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Abstract 
This paper presents a novel criterion to study the stability of multilateral teleoperation systems based on 
passivity. Such systems (modelled as 𝑛 -port networks) have recently found interesting applications in 
cooperative haptic teleoperation and haptic-assisted training. The criterion provides researchers with an 
analytical, closed-form, necessary and sufficient condition useful for both analysis and design of multilateral 
haptic teleoperation systems.   The paper shows that when 𝑛 = 2 the proposed conditions reduce to the well-
known Raisbeck’s passivity criterion for 2-port networks. The proposed conditions are used to study the 
passivity (and consequently the stability) of a dual-user haptic system for control of a single teleoperated 
robot. Simulations and experiments are performed to further test the validity of the proposed criterion.  
 

 Keywords:  Passivity, absolute stability, 𝑛-port networks, multilateral haptic systems, teleoperator, 
       teleoperation, trilateral system.  
 
1.  Introduction  

1.1 Motivation 

 The sense of touch allows us to explore and manipulate an object by feeling its roughness, size, stiffness, 
etc. When an object we intend to manipulate is not physically reachable, we can use tools as extensions to our arms. 
Sometimes, the extension tool is capable of recreating for us the sense of touch. In that case, we are able to 
manipulate remote objects and “feel” as if we are in direct contact with them. The described scenario is realized by 
haptic teleoperation systems. These systems are made up of one or more human operator(s) coupled to one or more 
master robot(s) in order to control the movement of a remote slave to perform a task on a remote environment. 

 The key motivation for this research is to establish a criterion for investigating the stability of multilateral 
haptic teleoperation systems, which can be modeled as 𝑛-port networks. The realization of a teleoperator involve 
one or more master robots (i.e., user interfaces), one or more slave robots (i.e., remote robots), control units, and 
communication channels between the masters and the slaves. A multilateral teleoperation system is formed once the 
above teleoperator is coupled to human operators in one end and to external environments in the other end; naturally, 
human operators are coupled to the masters while the environments interact with the slaves. The teleoperation 
system is said to provide haptic feedback if all of the slave/environment interaction forces are reflected back to the 
human operators via the masters.  

 Figure 1 shows a multilateral teleoperation system made up of  𝑛 robots. One potential application scenario 
for Figure 1 is that 𝑛 − 1 master’s robots are sharing the execution of a task in a remote environment by 
collaboratively controlling the movement of a slave robot [4][5][6][7][8]. In Figure 1, each human operator/master 
interaction is denoted by 𝐹ℎ𝑖 , 𝑖 = 1, … ,𝑛 − 1  and the slave/environment interaction is denoted by 𝐹𝑒 . Also, 
𝑉ℎ𝑖 ,𝑉𝑒 ,𝐹𝑐𝑐𝑖 , and 𝐹𝑐𝑐 are the masters’ and the slave’s velocities and control signals, respectively. Impedances 𝑍ℎ𝑖 and 
𝑍𝑒 denote the dynamic characteristics of the human operators and the remote environment, respectively. 𝑍𝑐𝑖 and 
𝑍𝑐 denote the linear impedances of the masters and the slave, respectively. Moreover, 𝐹ℎ𝑖∗ and 𝐹𝑒∗ are the operators’ 
and the environment’s exogenous input forces. 
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Figure 1.  A multilateral haptic teleoperation system consisting of  𝑛 − 1 master robots and one slave robot. 

 Stability criteria can give formal and accurate information necessary for obtaining the best teleoperation 
transparency once one keeps in mind the trade-offs between performance and stability of any teleoperation system 
[20]. Consider a teleoperation task involving flipping the three-way switch shown in Figure 2. Assume that the 
human operator has to move the switch from state 1 to state 2 but not to state 3. The system should exhibit a 
sufficiently satisfactory performance so that the human operator can flip the switch by teleoperation of the slave 
robot through the master robot; for this, the slave robot’s overshoot should be no more than the position difference 
between states 2 and 3. It is evident that master-slave position error, which is a measure of teleoperation system 
performance, directly affects the performance of the task. To achieve a small enough master-slave position error, the 
slave’s position controller gains have to be selected large. However, selecting too large a controller gain risks 
making the system non-passive or even unstable [16][17][18]. The upper limit on the controller gains before 
stability is lost is what can be determined using the passivity criterion developed in this paper. The passivity 
criterion developed in this paper is, therefore, a valuable result that allow for obtaining maximum performance in the 
stable region. In practice, the upper limit imposed on the control gain for ensuring stability may restrict the 
performance to the extent that task performance is severely undermined. For example, in the same 3-way switch 
task, one may find that the highest slave’s controller gain for which the system remains stable is still not high 
enough to complete the task successfully (especially if the switch is sticky and the position difference between states 
2 and 3 is small) even though the same task is done readily under direct touch. Therefore, it is also informative to 
study if successful completion of this task is possible at all and this study can be facilitated using the passivity 
criterion proposed in this paper. 

             
    Figure 2. A three-way switch.    
 

 Human operators and environments are part of the closed-loop teleoperation system and thus their models 
are necessary for stability analysis. In practice, such models are next to impossible to acquire. For instance, the 
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dynamics of a human operator changes according to the task at hand [2][3] and identification of the human arm 
dynamics requires a meticulous off-line process of data collection and analysis [19]. 

 For the simplest case, the bilateral teleoperation system (Figure 3a), there exist well-known methods to 
investigate the stability. Such a study of stability is valid when the 2-port network (Figure 3b) is connected to 
unknown terminations (human operator and environment) that are passive. These methods are known as Llewellyn’s 
absolute stability criterion and Raisbeck’s passivity criterion [9]. A compact method to study the stability of 
multilateral teleoperation systems beyond the bilateral case, which is the subject of this paper, is still in demand. 
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Figure 3a (left): A bilateral teleoperation system comprising a human operator, a teleoperator (a master, a slave, 
controllers, and a communication channel), and an environment.  Figure 3b (right): A  2-port  network. 
           
1.2 Emerging Applications for Multilateral Teleoperation Systems 

 Multilateral teleoperation systems beyond the bilateral one can offer greater advantages: They can be used 
to haptically train people in performing remote tasks, they can increase task efficiency where it helps to use two 
hands instead of one, they can help to perform a task in cooperation among several human operators, etc.  

1.3 Literature Survey 

 The stability of a multilateral haptic teleoperation can be determined by using passivity criteria. The 
following are the existing criteria for passivity of 𝑛-port networks, to the best of the author’s knowledge.  

 In 1954, Raisbeck proposed a general definition of passivity of 𝑛-port networks [12]. From the definition, 
Raisbeck presented a passivity criterion for a 2-port network, however, he did not extend the criterion for the general 
case of 𝑛-port networks where 𝑛 can be an integer greater than 2. In 1959, Youla et al. published the first formal 
justification of the passivity definition for 𝑛-port networks based on Raisbeck’s general passivity definition (with 
minor differences) [13]. The paper presented a rigorous theory of passive LTI 𝑛-port networks but stopped short of 
proposing a passivity criterion. Wyatt et al. presented another rigorous definition for passivity of 𝑛-ports [14], 
however, like the previous case, this paper stopped short of proposing a passivity criterion for 𝑛-port networks. 

 In [15], Anderson and Spong introduced a tool for checking the passivity of an 𝑛-port network based on the 
singular value of the scattering matrix of the network. They showed that a network is passive if and only if the norm 
of its scattering operator is less than or equal to one. The scattering operator  𝑆 is defined as  
 

                𝐹 − 𝑣 = 𝑆(𝐹 + 𝑣)                                           (1) 
 

In (1), F is the effort measured across the network’s ports and v is the flow entering the network’s ports. In relation 
to haptic teleoperation systems, the effort variable is equivalent to force and the flow variable is equivalent to 
velocity. In relation to electrical networks, effort is equivalent to voltage and flow is equivalent to current. In the 
Laplace domain, (1) becomes  

                    𝐹(𝑠) − 𝑉(𝑠) = 𝑆(𝑠)(𝐹(𝑠) + 𝑉(𝑠))                                                       (2) 

According to [15], the 𝑛-port network is passive if and only if 
 

                        ‖𝑆‖∞ ≤ 1                                                                    (3) 
   

This is equivalent to  
                 sup𝜔𝜆1/2(𝑆∗(𝑗𝑗)𝑆(𝑗𝑗)) ≤ 1                                    (4) 

 
where 𝜆  denotes the eigenvalue of a square matrix, * denotes the complex conjugate transpose, and ω is the 
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frequency.  Condition (4) is difficult to verify, especially without knowledge of the model parameters for the robots 
and the controllers, making it not suitable for control synthesis. 
 

This paper presents a closed-form and practically-useful criterion for passivity of 𝑛-port networks (𝑛 equal 
or greater than 2), which can be used to investigate the stability of multilateral haptic teleoperation systems. Section 
2 presents an overview of passivity of 2-port networks. In Section 3, a novel method to investigate the passivity of 
𝑛-port networks, based on immittance parameters of the network, is presented. The method is given as a closed-form 
criterion for passivity of 𝑛 -port networks and can be used to investigate the stability of multilateral haptic 
teleoperation systems. In Section 4, the passivity of a dual-user haptic system for control of a single teleoperated 
robot is investigated through simulations and experiments in order to verify the findings in Section 3. Section 5 
presents the conclusions as well as directions for future research.  

