 03/� ���� 

Then,�G/[�. � − �F�. � − \/03/[� �� could be greater than .F 

or less than .F. So, 

1. If �G/[�. � − �F�. � − \/03/[� �� ≤ .F , based on the 

definition of �/ in (22), �/ = 1. 

2. If �G/[�. � − �F�. � − \/03/[� �� > .F , then �: dG/[�. � −
�F�. � −\/03/[� �g > .F and using reverse triangle 

inequality, we will have the following inequality: 

�dG/[�. � − �F�. �g − ^�: dG/[�. � − �F�. � − \/03/[� �ga� 
> �.F − �G/[�. � − �F�. ��� > .F − #F 

Using Lemma I, we have 

03/[� ��dG/[�. � − �F�. �g − ^�F dG/[�. � − �F�. � −
\/03/[� �ga� = �03/[� �� �dG/[�. � − �F�. �g − ^�F dG/[�. � −
�F�. � − \/03/[� �ga�                                                           (36) 

Given that .F − #F ≥ ./:� − # and based on the definition 

of �/ in (22), we get 

�/ > ∑ �03/[� �� �./:� − #��:�� \/‖03/� �‖��  (37) 

Knowing from (32) that D/ ≤ ∑ ��3s[����v[u[�l‖�3s���‖hh  and using (37), 

it is possible to see that �/\/V/?@ ≥ �./:� − #�D/. 

Using this, we can find following condition to satisfy the 

inequality (30). ./:� − #V/?@ ≥ 2�Z�/?@ + Z�/?@� (38) 

Therefore if (35) and (38) are satisfied, then−��/\/ −2�Z�/?@ + Z�/?@�D/�03/A � �03/� � ≤ 0. Finally, conducting a 

similar analysis to find a condition for (31) to hold will result in 
(38) and following inequality \8 > 2�Z�/?@ + Z�/?@�	 (39) 

Using the above analysis, it is possible to see that if ./?@ 

satisfies (38) and \/  and \8fulfill inequalities (35) and (39), 

then{3 �B�� ≤ 0 meaning that all terms in {�B��  are bounded. 

Therefore, 03/, 038  and 0/ − 08�ℒ� and the poof is complete. 

□ 

 \/ > 2�Z�/?@ + Z�/?@� (35) 



Fig. 1. The stability region based on inequalities (35), (38) and (39). 

 
Fig. 2. the stability region provided by (38) in ./:�versus V/?@ 

plane given Z�/?@ and Z�/?@. 

Note that the parameter # defined in Theorem I is equal to V/?@ + E/?@ where E/?@ ≜ -nBUEFW . Using the inequalities 

(35), (38) and (39), a schematic representation of the stability 
condition in terms of Z�/?@  and Z�/?@ is shown in Fig. 1. 

The stability condition (38) in terms of	./:� and V/?@  is 

shown in Fig. 2. 
Theorem II. In the bilateral teleoperation system (1)-(2) with 

the controller (4)-(5), the absolute values of the velocities |03/� �| and |038� �| and the position error |0/� �− 08� �| tend 

to zero asymptotically in free motion (i.e., 56� �, 59� � → 0) if 

all conditions in Theorem I are satisfied and both Z3�� � and Z3�� � are bounded. 

Proof of Theorem II:  
Integrating both sides of (29), it is possible to see that, 03/� � 

and 038� ��ℒ�. Based on the result of theorem I, {� � is a lower 
bounded decreasing function. Therefore, 03/� � , 038� �  and 0/� � − 08� �	�ℒ�. Using the fact that 0/� � − 08! − Z�� �$ = 0/� � − 08� � + " 038� �# ��`Ah���  and " 038� �# ��`Ah��� �ℒ� , 

we have 0/� �− 08! − Z�� �$�ℒ� . Since the gravity terms G/ and G8 are bounded, using property P-1 and P-2 of system 

dynamics and given the boundedness of	7�5/� �� and	7�58� ��, 
it can be seen that 01/� � and 018� ��ℒ�. Because 03/� ��ℒ� and 01/� ��ℒ�, using Barbalat’s lemma we have that 03/� � → 0. 

Similarly, it can be reasoned that 038� � → 0. 