2.  Passivity of Bilateral Teleoperators with Unknown Terminations 

 Closed-loop stability is crucial for safe teleoperation. For the analysis of closed-loop stability of a 
teleoperation system, according to Figure 3a, the knowledge of the human operator and the environment dynamics 
are needed in addition to that of the teleoperation system’s immittance parameters (𝑧,𝑦, ℎ, or 𝑔). In practice, 
however, the models of the human operator and the environment are usually unknown, uncertain, and/or time-
varying. This makes it impossible to use conventional techniques to investigate the closed-loop stability of a 
teleoperation system.  

 Assuming that 𝑍ℎ(𝑠) and 𝑍𝑒(𝑠) in Figure 3a are passive, we can draw stability conditions that are 
independent of the human operator and the environment by using Raisbeck’s passivity criterion. The following 
definitions are needed before presenting this criterion. 

Definition: Passivity [9] 

A 2-port network is passive if, for all excitations, the total energy delivered to the network at its input and output 
ports is non-negative. Hence, passivity is a property of the 2-port network that establishes that it cannot deliver more 
energy than what is delivered to it. Assuming that the 2-port network has zero energy stored at time t = 0, the 2-port 
network is said to be passive if it satisfies 
 
        𝐸(𝑡) = ∫ (𝑖1(𝜏)𝑣1(𝜏) + 𝑖2(𝜏)𝑣2(𝜏))𝑡

0 𝑑𝜏 ≥ 0                                                 (5) 
 

where 𝑖𝑖(𝑡) and 𝑣𝑖(𝑡) are the instantaneous values of the current and voltages at port 𝑖  with 𝑖 = 1, 2, and 𝐸(𝑡) 
represents the total energy exchange for the 2-port network. 
 
Definition: Activity [9] 

If a network is not passive, then it is active. 

Definition: Positive realness [9]   

A rational function  𝐹(𝑠) is positive real if and only if, in addition to being real for real 𝑠, it meets the following 
conditions: 

a. 𝐹(𝑠) has no poles neither zeros in the right half plane (RHP), 
b. Any poles of  𝐹(𝑠) on the imaginary axis are simple with real and non-negative residues, and 
c. ℜ𝑒{𝐹(𝑗𝑗)} ≥ 0,     ∀ 𝑗.   
 

where ℜ𝑒{∗} denotes the real part of  a complex number. 
 
Theorem: Equivalence between positive realness and passivity for LTI systems [11] 

 Consider a linear time invariant system 𝐻 defined by 𝐻𝐻 = ℎ ∗ 𝐻, where ℎ has a Laplace transform that has 
no poles in the RHP. System 𝐻 is passive if and only if ℜ𝑒�𝐻�(𝑗𝑗)� ≥ 0,  for all real frequencies 𝑗, where 𝐻�(𝑗𝑗) is 
the Fourier transform of ℎ(𝑡). 
 This theorem establishes that an LTI system is passive if and only if its transfer function is a positive real 
function. This theorem is stated for a 1-port network.  
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Raisbeck’s Passivity Criterion  [9] 

The necessary and sufficient conditions for passivity of a 2-port network with the immittance parameter p are 

1. The 𝑝-parameters have no RHP poles. 

2. Any poles of the 𝑝-parameters on the imaginary axis are simple, and the residues of the 𝑝-parameters at 
these poles satisfy the following conditions:  
If  𝑘𝑖𝑖 denotes the residue of 𝑝𝑖𝑖  and 𝑘𝑖𝑖∗   is the complex conjugate of 𝑘𝑖𝑖, then 

𝑘11 ≥ 0 
𝑘22 ≥ 0 
𝑘11𝑘22 − 𝑘12𝑘21 ≥ 0   𝑤𝑖𝑡ℎ  𝑘21 = 𝑘12∗                   (6)  

3. The real and imaginary part of the 𝑝-parameters satisfy the following conditions for all real frequencies 𝑗 

ℜ𝑒(𝑝11) ≥ 0 
ℜ𝑒(𝑝22) ≥ 0       

4ℜ𝑒(𝑝11)ℜ𝑒(𝑝22) − �ℜ𝑒(𝑝12) + ℜ𝑒(𝑝21)�2 − �ℐ𝑚(𝑝12) − ℐ𝑚(𝑝21)�2 ≥ 0            (7) 
where ℐ𝑚( ) denotes the imaginary part of a complex expression.      

3. Passivity of Multilateral Teleoperators (𝒏-port  Networks) with Unknown Terminations 

 An 𝑛-port  network contain 𝑛 pairs of terminals for external connections (Figure 4). Each pair of terminals 
represents a port. The external behavior of the 𝑛-port network can be determined if all the 𝐼𝑖  currents and 𝑉𝑖 voltages 
are known. If for any given port the product of current and voltage is positive, then power is entering that port. As a 
natural extension from 2-ports, passivity of an 𝑛-port network is a sufficient condition for the stability of the 
network when coupled to passive termination. In this section, the necessary and sufficient conditions for passivity of 
an 𝑛-port network are presented. 

3.1 Passivity Conditions for Linear 𝒏-port Networks 

 By analogy with the case of 2-port networks, an 𝑛-port network is passive if, for all excitations, the total 
energy exchange at the network’s input and output ports is non-negative. Assuming that the 2-port network has zero 
energy stored at time  𝑡 = 0, this passivity definition is expressed as 
 

𝐸(𝑡) = ∫ (𝑖1(𝜏)𝑣1(𝜏) + 𝑖2(𝜏)𝑣2(𝜏) + … + 𝑖𝑛(𝜏)𝑣𝑛(𝜏))𝑡
0 𝑑𝜏 ≥ 0    (8)  

where 𝐸(𝑡) is the total energy delivered to the 𝑛-port network.  
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Figure 4. A general 𝑛-port network. 

  
 The 𝑛 -port network passivity theorem that we propose later holds for any of the four immittance 
parameters, yet for brevity it is written only in terms of impedance parameters. Using the impedance parameters of 
the 𝑛-port network, the relation in the 𝑠-domain between voltages and currents is given by 

                                �
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⋮

𝑉𝑛(𝑠)

� = �
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…
…
⋱
…
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⋮

𝑧𝑛𝑛(𝑠)

� �

𝐼1(𝑠)
𝐼2(𝑠)
⋮

𝐼𝑛(𝑠)

�                   (9) 
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which can be compactly described as 𝑽 = 𝒁𝒁 (note that 𝒁 is the vector of current and not the identity matrix). In the 
proof of the theorem that will follow, we will need the following definitions. 

Definition: Hermitian matrix 

 A Hermitian matrix 𝑯 is a square matrix with complex elements ℎ𝑖𝑖 for which the following property holds: 
ℎ𝑖𝑖 = ℎ𝑖𝑖∗ . Consequently, a Hermitian matrix 𝑯 is equivalent to its own conjugate transpose.  

 The eigenvalues of a Hermitian matrix are always real-valued. Another important attribute of a Hermitian 
matrix 𝑯 is that it is always possible to find a square unitary matrix 𝑼 (i.e., 𝑼∗𝑼 is the identity matrix) such that 
𝑼∗𝑯𝑼  is a diagonal matrix with the eigenvalues of 𝑯 on its diagonal. Hence, it is always possible to diagonalize a 
Hermitian matrix. 

Definition: Hermitian form  

 A Hermitian form is an expression of the form ∑ℎ𝑖𝑖𝑎𝑖 𝑎𝑖∗ in which the coefficients ℎ𝑖𝑖  are the complex 
elements of a Hermitian matrix 𝑯.  

The following theorem and proof constitute the main result of this paper. 

Theorem 1:  Passivity of an 𝒏-port network 

The necessary and sufficient conditions for passivity of an 𝑛-port  network are 

A. The 𝑧-parameters have no RHP poles. 
B. Any poles of the 𝑧-parameters on the imaginary axis are simple, and the residues 𝑘𝑖𝑖 of 𝑧-parameters at 

these poles satisfy the following conditions: 
 

1.   𝑘𝑖𝑖 ≥ 0                             𝑖 = 1, 2, … ,𝑛 

2.  
𝑘11𝑘22 − 𝑘12𝑘21

𝑘11
≥ 0 

3.  
𝑘11𝑘33 − 𝑘12𝑘21

𝑘11
−

(𝑘11𝑘23 − 𝑘21𝑘13)(𝑘11𝑘32 − 𝑘31𝑘12)
𝑘11(𝑘11𝑘22 − 𝑘12𝑘21) ≥ 0 

⋮ 

⋮ 

𝑛.  𝑘𝑛𝑛 − ∑ |𝑢𝑖𝑛|2𝑘𝑖𝑖′ ≥ 0𝑛−1
𝑖=1         ∀ 𝑢𝑖𝑖   with 𝑖 ≤ 𝑗                                                                  (10)  

where 

 𝑘𝑖𝑖 denotes the residue of 𝑧𝑖𝑖  . 
 The terms 𝑢𝑖𝑖 are the elements of an upper triangular matrix 𝑼 used to diagonalize the residues 

matrix 𝑲 according to 𝑼∗𝑲′𝑼 = 𝑲 , with 𝑼∗being equal to the transpose complex conjugate of 𝑼. 
 The coefficients 𝑘𝑖𝑖 ′ are the elements of the diagonal matrix 𝑲′.  

 
C. The complex 𝑧′-parameters satisfy the following conditions for all real frequencies 𝑗 

1.   𝑧𝑖𝑖′ ≥ 0                             𝑖 = 1, 2, … ,𝑛 

2.  
𝑧11′ 𝑧22′ − 𝑧12′ 𝑧21′

𝑧11′
≥ 0 

3.  
𝑧11′ 𝑧33′ − 𝑧13′ 𝑧31′

𝑧11′
−

(𝑧11′ 𝑧23′ − 𝑧21′ 𝑧13′ )(𝑧11′ 𝑧32′ − 𝑧31′ 𝑧12′ )
𝑧11′ (𝑧11′ 𝑧22′ − 𝑧12′ 𝑧21′ ) ≥ 0 

 
⋮ 
⋮ 
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𝑛.   𝑧𝑛𝑛′ − ∑ |𝑤𝑖𝑛|2𝑧𝑖𝑖′′ ≥ 0𝑛−1

𝑖=1         ∀ 𝑤𝑖𝑖  with 𝑖 ≤ 𝑗                                                                   (11) 
where 

 𝑧𝑖𝑖′ = 1
2
�𝑧𝑖𝑖 + 𝑧𝑖𝑖∗ � are the elements of the matrix 𝒁′. 

 The terms 𝑤𝑖𝑖 are the elements of an upper triangular matrix 𝑾 used to diagonalize the matrix 
 𝒁′ according to 𝑾∗𝒁′′𝑾 = 𝒁′, with 𝑾∗equal to the transpose complex conjugate of 𝑾. 

 The elements 𝑧𝑖𝑖 ′′ are the entries of the main diagonal matrix 𝒁′′. ∎  
 
3.2 Proof of Theorem 1 

 In Section 2 it was shown that for LTI systems, passivity and positive realness of the network’s transfer 
function are equivalent. Hence, for the simple case of a 1-port network (𝑛 = 1) the energy requirement in (8) in the 
s-domain is equivalent to  

     ℜ𝑒{𝑍(𝑠)} ≥ 0   for   ℜ𝑒{𝑠} ≥ 0                                    (12) 
 

where 𝑍(𝑠) represents the input impedance of the 1-port network. 𝑍(𝑠) can be expressed as  
       𝑍(𝑠) = 𝑉(𝑐)

𝐼(𝑐)
     (13) 

where 𝑉(𝑠) is the voltage across the 1-port and 𝐼(𝑠) is the current flowing through the port. By manipulating (13) as  
 

                    𝑍(𝑠) = 𝑉(𝑐)
𝐼(𝑐)

= 𝑉(𝑐) 𝐼∗(𝑐)
𝐼(𝑐) 𝐼∗(𝑐)

= 𝑉(𝑐) 𝐼∗(𝑐)
|𝐼(𝑐)|2 

     (14) 

Equation (12) is equivalent to 
 
 ℜ𝑒{𝑉(𝑠) 𝐼∗(s)} ≥ 0   for   ℜ𝑒{𝑠} ≥ 0                                                      (15) 

 
where 𝐼∗(s) is the complex conjugate of 𝐼(𝑠). Notice that |𝐼(𝑠)|2 in the denominator of (14) is always positive. 
 

By analogy with (15), (8) is equivalent to the following condition 
 

ℜ𝑒{𝑉1(𝑠)𝐼1∗ + 𝑉2(𝑠)𝐼2 
∗ ⋯𝑉𝑛(𝑠)𝐼𝑛∗} ≥0             for   ℜ𝑒{𝑠} ≥ 0                (16) 

 
Eliminating the voltages in (16) by using (9), we find that the 𝑛-port network passivity is equivalent to 

 
ℜ𝑒{𝐹(𝑠)} ≥ 0              for   ℜ𝑒{𝑠} ≥ 0                                           (17) 

where 
ℜ𝑒{𝐹(𝑠)} = ℜ𝑒{𝑧11(𝑠)𝐼1(𝑠)𝐼1∗(𝑠) + ⋯+ 𝑧1𝑛(𝑠)𝐼𝑛(𝑠)𝐼1∗(𝑠) + 𝑧21(𝑠)𝐼1(𝑠)𝐼2∗(𝑠) + 𝑧2𝑛(𝑠)𝐼𝑛(𝑠)𝐼2∗(𝑠) + ⋯ 

             + 𝑧𝑛1(𝑠)𝐼1(𝑠)𝐼𝑛∗(𝑠) + ⋯+ 𝑧𝑛𝑛(𝑠)𝐼𝑛(𝑠)𝐼𝑛∗(𝑠)}                       (18) 
 
On the other hand, we know that the rational function 𝐹(𝑠) is positive real (i.e., (17) holds) if and only if, in addition 
to being real for real 𝑠, 𝐹(𝑠) meets the following conditions: 
 

1. 𝐹(𝑠) has no poles in the right half plane (RHP) 
2. Any poles of  𝐹(𝑠) on the imaginary axis are simple with real and non-negative residues 
3.  ℜ𝑒{𝐹(𝑗𝑗)} ≥ 0     ∀ 𝑗    

 For condition 1, we require that none of the 𝑧-parameters of the 𝑛-port  network have any poles in the RHP. 
To investigate condition 2, assume that 𝐹(𝑠)  has a simple pole at 𝑠 = 𝑗𝑗0  with a residue  𝑘0 . Let 
𝑘11, 𝑘12,⋯ , 𝑘21 ⋯𝑘𝑛𝑛  denote the residues of 𝑧11, 𝑧12,⋯ , 𝑧21 ⋯𝑧𝑛𝑛 , respectively, at this pole. Expanding 𝐹(𝑠) in a 
Laurent series about 𝑠 = 𝑗𝑗0  and keeping only the dominant terms in the immediate neighborhood of the pole, we 
get  
 



8 

 

𝑘0
𝑠 − 𝑗𝑗0

=
𝑘11(𝑗𝑗0) 𝐼1(𝑗𝑗0) 𝐼1∗(𝑗𝑗0)

𝑠 − 𝑗𝑗0
+ ⋯+

𝑘1𝑛(𝑗𝑗0) 𝐼𝑛(𝑗𝑗0) 𝐼1∗(𝑗𝑗0)
𝑠 − 𝑗𝑗0

+ ⋯ 

                                                   +
𝑘𝑛1(𝑗𝑗0) 𝐼1(𝑗𝑗0) 𝐼𝑛∗(𝑗𝑗0)

𝑠 − 𝑗𝑗0
+ ⋯+

𝑘𝑛𝑛(𝑗𝑗0) 𝐼𝑛(𝑗𝑗0) 𝐼𝑛∗(𝑗𝑗0)
𝑠 − 𝑗𝑗0

                                    (19) 

which is equivalent to 
 

𝑘0 = 𝑘11(𝑗𝑗0) 𝐼1(𝑗𝑗0) 𝐼1∗(𝑗𝑗0) + ⋯+ 𝑘1𝑛(𝑗𝑗0) 𝐼𝑛(𝑗𝑗0) 𝐼1∗(𝑗𝑗0) + ⋯ 
                                              + 𝑘𝑛1(𝑗𝑗0) 𝐼1(𝑗𝑗0) 𝐼𝑛∗(𝑗𝑗0) + ⋯+ 𝑘𝑛𝑛(𝑗𝑗0) 𝐼𝑛(𝑗𝑗0) 𝐼𝑛∗(𝑗𝑗0)                                 (20) 

 
 In (20), 𝑘0 must be a real and non-negative number to satisfy condition 2. Terms 𝑘𝑖𝑖   for  𝑖 = 1, 2, … ,𝑛 are 
real and positive since the impedances 𝑧𝑖𝑖  are positive real functions. Also, 𝐼𝑖(𝑗𝑗0) 𝐼𝑖∗(𝑗𝑗0) is real and positive. Note 
that in the pairs 𝑘𝑖𝑖(𝑗𝑗0) 𝐼𝑖(𝑗𝑗0) 𝐼𝑖∗(𝑗𝑗0) + 𝑘𝑖𝑖(𝑗𝑗0) 𝐼𝑖(𝑗𝑗0) 𝐼𝑖∗(𝑗𝑗0), since 𝐼𝑖(𝑗𝑗0) 𝐼𝑖∗(𝑗𝑗0) and 𝐼𝑖(𝑗𝑗0) 𝐼𝑖∗(𝑗𝑗0) are 
complex conjugates, 𝑘𝑖𝑖  and 𝑘𝑖𝑖 are also complex conjugates. 
 
 Since the right side of (20) is a Hermitian form (with  ℎ𝑖𝑖 =  𝑘𝑖𝑖), it can be diagonalized with respect to the 
Hermitian matrix with coefficients 𝑘𝑖𝑖. To do so, (20) can be written in matrix form as  
 

𝑘0 = [𝐼1∗ 𝐼2∗    ⋯     𝐼𝑛∗]  �

𝑘11 𝑘12    ⋯     𝑘1𝑛
𝑘21 𝑘22    ⋯     𝑘2𝑛
⋮       ⋮      ⋱         ⋮
𝑘𝑛1 𝑘𝑛2    ⋯     𝑘𝑛𝑛

�  �

𝐼1
𝐼2
⋮
𝐼𝑛

� = 𝒁∗𝑲𝒁                                                  (21) 

 
 The 𝑲-matrix is diagonalizable and we want to find a linear transformation 𝑼∗𝑲′𝑼 = 𝑲 where 𝑲′  is a 
diagonal matrix, 𝑼 is an upper triangular matrix, and 𝑼∗ (the transpose complex conjugate of 𝑼) is a lower triangular 
matrix.  