Now, if 01/  and 018 are continuous in time, or 

equivalently 0�/� �  and 0�8� ��ℒ� , then 03/� �  and 038� � → 0 

ensures that 01/� �  and 018� � → 0 . Let us investigate the 

boundedness of 0�:� � for 	,�'-, �*. The closed-loop dynamics 

found from combining the open-loop system (1) and (2) with 
the controllers (4) and (5) is 01/� � = e./!0/� �$f`� U−2/!0/� �, 03/� �$03/� � −4/!0/� �$ − 7 e−4/!0/� �$+ Qe0/� � − 08! − Z�� �$f +\/03/� �$W 018� � = e.8!08� �$f`� U−28!08� �, 038� �$038� � − 48!08� �$ −7e−48!08� �$ + Qe08� �− 0/! − Z�� �$f +\8038� �$W                                                                               (40)

Differentiating both sides with respect to time and given ## e.:!0:� �$f`� = −e.:!0:� �$f`� U2:!0:� �, 03:� �$ 

+2:A!0:� �, 03:� �$W.:!0:� �$												,ϵ'-, �* (41) 

and based on properties P-1 and P-3 and given the boundedness 

of 038  and 03/ , it is easy to see that 
qq� e./!0/� �$f`�

and 

qq� e.8!08� �$f`�
are bounded. Given that Q3 �·� is bounded and 

using properties P-1, P-3 and P-4 of system dynamics and the 

boundedness of 08� � − 0/! − Z�� �$, 0/� � − 08! − Z�� �$ 
,03/ ,038 ,01/ ,018 , Z3�  and Z3� , it can be seen that0�/  and 0�8  are 
bounded. Given that 03/� �  and 038� � → 0  and 0�/� �  and 0�8� ��ℒ� , using Barbalat’s lemma we have that 01/� �and 018� � → 0.  

Considering the dynamic equation of the master and slave 
robots in (10) and (11), having shown that 01:� � → 0 and 03:� � → 0, ,�'-, �*, it is easy to see that 4/!0/� �$ → 7 e4/!0/� �$ − Q!0/� � − 08� − Z�� ��$f (42) 48!08� �$ → 7 e48!08� �$ − Q!08� �− 0/� − Z�� ��$f  (43) 

Given 7 e4:!0:� �$f = 4:!0:� �$, we find that Q!0/� �− 08� − Z�� ��$ → 0 (44) Q!08� �− 0/� − Z�� ��$ → 0 (45) 

and using assumptions of Q�·�,  |0/� �− 08� − Z�� ��| → 0 (46) |08� � − 0/� − Z�� ��| → 0 (47) 

It is possible to see the asymptotic zero convergence of 

velocities and the position tracking error and proof is 
completed.                                                                                  □ 

Remark I. Based on the assumption Z�/?@ + Z�/?@ ≤>stu`�vswxr�swx��vswx  in Theorem I, it is possible to see a trade-off 

between the robustness to the maximum values of time delays 
and the tracking performance in controller design. For instance, 
if V/?@  is lowered, then the position difference between the 

master and the slave robots contributes less to the control 
signal, resulting in an increase in the settling time for the 

position tracking response. At the same time, as V/?@ is 

lowered, the maximum admissible values of time delays 
increase; i.e., the robustness of the system stability to larger 

time delays improves. The above trends in performance and 
stability are understandable once one pays attention to the 

control laws (4)-(5). When V/?@  has a small value, the 

nonlinear proportional terms in (4)-(5) are suppressed, leaving 

more “room” for the derivative signals 03 � � to contribute to the 

control signal, i.e., the velocity gains \/ and \8 are allowed to 

be larger. It is clear from the stability conditions (35) and (39) 

that larger \/ and \8 allow for larger values for the maximum 

time delays. At the same time, with small V/?@ , settling time of 

position tracking increases, degrading the performance of the 

teleoperation system. Therefore, it can be concluded that, for a 
fixed ./:� , there is a trade-off between stability and 

performance of the system and this trade-off can be tuned by 

changing V/?@ . 

Remark III. The discussion in this paper has focused on joint-

space dynamics of the master and the slave robots and joint-
level position tracking. It is noteworthy that the dynamics of a 
robot in the task space are similar to the joint-space dynamics 

(1)-(2) and the inertia, Coriolis/centrifuge, and gravity 
matrices/vectors in task-space dynamics also have the same 

properties (Lee (2011)). Therefore, the proposed controller and 
stability results in this paper can be used in the task space in the 

same way that they are used in the joint space. This is 
advantageous because, in different applications, one may be 
facing with different saturation effects. For instance, for safety 

reasons, a low-level controller may be enforcing preset limits 



on the (Cartesian) forces applied by the end-effector of a robot; 

this would be a case of actuator saturation in the task space. 