          

⎣
⎢
⎢
⎢
⎡
𝑢11∗ 0 0 ⋯ 0
𝑢12∗ 𝑢22∗ 0 ⋯ 0
𝑢13∗ 𝑢23∗ 𝑢33∗ ⋱ 0
⋮ ⋮ ⋱ ⋱ ⋮
𝑢1𝑛∗ 𝑢2𝑛∗ 𝑢3𝑛∗ ⋯ 𝑢𝑛𝑛∗ ⎦

⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎡
𝑘11′ 0 0 ⋯ 0
0 𝑘22′ 0 ⋯ 0
0 0 𝑘33′ ⋯ 0
⋮ ⋮ ⋱ ⋱ ⋮
0 0 0 ⋯ 𝑘𝑛𝑛′ ⎦

⎥
⎥
⎥
⎤

  

⎣
⎢
⎢
⎢
⎡
𝑢11 𝑢12 𝑢13 ⋯ 𝑢1𝑛
0 𝑢22 𝑢23 ⋯ 𝑢2𝑛
0 0 𝑢33 ⋱ 𝑢3𝑛
⋮ ⋮ ⋱ ⋱ ⋮
0 0 0 ⋯ 𝑢𝑛𝑛⎦

⎥
⎥
⎥
⎤
 

= 

⎣
⎢
⎢
⎢
⎡
𝑘11 𝑘12 𝑘12 ⋯ 𝑘1𝑛
𝑘21 𝑘22 𝑘23 ⋯ 𝑘2𝑛
𝑘31 𝑘32 𝑘33 ⋱ 𝑘3𝑛
⋮ ⋮ ⋱ ⋱ ⋮
𝑘𝑛1 𝑘𝑛2 𝑘𝑛3 ⋯ 𝑘𝑛𝑛⎦

⎥
⎥
⎥
⎤

                                                           (22) 

which represents the system 𝑼∗𝑲′𝑼 = 𝑲. Solving for 𝑲′ and  𝑼 will lead us to expressions for each 𝑘𝑖𝑖′  as a function 
of 𝑘𝑖𝑖 elements. The solution will follow. 

The left hand side of system (22) can be written as 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ |𝑢11|2𝑘11′ 𝑢11∗ 𝑘11′ 𝑢12 𝑢11∗ 𝑘11′ 𝑢13 ⋯ 𝑢11∗ 𝑘11′ 𝑢1𝑛

𝑢12∗ 𝑘11′ 𝑢11 |𝑢12|2𝑘11′ + |𝑢22|2𝑘22′ 𝑢12∗ 𝑘11′ 𝑢13 + 𝑢22∗ 𝑘22′ 𝑢23 ⋯ � 𝑢𝑖2∗ 𝑘𝑖𝑖′ 𝑢𝑖𝑛
𝑛

𝑖=1

𝑢13∗ 𝑘11′ 𝑢11 𝑢13∗ 𝑘11′ 𝑢12 + 𝑢23∗ 𝑘22′ 𝑢22 |𝑢13|2𝑘11′ + |𝑢23|2𝑘22′ + |𝑢33|2𝑘33′ ⋯ � 𝑢𝑖3∗ 𝑘𝑖𝑖′ 𝑢𝑖𝑛
𝑛

𝑖=1
⋮ ⋮ ⋮ ⋱ ⋮

𝑢1𝑛∗ 𝑘11′ 𝑢11 � 𝑢𝑖𝑛∗ 𝑘𝑖𝑖′ 𝑢𝑖2
𝑛

𝑖=1
� 𝑢𝑖𝑛∗ 𝑘𝑖𝑖′ 𝑢𝑖3

𝑛

𝑖=1
⋯ � |𝑢𝑖𝑛|2𝑘𝑖𝑖′

𝑛

𝑖=1 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  

(23) 
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for all 𝑢𝑖𝑖  and 𝑢𝑖𝑖∗  with 𝑖 ≤ 𝑗. In (23), we used  𝑢𝑖𝑖∗  𝑢𝑖𝑖 = �𝑢𝑖𝑖� 2. 

Equation (22) is equivalent to the following system of equations: 

|𝑢11|2𝑘11′ = 𝑘11 

𝑢11∗ 𝑢12𝑘11′ = 𝑘12 

𝑢11∗ 𝑢13𝑘11′ = 𝑘13 

𝑢12∗ 𝑢11𝑘11′ = 𝑘21 

|𝑢12|2𝑘11′ + 𝑢222 𝑘22′ = 𝑘22 

⋮ 

|𝑢13|2𝑘11′ + |𝑢23|2𝑘22′ + 𝑢332 𝑘33′ = 𝑘33 

⋮ 

� |𝑢𝑖𝑛|2𝑘𝑖𝑖′
𝑛

𝑖=1
= 𝑘𝑛𝑛          ∀ 𝑢𝑖𝑖  and 𝑢𝑖𝑖∗  with 𝑖 ≤ 𝑗                                                                                            (24) 

 
Solution to the system of equation (24) is straightforward: 
 

𝑘11′ =
𝑘11

|𝑢11|2 

𝑘22′ =
𝑘11𝑘22 − 𝑘12𝑘21

|𝑢22|2𝑘11
 

𝑘33′ =
𝑘11𝑘33 − 𝑘12𝑘21

|𝑢33|2𝑘11
−

(𝑘11𝑘23 − 𝑘21𝑘13)(𝑘11𝑘32 − 𝑘31𝑘12)
|𝑢33|2𝑘11(𝑘11𝑘22 − 𝑘12𝑘21)  

⋮ 

𝑘𝑛𝑛′ = 𝑘𝑛𝑛 − ∑ |𝑢𝑖𝑛|2𝑘𝑖𝑖′𝑛−1
𝑖=1            ∀ 𝑢𝑖𝑖   with 𝑖 ≤ 𝑗                                                                           (25) 

Now, (21) can be rewritten as 

     𝑘0 = 𝒁∗𝑲𝒁 = 𝒁∗𝑼∗𝑲′𝑼𝒁 = (𝑼𝒁)∗𝑲′(𝑼𝒁)                                    (26) 
 

implying that 𝑘0 will be non-negative and equivalently condition B in the theorem holds iff  𝑘𝑖𝑖′  in (25) are all non-
negative. The expressions on the right hand side of (25) are all divided by coefficients of the form |𝑢𝑖𝑖|2. Those 
coefficients are clearly positive and, hence, conditions  𝑘𝑖𝑖′ ≥ 0  become 
 

1.   𝑘𝑖𝑖 ≥ 0                             𝑖 = 1, 2, … ,𝑛 

2.  
𝑘11𝑘22 − 𝑘12𝑘21

𝑘11
≥ 0 

3.  
𝑘11𝑘33 − 𝑘12𝑘21

𝑘11
−

(𝑘11𝑘23 − 𝑘21𝑘13)(𝑘11𝑘32 − 𝑘31𝑘12)
𝑘11(𝑘11𝑘22 − 𝑘12𝑘21) ≥ 0 

⋮ 

⋮ 

𝑛.  𝑘𝑛𝑛 − ∑ |𝑢𝑖𝑛|2𝑘𝑖𝑖′ ≥ 0𝑛−1
𝑖=1         ∀ 𝑢𝑖𝑖   with 𝑖 ≤ 𝑗                                                                                     (27) 

Therefore, it is established that condition 2 holds iff (10) holds. 
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Regarding condition 3, the real part of  𝐹(𝑗𝑗) can be obtained from 

ℜ𝑒{𝐹(𝑗𝑗)} = 1
2

[𝐹(𝑗𝑗) + 𝐹∗(𝑗𝑗)]                              (28) 

where 𝐹(𝑗𝑗) is given as  

𝐹(𝑗𝑗) = 𝑧11(𝑗𝑗)𝐼1(𝑗𝑗)𝐼1∗(𝑗𝑗) + ⋯+ 𝑧1𝑛(𝑗𝑗)𝐼𝑛(𝑗𝑗)𝐼1∗(𝑗𝑗) 
                              + 𝑧21(𝑗𝑗)𝐼1(𝑗𝑗)𝐼2∗(𝑗𝑗) + ⋯+  𝑧2𝑛(𝑗𝑗)𝐼𝑛(𝑗𝑗)𝐼2∗(𝑗𝑗) 

     +⋯+ 

⋮ 

+ 𝑧𝑛1(𝑗𝑗)𝐼1(𝑗𝑗)𝐼𝑛∗(𝑗𝑗) + ⋯+ 𝑧𝑛𝑛(𝑗𝑗)𝐼𝑛(𝑠)𝐼𝑛∗(𝑗𝑗)                                            (29) 

and 𝐹∗(𝑗𝑗) is given as 

𝐹∗(𝑗𝑗) = 𝑧11∗ (𝑗𝑗)𝐼1∗(𝑗𝑗)𝐼1(𝑗𝑗) + ⋯+ 𝑧1𝑛∗ (𝑗𝑗)𝐼𝑛∗(𝑗𝑗)𝐼1(𝑗𝑗) 
                                +𝑧21∗ (𝑗𝑗)𝐼1∗(𝑗𝑗)𝐼2(𝑗𝑗) + ⋯+ 𝑧2𝑛∗ (𝑗𝑗)𝐼𝑛∗(𝑗𝑗)𝐼2(𝑗𝑗) 

        +⋯+ 

⋮  

                                 + 𝑧𝑛1∗ (𝑗𝑗)𝐼1∗(𝑗𝑗)𝐼𝑛(𝑗𝑗) + ⋯+ 𝑧𝑛𝑛∗ (𝑗𝑗)𝐼𝑛∗(𝑗𝑗)𝐼𝑛(𝑗𝑗)                                      (30) 

Substituting (29) and (30) in (28) we have 

           ℜ𝑒{𝐹(𝑗𝑗)} = 1
2

[𝑧11(𝑗𝑗)𝐼1(𝑗𝑗)𝐼1∗(𝑗𝑗) + ⋯+ 𝑧1𝑛(𝑗𝑗)𝐼𝑛(𝑗𝑗)𝐼1∗(𝑗𝑗) 

    + 𝑧21(𝑗𝑗)𝐼1(𝑗𝑗)𝐼2∗(𝑗𝑗) + ⋯+  𝑧2𝑛(𝑗𝑗)𝐼𝑛(𝑗𝑗)𝐼2∗(𝑗𝑗) 

+⋯+ 

⋮ 

+ 𝑧𝑛1(𝑗𝑗)𝐼1(𝑗𝑗)𝐼𝑛∗(𝑗𝑗) + ⋯+ 𝑧𝑛𝑛(𝑗𝑗)𝐼𝑛(𝑠)𝐼𝑛∗(𝑗𝑗) 

 + 𝑧11∗ (𝑗𝑗)𝐼1∗(𝑗𝑗)𝐼1(𝑗𝑗) + ⋯+ 𝑧1𝑛∗ (𝑗𝑗)𝐼𝑛∗(𝑗𝑗)𝐼1(𝑗𝑗) 

 + 𝑧21∗ (𝑗𝑗)𝐼1∗(𝑗𝑗)𝐼2(𝑗𝑗) + ⋯+ 𝑧2𝑛∗ (𝑗𝑗)𝐼𝑛∗(𝑗𝑗)𝐼2(𝑗𝑗) 

  +⋯+ 

⋮ 

                                       + 𝑧𝑛1∗ (𝑗𝑗)𝐼1∗(𝑗𝑗)𝐼𝑛(𝑗𝑗) + ⋯+ 𝑧𝑛𝑛∗ (𝑗𝑗)𝐼𝑛∗(𝑗𝑗)𝐼𝑛(𝑗𝑗)]                                          (31) 

 

By using  𝑧𝑖𝑖′ = 1
2
�𝑧𝑖𝑖 + 𝑧𝑖𝑖∗ �,  ℜ𝑒{𝐹(𝑗𝑗)} can be written as 

            ℜ𝑒{𝐹(𝑗𝑗)} = 𝑧11′ (𝑗𝑗)𝐼1(𝑗𝑗)𝐼1∗(𝑗𝑗) + ⋯+ 𝑧1𝑛′ (𝑗𝑗)𝐼𝑛(𝑗𝑗)𝐼1∗(𝑗𝑗) 

+ 𝑧21′ (𝑗𝑗)𝐼1(𝑗𝑗)𝐼2∗(𝑗𝑗) + ⋯+ 𝑧2𝑛′ (𝑗𝑗)𝐼𝑛(𝑗𝑗)𝐼2∗(𝑗𝑗) 

+⋯+ 

⋮ 

                𝑧𝑛1′ (𝑗𝑗)𝐼1(𝑗𝑗)𝐼𝑛∗(𝑗𝑗) + ⋯+ 𝑧𝑛𝑛′ (𝑗𝑗)𝐼𝑛(𝑠)𝐼𝑛∗(𝑗𝑗)                (32) 

 

or equivalently as 
 
      ℜ𝑒{𝐹(𝑗𝑗)} = 𝒁∗ 𝒁′ 𝒁                                   (33) 
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where       

𝒁′ = �

𝑧11′ (𝑗𝑗) 𝑧12′ (𝑗𝑗) ⋯ 𝑧1𝑛′ (𝑗𝑗)
𝑧21′ (𝑗𝑗) 𝑧22′ (𝑗𝑗) ⋯ 𝑧2𝑛′ (𝑗𝑗)

⋮ ⋮ ⋱ ⋮
𝑧𝑛1′ (𝑗𝑗) 𝑧𝑛2′ (𝑗𝑗) ⋯ 𝑧𝑛𝑛′ (𝑗𝑗)

� 

= 1
2
�

𝑧11(𝑗𝑗) + 𝑧11∗ (𝑗𝑗) 𝑧12(𝑗𝑗) + 𝑧21∗ (𝑗𝑗) ⋯ 𝑧1𝑛(𝑗𝑗) + 𝑧𝑛1∗ (𝑗𝑗)
𝑧21(𝑗𝑗) + 𝑧12∗ (𝑗𝑗) 𝑧22(𝑗𝑗) + 𝑧22∗ (𝑗𝑗) ⋯ 𝑧2𝑛(𝑗𝑗) + 𝑧𝑛2∗ (𝑗𝑗)

⋮ ⋮ ⋱ ⋮
𝑧𝑛1(𝑗𝑗) + 𝑧1𝑛∗ (𝑗𝑗) 𝑧𝑛2(𝑗𝑗) + 𝑧2𝑛∗ (𝑗𝑗) ⋯ 𝑧𝑛𝑛(𝑗𝑗) + 𝑧𝑛𝑛∗ (𝑗𝑗)

�      (34)       

 In general, the 𝑧-parameters have complex values, i.e., 𝑧𝑖𝑖 = 𝑟𝑖𝑖 + 𝑗𝐻𝑖𝑖  where 𝑟𝑖𝑖  is the real part and 𝐻𝑖𝑖  is 
the imaginary part of 𝑧𝑖𝑖  . 

  (32) is a Hermitian form. Using a procedure similar to (21)-(26), which was for the residue matrix, the 
matrix 𝒁′ can be expressed as 𝒁′ = 𝑾∗ 𝒁′′ 𝑾  where 𝒁′′ is a diagonal matrix and  𝑾 is an upper triangular matrix. 
By reducing the 𝑾 matrix in the reduced row-echelon form (𝑤𝑖𝑖 = 1,∀ 𝑖 = 𝑗) the calculations of conditions C of 
Theorem 1 can be greatly simplified.  
 

⎣
⎢
⎢
⎢
⎡

1 0 0 ⋯ 0
𝑤12∗ 1 0 ⋯ 0
𝑤13∗ 𝑤23∗ 1 ⋱ 0
⋮ ⋮ ⋱ ⋱ ⋮

𝑤1𝑛∗ 𝑤2𝑛∗ 𝑤3𝑛∗ ⋯ 1⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝑧11′′ 0 0 ⋯ 0
0 𝑧22′′ 0 ⋯ 0
0 0 𝑧33′′ ⋱ 0
⋮ ⋮ ⋱ ⋱ ⋮
0 0 0 ⋯ 𝑧𝑛𝑛′′ ⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
1 𝑤12 𝑤13 ⋯ 𝑤1𝑛
0 1 𝑤23 ⋯ 𝑤2𝑛
0 0 1 ⋱ 𝑤3𝑛
⋮ ⋮ ⋱ ⋱ ⋮
0 0 0 ⋯ 1 ⎦

⎥
⎥
⎥
⎤
 

                                                                 =   

⎣
⎢
⎢
⎢
⎡
𝑧11′ 𝑧12′ 𝑧13′ ⋯ 𝑧1𝑛′
𝑧21′ 𝑧22′ 𝑧23′ ⋯ 𝑧2𝑛′
𝑧31′ 𝑧32′ 𝑧33′ ⋱ 𝑧3𝑛′
⋮ ⋮ ⋱ ⋱ ⋮
𝑧𝑛1′ 𝑧𝑛2′ 𝑧𝑛3′ ⋯ 𝑧𝑛𝑛′ ⎦

⎥
⎥
⎥
⎤

                                                                (35) 

The solution to (35) is 

𝑧11′′ = 𝑧11′                               

𝑧22′′ =
𝑧11′ 𝑧22′ − 𝑧12′ 𝑧21′

𝑧11′
 

𝑧33′′ =  
𝑧11′ 𝑧33′ − 𝑧13′ 𝑧31′

𝑧11′
−

(𝑧11′ 𝑧23′ − 𝑧21′ 𝑧13′ )(𝑧11′ 𝑧32′ − 𝑧31′ 𝑧12′ )
𝑧11′ (𝑧11′ 𝑧22′ − 𝑧12′ 𝑧21′ )  

⋮ 

⋮ 

 

𝑧𝑛𝑛′′ = 𝑧𝑛𝑛′ − ∑ |𝑤𝑖𝑛|2𝑧𝑖𝑖′′𝑛−1
𝑖=1        𝑤𝑖𝑖  with 𝑖 ≤ 𝑗                                               (36) 

Now, (33) can be rewritten as 
 

ℜ𝑒{𝐹(𝑗𝑗)} = 𝒁∗ 𝒁′ 𝒁 = 𝒁∗ 𝑾∗ 𝒁′′ 𝑾𝒁 = (𝑾𝒁)∗𝒁′′(𝑾𝒁)                                (37) 
 

Therefore, ℜ𝑒{𝐹(𝑗𝑗)} ≥ 0,∀ 𝑗 (i.e., condition 3) holds iff the z''-parameters in (36) are non-negative (this also 
implies  𝑧22′ ≥ 0, 𝑧33′ ≥ 0,⋯ , 𝑧𝑛𝑛′ ≥ 0). Therefore, condition 3 holds iff (11) holds.  
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In summary, conditions A, B and C (Theorem 1) are necessary and sufficient for (17) or equivalently (16), which 
defines the 𝑛-port  network passivity. This concludes the proof. ∎ 

3.3 Case Study: Passivity Conditions of a 𝟐-port  Network 

 In this section, the special case of passivity of 2-port networks is considered. We will proceed in the same 
way as we did when we arrived at the passivity Theorem 1. The result will be compared with the well-known 
Raisbeck’ Criterion. The network has been modeled using the impedance parameters as shown in (38). 