5. Simulation and Experiment Results 

In this section, simulation and experimental results for the 

proposed teleoperation controller are provided. 
A) Simulation on a teleoperated pair of 2-DOF planar 

robots 
To verify the theoretical results of this paper, the master and 

the slave manipulators are considered to be a pair of 2-DOF 

planar robots with revolute joints. In this simulation, it is 
assumed that the control signals for the both the master and the 

slave robots are subjected to actuator saturation at levels +1 and 

-1. Also the single-way forward and backward time delays in 
the communication channel are chosen to be random variables 

with uniform distributions over �0 0.3O second. The random 

nature of time delays makes it possible to show the 
effectiveness of the proposed method for fast-varying time 

delays. Note that the single-way time delays used in this 
experiment, which vary between 0 and 300 ms, are reasonable 

in Internet-based teleoperation applications because the round-
trip delay has been shown to have an average of 350 ms if the 

distance between the local and the remote robots is up 10,000 

km ( Oboe (2003)). The input human force, �6�  and �6� , 

applied to the master robot are zero at the beginning and starts 

to increase after 0.5 and 1.5 s, reaching 10 N at 1 and 2 s and 
staying at that level until 2 and 3 s, respectively. After that, they 
decrease until 2.5 and 3.5 s, respectively, when they reach zero. 

The  application  of  this  human  force results  in  the  joint 
positions profiles  for the  master  and  the  slave  robots  shown  

in  Fig. 3.   
To show the efficiency of the proposed method, the propose 

nP+D controller has been applied to the 2-DOF planar robots 

assuming saturation on joint actuators as well as the previously-
discussed time varying delays in the communication channel. 

The nonlinear function Q�∙�  in the controllers (4) and (5) is 

chosen as 0.2  nK`��∙� . Note that all conditions listed for 

Theorem I are satisfied with the function	 nK`��∙�; see the 

required properties of Q�∙� in section III. Also, \/ and \8 are 

set to 3. This means that, in this simulation, the controllers (4) 

and (5) become 5/� � = −4/!0/� �$ + 0.2  nK`� e0/� � − 08! − Z�� �$f +303/� � 58� � = 48!08� �$ − 0.2  nK`� e08� � − 0/! − Z�� �$f −3038� �                                                                                     (48) 
 

 

Fig. 3. First joint (up) and second joint (down) positions of the 

2-DOF planar robot teleoperation with actuator saturation and 
variable time delay controlled by the proposed nP+D controller. 

 

 

 
Fig. 4. First joint (up) and second joint (down) position errors 
between master and slave robots for different values of V/?@. 

 

Note that in this simulation, ./:� = 1 , V/?@ = �/10 , E/?@ = 0.05 and Z�/?@ = Z�/?@ = 0.3, for which it is easy to 

see that the sufficient condition (38) is satisfied. 
As mentioned in Remark I, the maximum value of the 

nonlinear function Q�∙� in the control laws (4)-(5), V/?@ , can 

affect the performance of the closed-loop system. To show this, 
in Fig. 4, the position tracking errors between the master and 

the slave robots are shown for three different values of V/?@ . 

Evidently, smaller values of V/?@  make the closed-loop 

response slower and the settling time larger. 

B) Experiment on a teleoperated pair of 3-DOF 
PHANToM robots  

In this section, experimental results for the proposed control 

method are reported. In the experimental setup shown in Fig. 5, 
two 3-DOF PHANToM Premium 1.5A robots are connected via 

a communication channel with varying time delays with 
uniform distributions between 81 and 100 ms. Please note that, 

in addition to the experimental results reported below, a video 

showing experiments on this teleoperation test-bed 

accompanies this paper
1
. 

In the proposed nP+D method, the following controllers are 

used:  5/� � = −4/!0/� �$ + 0.1 � d5 e0/� � − 08! − Z�� �$fg + 03/� � 
58� � = 48!08� �$ − 0.1� d5 e08� � − 0/! − Z�� �$fg − 038� � (49) 

 

  
Fig. 5. The experimental teleoperation setup consisting of two 
PHANToM Premium 1.5A robots and the schematic of the PHANToM 

robot with its corresponding joint angles. 
In the above, we choose the nonlinear function in the 

controllers to be ��B� ≜ �GK�B�-,K'|B|, 1* with �GK�·� being 

the signum function. As a result, when the position errors 0/� � − 08! − Z�� �$ (the same holds for the position error 08� � − 0/! − Z�� �$ ) is between -0.2 and 0.2 radian, it 

appears linearly through a gain of 0.5 in the control signal. 
Otherwise, its contribution to the control signal is maxed out at 