�𝑉1𝑉2
� = �

𝑧11       𝑧12
𝑧21       𝑧22� �

𝐼1
𝐼2
�                                     (38) 

 
 Assuming that the 𝑧-parameters have no RHP poles, we move into the analysis of the residues for which 
Equation (22) has to be solved for the case of  𝑛 = 2. The system is represented below: 
 

                     � 1 0
𝑢12∗ 1� �

𝑘11′ 0
0 𝑘22′

� �1 𝑢12
0 1 � = �𝑘11 𝑘12

𝑘21 𝑘22
�                   (39) 

It is easy to see that solving (39) results in 
 

𝑢12 = 𝑘12/𝑘11   and 𝑢12∗ = 𝑘21/𝑘11 
 

and 
𝑘11′ = 𝑘11 ≥ 0                                                                             

𝑘22′ =
𝑘11𝑘22 − 𝑘12𝑘21 

𝑘11
≥ 0                                                                                                                                      (40) 

Therefore, it is straightforward that condition B in Theorem 1 is same as condition 2 in Raisbeck’s criterion. Also, in 
the following we show that solving (35) for 𝑛 = 2 results in condition 3 in the Raisbeck’s criterion. Writing 𝑧𝑖𝑖  as 
 𝑟𝑖𝑖 + 𝑗𝐻𝑖𝑖  where 𝑟𝑖𝑖  is the real part and 𝐻𝑖𝑖  is the imaginary part of  𝑧𝑖𝑖 , we have  

 

�𝑧11
′ (𝑗𝑗) 𝑧12′ (𝑗𝑗)
𝑧21′ (𝑗𝑗) 𝑧22′ (𝑗𝑗)� = �

𝑟11
1
2

(𝑟12 + 𝑟21) + 𝑖
2

(𝐻12 − 𝐻21)
1
2

(𝑟12 + 𝑟21) − 𝑖
2

(𝐻12 − 𝐻21) 𝑟22
�                   (41) 

Using (35) for the case of 𝑛 = 2 the following system is formed: 
 

 � 1 0
𝑤12∗ 1� �

𝑧11′′ 0
0 𝑧22′′

� �1 𝑤12
0 1 � = �𝑧11

′ 𝑧12′
𝑧21′ 𝑧22′

�                   (42) 

Solving (42) results in: 

𝑤12 = 𝑧12′ 𝑧11′⁄     and 𝑤12∗ = 𝑧21′ 𝑧11′⁄ . 
and 

𝑧11′′ = 𝑧11′ ≥ 0         

𝑧22′′ =
z11′ z22′ − z12′ z21′  

z11′
≥ 0                                                                                                                                  (43) 

By using 𝑧𝑖𝑖′ = 1
2
�𝑧𝑖𝑖 + 𝑧𝑖𝑖∗ �, the second condition in (43) reduces to: 

By using 𝑧𝑖𝑖′ = 1
2
�𝑧𝑖𝑖 + 𝑧𝑖𝑖∗ �, the second condition in (43) reduces to: 

4𝑟11𝑟22 − (𝑟12 + 𝑟21)2 − (𝐻12 − 𝐻21)2 ≥ 0                      (44) 
 
with  𝑟𝑖𝑖= ℜ𝑒(𝑧𝑖𝑖) and 𝐻𝑖𝑖 = ℐ𝑚(𝑧𝑖𝑖) with 𝑖, 𝑗 = 1, 2     
Inequality (44) is the same as the last of condition 3 in Raisbeck’s criterion with  𝑟𝑖𝑖= ℜ𝑒(𝑝𝑖𝑖)  and  𝐻𝑖𝑖 = ℐ𝑚(𝑝𝑖𝑖). 
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 We conclude that for 2-ports, by using similar procedure as the one used for finding conditions of passivity 
of 𝑛-port  networks, the final result is the same as Raisbeck’s criterion. In the future, one does not have to go 
through all these calculations; on the contrary, we have presented Theorem 1 which allows for direct investigation of 
passivity of 𝑛-port  networks where 𝑛 can be any positive integer number equal or larger than 2.   

4.  Application of Passivity to a Dual-User Haptic Teleoperation System  

 In this section, the criterion proposed in Section 3 will be used in order to find passivity conditions of a 
trilateral haptic teleoperation system. The 3-port network is represented by its impedance matrix. The network is a 
dual-user haptic teleoperation system, in which two master robots for two operators share the control of one slave 
robot to perform a task in a remote environment. This configuration has many real-world applications such as 
training a trainee to do a task under haptic guidance from a mentor. In Section 4.1, the impedance matrix of the dual-
user haptic teleoperation system is found by using the four-channel multilateral shared control architecture proposed 
in [10]. Section 4.2 is devoted to finding passivity conditions of such a system. Sections 4.3 and 4.4 are concerned 
with simulations and experiments (respectively) of the dual-user haptic teleoperation system. 

4.1  A Dual-User Shared Haptic Control Teleoperation System 

 In a dual-user haptic teleoperation system, the goal is that two users coupled to two master robots (one user 
per one master robot) collaboratively control a slave robot to perform a task in a remote environment. The desired 
position and force for each robot are weighted sums of positions and forces of the other two robots, with the weights 
being determined by a parameter 𝛼 whose value ranges from 0 to 1 [10] (see Figure 5). For instance, if 𝛼 = 1, the 
slave robot will be fully controlled by User 1 and User 2 only receives large force feedback urging him/her to follow 
User 1’s motions. The same parameter 𝛼 can be given a value of 0, in which case the slave robot is fully controlled 
by User 2, allowing User 1 to assess the skill level of User 2 by feeling the reflected forces. If  0 <  𝛼 < 1, then the 
two users collaborate and each contributes to the position command while receiving some force feedback. This 
provides “hand-over-hand” training using haptic assistance. 

 
Figure 5.   A dual-user haptic teleoperation system.  

 
 Consider the four-channel multilateral shared control architecture given in [10] and depicted in Figure 6. 
Under the assumption that each user is interfaced with his/her master robot and the slave is in contact with the 
environment, the dynamics of the two masters and slave can be model in frequency domain as 
 

 𝑍𝑐1𝑉ℎ1 = 𝐹ℎ1 + 𝐹𝑐𝑐1 
 𝑍𝑐2𝑉ℎ2 = 𝐹ℎ2 + 𝐹𝑐𝑐2 

𝑍𝑐𝑉𝑒 = 𝐹𝑒 + 𝐹𝑐𝑐                                                         (45) 

In (45),   𝑍𝑐1 = 𝑀𝑐1𝑠 ,  𝑍𝑐2 = 𝑀𝑐2𝑠  and 𝑍𝑐 = 𝑀𝑐𝑠  are the models of the two masters and the single slave, 
respectively. Also, 𝐹ℎ1, 𝐹ℎ2 and 𝐹𝑒 are the contact forces between each master and its human operator, and between 
the slave and its environment, respectively. Lastly, 𝑉ℎ1 , 𝑉ℎ2 , and 𝑉𝑒  are the velocities of the two users and the 
environment respectively. In Figure 6, 𝐹ℎ1∗, 𝐹ℎ2∗, and 𝐹𝑒∗ are the two operator’s and environment’s exogenous input 
forces, which are independent of the teleoperation system behavior [1]. 

The controller outputs in the 4-channel architecture are 

     𝐹𝑐𝑐1 = −𝐶𝑐1𝑉ℎ1 − 𝐶4𝑐1𝑉ℎ1𝑑 + 𝐶6𝑐1𝐹ℎ1 − 𝐶2𝑐1𝐹ℎ1𝑑 
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     𝐹𝑐𝑐2 = −𝐶𝑐2𝑉ℎ2 − 𝐶4𝑐2𝑉ℎ2𝑑 + 𝐶6𝑐2𝐹ℎ2 − 𝐶2𝑐2𝐹ℎ2𝑑 
𝐹𝑐𝑐 = −𝐶𝑐𝑉𝑒 + 𝐶1𝑉𝑒𝑑 + 𝐶5𝐹𝑒 + 𝐶3𝐹𝑒𝑑                                                                    (46) 

 
for 𝑖 = 1, 2. 𝐶𝑐𝑖  and 𝐶𝑐  are local position controllers, and 𝐶6𝑐𝑖  and  𝐶5  are local force controllers  for the two 
masters and the slave, respectively. Also, the controllers 𝐶1,   𝐶4𝑖  are position compensators similar to 𝐶𝑐 and 𝐶𝑐𝑖, 
respectively. 𝐶2𝑐𝑖  and 𝐶3 are feedforward force terms for the two masters and the slave, respectively. Lastly, 𝑉ℎ𝑖𝑑 
and 𝑉𝑒𝑑  are the desired positions, and 𝐹ℎ𝑖𝑑  and 𝐹𝑒𝑑  are the desired forces for the two masters and the slave, 
respectively.  
 

USER 2
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+
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Figure 6.  A dual-user haptic teleoperation system under four-channel control. 

 
 In this 3-robot shared control architecture, the desired velocity and force of each robot is a function of the 
velocities and forces of the other two robots, as the following set of equations state: 

𝑉ℎ1𝑑 = 𝛼𝑉𝑒 + (1 − 𝛼) 𝑉ℎ2 
𝑉ℎ2𝑑 = (1 − 𝛼)𝑉𝑒 + 𝛼 𝑉ℎ1 
𝑉𝑒𝑑 = 𝛼𝑉ℎ1 + (1 − 𝛼) 𝑉ℎ2 
𝐹ℎ1𝑑 = 𝛼𝐹𝑒 + (1 − 𝛼)𝐹ℎ2 
𝐹ℎ2𝑑 = (1 − 𝛼)𝐹𝑒 + 𝛼 𝐹ℎ1 

      𝐹𝑒𝑑 = 𝛼𝐹ℎ1 + (1 − 𝛼) 𝐹ℎ2                                                                                        (47) 
 

where 𝛼 𝜖 [0, 1] is the weight parameter specifying the relative authority that each operator has over the slave and 
the corresponding share of force feedback he/she receives. 

 Position-error based (PEB) control is a special case of dual-user shared control architecture, which does not 
need any force sensor measurements. The PEB controller works by minimizing the difference between the weighted 
master and slave positions, thus reflecting a force related to this difference to each user once the slave makes contact 
with an object. In the PEB control architecture the following choices are made: 𝐶3 = 𝐶5 = 𝐶2𝑐1 = 𝐶2𝑐2 = 𝐶6𝑐1 =
𝐶6𝑐2 = 0.  Also, for good position tracking the common choice is   𝐶1 = 𝐶𝑐 ,  𝐶4𝑐1 = −𝐶𝑐1 and 𝐶4𝑐2 = −𝐶𝑐2.  
Here, we have 

  𝐶𝑐1 =
𝐾𝑝𝑐1 + 𝐾𝑣𝑐1𝑠

𝑠
 

  𝐶𝑐2 =
𝐾𝑝𝑐2 + 𝐾𝑣𝑐2𝑠

𝑠
 

                                𝐶𝑐 =
𝐾𝑝𝑐 + 𝐾𝑣𝑐𝑠

𝑠
                                                                                     (48) 

 
In (48), 𝐾𝑝𝑐1,𝐾𝑝𝑐2,𝐾𝑝𝑐 represent master 1, master 2, and slave position controllers’ gains. Similarly, 𝐾𝑣𝑐1, 𝐾𝑣𝑐2, 
𝐾𝑣𝑐 represent master 1, master 2, and slave velocity controllers’ gains. 
 
By using (45), (46), (47), and (48), the impedance matrix of the closed-loop multilateral system in 
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�
𝐹ℎ1
𝐹ℎ2
𝐹𝑒
� = �

𝑧11 𝑧12 𝑧13
𝑧21 𝑧22 𝑧23
𝑧31 𝑧32 𝑧33

�  �
𝑉ℎ1
𝑉ℎ1
𝑉𝑒
�                                                            (49) 

is found as 
 

𝑧11 = �𝑀𝑐1𝑠2 + 𝐾𝑣𝑐1𝑠 + 𝐾𝑝𝑐1� 𝑠⁄   
𝑧12 = �−𝐾𝑣𝑐1𝑠 + 𝐾𝑝𝑐1𝛼 + 𝐾𝑣𝑐1𝑠𝛼 − 𝐾𝑝𝑐1� 𝑠⁄   
𝑧13 = �−𝐾𝑣𝑐1𝑠𝛼 − 𝐾𝑝𝑐1𝛼� 𝑠⁄   

                𝑧21 = �−𝐾𝑣𝑐2𝑠𝛼 − 𝐾𝑝𝑐2𝛼� 𝑠⁄  
𝑧22 = �𝑀𝑐2𝑠2 + 𝐾𝑣𝑐2𝑠 + 𝐾𝑝𝑐2� 𝑠⁄                                       

                𝑧23 = �−𝐾𝑣𝑐2𝑠 + 𝐾𝑝𝑐2𝛼 + 𝐾𝑣𝑐2𝑠𝛼 − 𝐾𝑝𝑐2� 𝑠⁄  
𝑧31 = −�𝐾𝑣𝑐𝑠𝛼 + 𝐾𝑝𝑐𝛼� 𝑠⁄   
𝑧32 = �−𝐾𝑣𝑐𝑠 + 𝐾𝑝𝑐𝛼 + 𝐾𝑣𝑐𝑠𝛼 − 𝐾𝑝𝑐� 𝑠⁄   
𝑧33 = �𝑀𝑐𝑠2 + 𝐾𝑣𝑐𝑠 + 𝐾𝑝𝑐� 𝑠⁄                                                                                (50) 

 
4.2  Applying Passivity Criterion to the Dual-User Shared Haptic Control Teleoperation System 

 The passivity criterion of 𝑛-port networks formulated in Chapter 3 reduces to the following conditions for 
the case of a 3-port network: 

A. The 𝑧-parameters have no RHP poles. 

B. Any poles of the 𝑧-parameters on the imaginary axis are simple, and the residues 𝑘𝑖𝑖 of the 𝑧-parameters at 
these poles satisfy the following conditions: 

 
1.   𝑘𝑖𝑖 ≥ 0                             𝑖 = 1, 2, 3 

2.  
𝑘11𝑘22 − 𝑘12𝑘21

𝑘11
≥ 0 

3.  
𝑘11𝑘33 − 𝑘12𝑘21

𝑘11
−

(𝑘11𝑘23 − 𝑘21𝑘13)(𝑘11𝑘32 − 𝑘31𝑘12)
𝑘11(𝑘11𝑘22 − 𝑘12𝑘21) ≥ 0                                                                   (51) 

C. The complex 𝑧′-parameters satisfy the following conditions for all real frequencies 𝑗 
1.   𝑧𝑖𝑖′ ≥ 0                             𝑖 = 1, 2, 3 

2.  
𝑧11′ 𝑧22′ − 𝑧12′ 𝑧21′

𝑧11′
≥ 0 

3.  
𝑧11′ 𝑧33′ − 𝑧13′ 𝑧31′

𝑧11′
−

(𝑧11′ 𝑧23′ − 𝑧21′ 𝑧13′ )(𝑧11′ 𝑧32′ − 𝑧31′ 𝑧12′ )
𝑧11′ (𝑧11′ 𝑧22′ − 𝑧12′ 𝑧21′ ) ≥ 0                                                                        (52) 

 
where 𝑧𝑖𝑖′ = 1

2
�𝑧𝑖𝑖 + 𝑧𝑖𝑖∗ �. 

 
 Analysis of (50) shows that all the elements of the 3-port network impedance matrix have only a simple 
pole on the imaginary axis, thus fulfilling condition A. Analysis of the residues (condition B) leads to the following 
conditions: 
 

𝑘11 = 𝐾𝑝𝑐1 ≥ 0                                                                                               (53) 
𝑘22 = 𝐾𝑝𝑐2 ≥ 0                                                                                            (54)   
𝑘33 = 𝐾𝑝𝑐 ≥ 0                                                                                        (55) 
   
𝑘11𝑘22 − 𝑘12𝑘21

𝑘11
= (1 − 𝛼 + 𝛼2)𝐾𝑝𝑐1𝐾𝑝𝑐2 ≥ 0                                                                                                 (56) 

𝑘11𝑘33 − 𝑘12𝑘21
𝑘11

−
(𝑘11𝑘23 − 𝑘21𝑘13)(𝑘11𝑘32 − 𝑘31𝑘12)

𝑘11(𝑘11𝑘22 − 𝑘12𝑘21) = 0                                                                         (57) 
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The inequality (56) always holds as (1 − 𝛼 + 𝛼2) > 0 for all 𝛼 𝜖 [0, 1]. 
 