-0.1 or 0.1. Note that the function 0.1��5B�  meets all the 

required properties listed in Section III. Also note that the 

                                                        
1http://www.ece.ualberta.ca/~mtavakol/Automatica_submission/  
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approximate levels of the actuator saturation for the first, 

second and third joint of the PHANToM robot in generalized 
coordinate are .� = 0.29 , .� = 0.29	 and .| = 0.23  Nm, 

respectively. Also E/?@ = 0.07 , ./:� = 0.28 , Z�/?@ =Z�/?@ = 0.1, V/?@ = 0.1 and it is easy to see that for these 

values the sufficient condition (38) for stability is satisfied. 
Experimental results of the proposed nP+D controller in terms 

of joint position tracking between the master and the slave 

robots are shown in Fig. 6. 
 

 

 

 
Fig. 6. Joint position tracking between the master and the slave using 

the proposed nP+D control method. 
 

 

 

 
Fig. 7. Step response of slave robot’s joint positions for different values 

of V/?@. 
Let us study the effect of V/?@ , which is the maximum value of 

the nonlinear function Q�·� in (4)-(5), on the performance of the 

teleoperation system in experiments. To show the slave’s joint 
position trajectory in response to a step set-point (corresponding 

to a fixed position for the master), the control signal (50) is 
applied to the slave robot for different values of V/?@ . 58� � = 48!08� �$− V/?@ �d5e08� � − 0/! − Z�� �$fg (50)

where ��. �  is the same as that used in (49), i.e., ��B� ≜�GK�B�-,K'|B|, 1*. In Fig. 7, the step responses of the slave 

robot’s joint positions are shown for three different values of V/?@ . Evidently, a smaller V/?@ , which corresponds to a 

reduced contribution of the tracking error 08� � −0/! − Z�� �$ to the slave robot’s control signal, leads to a 

slower step response (i.e., larger settling time). This is a result 
that is consistent with Remark I. 

6. Conclusion and future work 

In this paper, we developed a novel method to cope with 

actuator saturation in bilateral teleoperation systems that are 
subjected to time-varying time delays in their communication 
channels. The proposed controller, which we call nP+D 

method, is similar to the conventional P+D controller except for 
the fact that we have replaced the proportional term by a 

nonlinear function through which the position errors pass. This 
makes the proposed nP+D method capable of handling actuator 
saturation and guaranteeing position tracking even in the 

presence of time-varying time delays in the communication 
channel. We analyzed the stability of the system using a 

Lyapunov Krasovskii functional and showed asymptotic 
position tracking between the master and the slave robots. The 

derived stability conditions involve relationships between the 
nP+D controller parameters, the actuator saturation 
characteristics, and the maximum values of the time-varying 

delays. We simulated the proposed controller on a teleoperated 

pair of 2-DOF planar robots subjected to actuator saturation and 

time-varying delays. We also experimentally tested the 
proposed controller on a teleoperated pair of 3-DOF 
PHANToM Premium robots, which are naturally subject to 

actuator saturation. Simulation and experimental results of the 
proposed nP+D control method have demonstrated its 

efficiency. 
In the future, it is possible to account for the simultaneous 

presence of time-varying time delay, actuator sandwich 

linearity, and a third source of problem in teleoperation control 
such as model uncertainties, unmodeled dynamics, external 

disturbances, etc. 
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Appendix 

Here, proofs of Lemmas I, II, III and IV are provided. 
Proof of Lemma I: The assumption in the lemma can be summed up as �G/[�∙� − �/[�∙�� < .F and �G8[�∙� − �8[�∙�� < .F . Regarding 

increasing monotone property of function �F�∙� , if 03/[ ≥ 0  then �F eG/[�∙�− �/[�∙� − ¡F03/[f ≤ �F eG/[�∙� − �/[�∙�f  and if  03/[ < 0 

then �F eG/[�∙� − �/[�∙� − ¡F03/[f > �F eG/[�∙� − �/[�∙�f . Based on 

the fact that G/[�∙� − �/[�∙� belongs to the linear part of �F , �F eG/[�∙� − �/[�∙�f = G/[�∙� − �/[�∙�, therefore for all 03/[ 03/[ d�F eG/[�∙� − �/[�∙� − ¡F03/[f − eG/[�∙� − �/[�∙�fg ≤ 0        (A1) 

03/A e7�4/�∙� − Q/�∙� − \/03/� − !4/�∙� − Q/�∙�$f 

= ~03/[ d�F eG/[�. � − �/[�. � − ¡F03/[f − eG/[�. � − �/[�. �fg
�

F�� ≤ 0 

(A2) 