 Analysis of the impedance matrix according to Condition C leads to the following conditions on the 
controllers’ gains: 
 

𝐾𝑣𝑐1 ≥ 0                                                                                                                   (58) 
𝐾𝑣𝑐2 ≥ 0                                                                                                                   (59) 
𝐾𝑣𝑐 ≥ 0                                                                                                          (60) 
4𝐾𝑣𝑐1𝐾𝑣𝑐2 − (𝐾𝑣𝑐1 − 𝛼𝐾𝑣𝑐1 + 𝛼𝐾𝑣𝑐2)2  

               −
�𝐾𝑝𝑐1 − 𝛼𝐾𝑝𝑐1 + 𝛼𝐾𝑝𝑐2�

𝑗2

2

≥ 0                                                                                                                            (61) 
 
Condition (61) will be fulfilled for all real frequencies 𝑗 if the gains of the PD controllers satisfy: 
 

𝐾𝑝𝑐1
𝐾𝑝𝑐2

=
𝛼

1 − 𝛼
                                                                                               (62) 

                                                    4𝐾𝑣𝑐1𝐾𝑣𝑐2 − (𝐾𝑣𝑐1 − 𝛼𝐾𝑣𝑐1 + 𝛼𝐾𝑣𝑐2)2 ≥ 0            (63)  

 

Using (62) in the last condition of C (condition 3 of (52)), we get the following inequality: 
 
−1
𝑗2 �

�𝐾𝑝𝑐1 − 𝐾𝑝𝑐�
2[𝐾𝑣𝑐1(1 − 𝛼)2(2 − 𝛼) + 𝐾𝑣𝑐2𝛼2(1 + 𝛼)]

2𝛼
+

(1 − 2𝛼)2𝐾𝑣𝑐1
𝛼2

 

+
�𝐾𝑝𝑐12 − 𝐾𝑝𝑐2�(1 − 2𝛼)(1 − 𝛼)[𝛼2𝐾𝑣𝑐2 + (𝛼 + 2)𝐾𝑣𝑐1]

2𝛼
� 

+{(1 + 𝛼)(2 − 𝛼)𝐾𝑣𝑐1𝐾𝑣𝑐2𝐾𝑣𝑐 − 𝛼2(2 − 𝛼)𝐾𝑣𝑐2𝐾𝑣𝑐(𝐾𝑣𝑐2 + 𝐾𝑣𝑐) 
−(1 − 𝛼 + 𝛼2)𝐾𝑣𝑐1𝐾𝑣𝑐2[(1 − 𝛼)𝐾𝑣𝑐1 + 𝛼𝐾𝑣𝑐2] 
−(1 − 𝛼)2(1 + 𝛼)𝐾𝑣𝑐1𝐾𝑣𝑐( 𝐾𝑣𝑐1 + 𝐾𝑣𝑐)} ≥ 0                                                      (64) 
 
 Equation (64) will be fulfilled for all real frequencies 𝑗 if the controller’s gains and parameter 𝛼 satisfy the 
following conditions: 
 

𝐾𝑝𝑐1 = 𝐾𝑝𝑐2 = 𝐾𝑝𝑐 
𝐾𝑣𝑐1 = 𝐾𝑣𝑐2 = 𝐾𝑣𝑐 

   𝛼 = 1
2�                                             (65) 

The reader may well think that  𝛼  = 0.5 is a limitation. However, this is not caused by our passivity 
criterion; rather, it is a limitation due to using the four-channel multilateral shared control laws for authority sharing 
between the two operators in conjunction with position-position laws for teleoperation control. The four-channel 
multilateral shared control laws for authority sharing, which are given by the six equations (47) in our paper, were 
proposed in [10]. Choosing a different authority sharing law or a different teleoperation control law can eliminate 
the limitation on 𝛼 when using our passivity criterion. 

 
 As a conclusion, the dual-user haptic teleoperation system is passive if the set of equations (65) holds. 
Notice that (65) is a sufficient, frequency-independent, and compact condition for passivity of the PEB dual-user 
haptic teleoperation system described in Section 4.2. 

4.3  Simulation Study: The Dual-User Shared Haptic Control Teleoperation System 

 In this section, the passivity conditions for the PEB dual-user haptic teleoperation system found in Section 
4.2 will be verified via MATLAB/Simulink simulations. The simulation assumes no time delay in the 
communication channels between the three robots. According to Equation (8) and assuming that the energy stored in 
the system for 𝑡 < 0 is zero, the 3-port network is passive if and only if 



17 

 

                 𝐸(𝑡) = ∫ (𝑖1(𝜏)𝑣1(𝜏) + 𝑖2(𝜏)𝑣2(𝜏) + 𝑖3(𝜏)𝑣3(𝜏))𝑡
0 𝑑𝜏 ≥ 0            (66) 

 
A passivity observer is incorporated in the simulations in order to evaluate (66). In the simulations, all ports of the 3-
port network are connected to the passive terminations with a transfer function  1

1+𝑐
 . An input 𝐹ℎ1∗  in the form of a 

sine wave is applied by the Master 1’s operator. The three robots are modeled by masses 𝑀𝑐1 = 0.7, 𝑀𝑐2 = 0.9, 
and 𝑀𝑐 = 0.5. 

According to the previous section, the dual-user haptic teleoperation system is passive if the set of 
equations (65) holds. Table 1 shows two sets of controllers’ gains used for these simulations, one set is in agreement 
with conditions given in (65), thus representing a passive trilateral system. The other set violates (65), representing a 
non-passive system. For all simulations  𝛼 = 1

2�  . 

 

Table 1 Controllers’ gains for (A) passive and (B) non-passive PEB trilateral system. 
System Master 1’s 

controller 
Master 2’s 
controller 

Slave’s controller 

(A) Passive 𝐾𝑝𝑐1 = 5 
  𝐾𝑣𝑐1 = 10 

𝐾𝑝𝑐2 = 5 
  𝐾𝑣𝑐2 = 10 

𝐾𝑝𝑐 = 5 
  𝐾𝑣𝑐 = 10 

(B) Non-Passive 𝐾𝑝𝑐1 = 5 
𝐾𝑣𝑐1 =10 

     𝐾𝑝𝑐2 = 100 
 𝐾𝑣𝑐2 =10 

𝐾𝑝𝑐 = 5 
 𝐾𝑣𝑐 =10 

 

Figure 7 shows that choosing the controllers’ gains according to the conditions found in previous section results in a 
passive system (to which positive energy is delivered at all times). Figure 8 clearly shows that a violation of such 
conditions may result in a non-passive system (the energy delivered to the network is not always positive). 

 

 
Figure 7. Passivity observer: Total energy delivered to a passive trilateral system. 
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Figure 8. Passivity observer: Total energy delivered to a non-passive trilateral system. 

  

4.4 Experiment Study: The Dual-User Shared Haptic Control Teleoperation System 

 For experiments with a dual-user shared haptic control teleoperation system, we use two Phantom Premium 
1.5A robots as the master #1 and master #2, and a Rehab robot (Quanser, Inc. Markham, ON, Canada) as the slave. 
Out of the actuated joints of each robot, the first joint, which rotates about the vertical, is considered in the 
experiments while others joints are locked using high-gain position controllers. The Phantom Premium robots for 
master #1 and master #2 are equipped with JR3 6-DOF force/torque sensors (JR3, Inc., Woodland, CA, USA), and 
Rehab robot is equipped with ATI force/torque sensor (ATI Industrial Automation, Apex, NC, USA) for measuring 
the external contact forces. 

 

SlaveMaster #2
Master #1

Spring

JR3 force 
sensor

User 2User 1 ATI force 
sensor

 
Figure 9. Experimental setup where the master #1 and the master #2 are controlled by human users and the slave is 
connected via passive spring to a stiff wall. 
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Table 2. Controllers’ gains of the PEB trilateral system for experiments. 
System Master 1’s 

controller 
Master 2’s 
controller 

Slave’s controller 

Passive 𝐾𝑝𝑐1 = 6 
  𝐾𝑣𝑐1 = 8 

𝐾𝑝𝑐2 = 6 
  𝐾𝑣𝑐2 = 8 

𝐾𝑝𝑐 = 6 
  𝐾𝑣𝑐 = 8 

 

 The experimental setup is shown in Figure 9, the master #1 and master #2 are controlled by human users, 
the slave is connected via a pair of passive springs to a stiff wall. The controller’s gains shown in Table 2 satisfy set 
of equations (65). The dissipated energy (66) profiles 𝐸(𝑡) are plotted in Figure 10.  As it can be seen, if the 
controllers gains are selected according to (65), e.g., as listed in Table 2, then the passivity observer output  𝐸(𝑡) is 
non-negative at all times. Figure 11 depicts the average positions of the two masters versus the slave position. These 
profiles of positions further corroborate the passivity (stability) of the system. These experimental results agree with 
the passive case (65).        

 

 
Figure 10. Experimental results for the dual-user teleoperation system. 

         Passivity observer’s output is used for passivity analysis. 
 

 
Figure 11. Experiment results for the dual-user teleoperation system. 

          The desired and actual positions for the passive system are shown. 
  
5.  Conclusions and Future Directions   

 This paper presents a novel method for stability analysis of 𝑛-port  networks with passive terminations. The 
proposed method can be used for analysis and design of multilateral systems involving haptic information sharing 
between a number of users. The major contributions of the paper are summarized below: 

 A new passivity theorem for investigation of passivity of 𝑛-port networks is proposed. The theorem gives 
the necessary and sufficient conditions for passivity of the 𝑛 -port network based on the immittance 
parameters of the network. The use of immittance parameters is preferable compared to more complex 
techniques found in the literature, which are based on scattering parameters and reflection coefficients. 
Moreover, the literature has tried to investigate the passivity of 3 -port networks by assuming one 
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known/fixed termination, thus reducing the 3-port into a 2-port network, this is a cumbersome process that 
involves an infinite number of applications of Raisbeck’s criterion, also, a degree of freedom is lost when 
the third port is coupled to a known termination. In contrast, the closed-form conditions given in this paper 
make it possible to investigate the passivity of 𝑛-port networks (thus not necessarily limited to 𝑛 = 3) 
directly and without resorting to using any known/fixed terminations, assuring a complete general solution 
to the problem. As for future work, the passivity theorem condition given in this paper has been developed 
in the frame of 1 degree of freedom (DOF) systems. A step forward would be its extension to 2- and 3-DOF 
systems.  
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