Using similar study, 038A!7�48�∙� − Q8�∙� − \8038� − �48�∙� − Q8�∙��$ ≤ 0 (A3) 

and proof completed.                                                                              □ 

Proof of Lemma II: Based on the definition of integral, we know that 

_ B�5�#5�
�`A��� = lim�→�~ Z� �K B ^ − Z� � + ¡ Z� �K a�`�

¤�	  (A4) 

_ �:!B�5�$#5�
�`A��� = lim�→� ~Z� �K �: �B ^ − Z� � + ¡ Z� �K a��`�

¤�	  (A5) 

Using the properties   P-III  and    P-IV of �:�. � and knowing that B�5� 

and Z� � are positive, 

�: ^_ B�5�#5�
�`A��� a = �: � lim�→�~ Z� �K B ^ − Z� � + ¡ Z� �K a�`�

¤�	 � 

≤ lim�→�~ �: �Z� �K B ^ − Z� � + ¡ Z� �K a��`�
¤�	  

= lim�→�~ Z� �K �: �B ^ − Z� � + ¡ Z� �K a��`�
¤�	 = _ �:!B�5�$#5�

�`A���  

(A6) 

and proof completed.                                                                               □ 
Proof of lemma III: Considering property P-I of �F�. �, 

��F d0/[� �− 08[� �g − �F d0/[� � − 08[! − Z�� �$g� 
≤ 2�F e�08[� � − 08[! − Z�� �$�f = 2�F ^�_ 038[�5�#5�

�`Ah��� �a 
(A7) 

and similarly 

Using property P-II of �F�. � and knowing that for any 03ϵ� and for 

any positiveZ� �,�" 03�5�#5��`A��� � ≤ " |03�5�|#5��`A��� , then 

Considering lemma II, 

�F ^_ |03�5�|#5�
�`A��� a ≤ _ �F�|03 �5�|�#5�

�`A���  (A10) 

Considering (A7), (A9) and (A10), 

and therefore 

Similarly 

and proof completed.                                                                               □ 
Proof of Lemma IV: given property P-V of function�F�. �, 

Therefore  mA� �Q!o�5�$ − oA�5�Q!o�5�$ ≤ mA� �Q!m� �$ (A14) 

Integrating both sides based on #5 from  − Z� � to  , 

_ mA� �Q!o�5�$#5�
�`A��� − _ oA�5�Q!o�5�$#5�

�`A���  

≤ _ mA� �Q!m� �$#5�
�`A���  

(A15) 

That can be simplified to 

mA� �_ Q!o�5�$#5�
�`A��� − _ oA�5�Q!o�5�$#5�

�`A��� ≤ Z� �mA� �Q!m� �$ 

 (A16)

Given property P-VIII of function �F�∙�,mA� �Q!m� �$ > 0 and so 

mA� �_ Q!o�5�$#5�
�`A��� − _ oA�5�Q!o�5�$#5�

�`A��� ≤ Z/mA� �Q!m� �$ 

(A17) 

and proof is completed.                                                                           □ 

��F d08[� � − 0/[� �g − �F d08[� � − 0/[! − Z�� �$g� 
≤ 2�F ^�_ 03/[�5�#5�

�`Al��� �a 
(A8) 

�F ^�_ 03�5�#5�
�`A��� �a ≤ �F ^_ |03�5�|#5�

�`A��� a (A9) 

��F d0/[� � − 08[� �g − �F d0/[� � − 08[! − Z�� �$g�
≤ 2_ �F�|03 �5�|�#5�

�`A���  

03/A � � dQ!0/� � − 08� �$ − Q e0/� � − 08! − Z�� �$fg 

= ~�03/[� �^�F d0/[� � − 08[� �g − �F d0/[� � − 08[! − Z�� �$ga��
F��  

≤ ~e�03/[� �� ��F d0/[� � − 08[� �g − �F d0/[� � − 08[! − Z�� �$g�f�
F��  

= 2~¥�03/[� �� ^_ �F e�038[�5��f #5�
�`A��� a¦�

F��  

= 2|03/� �|A _ Q�|038�5�|�#5�
�`Ah���  (A11) 

038A� �dQ!08� � − 0/� �$ − Q e08� � − 0/! − Z�� �$fg 

≤ 2|038� �|A_ Q�|03/�5�|�#5�
�`Al���  

(A12) 

~dnF� ��F epF�5�f − pF�5��F epF�5�fg�
F�� ≤ ~dnF� ��F enF� �fg�

F��  (A13) 




