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Abstract— In many subcutaneous needle insertion proce-
dures, measuring needle deflection is necessary in order to
accurately guide the needle towards inner body targets. Typ-
ically, needle deflection measurement are obtained from 2D
ultrasound images, which can only provide the needle tip posi-
tion, however, having knowledge about the needle tip heading
(orientation) is very valuable in predicting the needle’s future
path for planning and needle steering reasons. Due to the small
diameter of the needles and the low resolution of ultrasound
imaging, the direct measurement of the needle tip orientation
is not a trivial task. This paper represents a model-based non
linear observer for partial estimating the needle tip orientation
during needle insertion procedures using image-based position
measurements. The proposed method employs a 3D kinematic
unicycle model expressed in generalized coordinates. Applying
nonlinear transformations on system states, the linearized
transformed system equations are utilized in the observer
design procedure. However, due to the singularities imposed
by these transformations, certain assumptions are made for
the convergence proof of the observer. The proposed observer
is tested in simulations and experiments. In experiments, the
observer is fed by the needle tip position measurements, which
are obtained from real-time ultrasound images.

I. INTRODUCTION

Steerable needles have been widely used in procedures
such as brachytherapy, biopsy and neurosurgery. For the
aim of treatment, diagnosis or sample removal, long flexible
needles are inserted into the human body.

Accurate control of the needle tip trajectory towards a
target is key to the success of these procedures, however, due
to the flexibility of the needles, asymmetry at the needle tip
and tissue deformations, the process of steering the needle
on a desired path turns out to be a challenging problem.
Using needle/tissue interaction models and feedback mea-
surements, robots can be employed to improve the accuracy
of such procedures. Controlling such systems by closed-loop
feedback schemes requires information such as needle shape,
needle/tissue interaction forces and needle tip position, ve-
locity, and orientation. Using different measurements, there
have been various planning and control methods proposed
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in the literature. In some image-base methods [1] [2], the
position of the needle is used as the feedback signal for
motion planning in a 3D environment with obstacles. [3] has
integrated online curvature estimation in 3D path planners
[4]. Other papers have considered different position mea-
surement methods such as electromagnetic tracking [5] [6]
and fiber Bragg grating sensors for measuring the strain and
reconstructing the needle shape [7]. In [8], needle deflection
is estimated using the needle’s model and forces measured at
the needle base during insertion. However, inserting measure-
ment equipment inside the human body demands equipment
miniaturization and suffers from sterilization concerns. In
general, it is more practical to use measurement modalities
that are located outside the body (non-invasive) such as force
measurements at the needle base and imaging methods such
as ultrasound and CT. Image processing can provide us with
information about needle shape and needle tip position in
3D space. Among different imaging modalities, ultrasound
probes that contain array-type transducer are very common.
Their 2D images only provide the Cartesian position of the
needle tip and the needle tip orientation is not visible in such
2D ultrasound images.

Since knowledge about both needle tip position and ori-
entation is key to planning and control, state observers,
which are based on both mathematical models and sen-
sor measurements, can be employed to estimate the non-
measurable variables. [9] has used a high-gain observer to
estimate the needle velocities based on noisy position data
obtained from encoder measurements. [10] has designed a
linear observer-based feedback control system, and used the
3D kinematic unicycle model [11] in generalized coordinates
for observer design. [12] combines the same observer with
other controllers. In this paper, we propose a nonlinear
observer that uses Cartesian position measurement data to
estimate the orientation of the needle tip as the needle is
inserted into tissue. With certain assumptions and constraints
on system states and inputs, the zero convergence of the
proposed observer error is shown using Lyapunov-based
methods. Its performance is evaluated by both simulations
and experiments. Using the proposed observer the average
absolute estimation error is obtained as 0.02 rad.

The paper is organized as follows. Section II presents a
review of the unicycle equations used to model the needle
deflection in tissue in generalized coordinates. Section III
presents the observer structure, the assumptions and the
convergence proof of the observer are represented in Section
IV. In Section V, the proposed observer is validated using
simulations and the experimental results are presented in
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Needle

Projection on the x-z plane

Fig. 1. The needle shown in 3D space. The frame {A} is the fixed frame
and the moving frame {B} is attached to the needle tip.

Section VI.

II. BACKGROUND

As a beveled-tip needle is inserted into tissue, due to the
bevel at its tip, the needle bends and moves on a curved path
in 3D space. The orientation of the bevel is a key element
in determining the traversed trajectory. Axial rotation of the
needle at its base can be considered as an input to steer the
needle to the desired position. Assuming the needle rotation
velocity as the input, the kinematics of a bevel tip needle
inserted into tissue can be expressed using unicycle equation
in 3D space [5] which can be represented using Z −Y −X
fixed angles as generalized coordinates [10] as:

ẋ = v sinβ, (1a)
ẏ = −v cosβ sinα, (1b)
ż = v cosα cosβ, (1c)
α̇ = kv cos γ secβ, (1d)

β̇ = kv sin γ, (1e)
γ̇ = −kv cos γ tanβ + u (1f)

The generalized coordinates q =
[
x, y, z, α, β, γ

]
is well defined on

U = {q ∈ R6 : α, γ ∈ R, β ∈ (−π/2, π/2)} (2)

In (1) ˙(×) denotes the time derivative and
[
x y z

]T
represents the position of the moving frame {B} attached
to the needle tip with respect to the fixed frame {A} as
shown in Fig. 1. α, β and γ represent the yaw, pitch and
roll angles (orientation) of the needle, respectively. In these
equations k, v and u denote the needle path curvature,
insertion velocity and axial rotation velocity, respectively.
It should be noted that, using ultrasound images, only x, y
and z can be measured and the other three angles, which
determine the needle tip orientation, are not measurable. In
the next section a nonlinear observer is proposed by which
the roll and pitch angles can be estimated.

III. OBSERVER

A. Observer equations

Consider the following transformation:

s =

 x
sinβ

− cosβ sin γ

 (3)

from which the pitch and roll angles can be found as

β = arcsin(s2) (4a)
γ = atan2(−s3/ cosβ, cos γ) (4b)

where atan2(a, b) is the function that calculates arctan( ba )
taking the sign of both arguments into account. It is easy to
see that cos γ can be found as

cos γ = ζ

√
1− (s2

2 + s2
3)

cosβ
(5)

where ζ = sign(cos γ) depends on the bevel orientation.
Moreover, from (2) we have cosβ > 0. Using (3), the
transformed system equations can be written as

ṡ =

 vsinβ
−kv cosβ sin γ

kv sinβ − u cosβ cos γ

 =

 vs2

−kvs3

kvs2 − ζu
√

1− (s2
2 + s2

3)


y =

[
1 0 0

]
s = x

(6)

in which the deflection of needle tip in the x direction has
been considered as the output and the needle rotation velocity
u acts as the input. The system equations can be re-written
in the form

ṡ = As+ φ(u, s) (7)

with

A =

0 v 0
0 0 −vk
0 0 0

 (8a)

φ(u, s) =

 0
0

kvs2 − ζu
√

1− (s2
2 + s2

3)

 (8b)

Now consider the following observer [13]

˙̂s = Aŝ+ φ(u, ŝ) + ∆θL(ŷ − y) (9)

where L =
[
L1 L2 L3

]T
is the observer gain, which

should be selected such that A+ LC is Hurwitz, and

∆θ = diag{θ, θ2, θ3} (10)

with θ > 1.

IV. CONVERGENCE OF THE OBSERVER

A. Convergence

In this section, it is shown that under certain assumptions
and by proper choice of the observer gain, the observation
error will tend to zero. To show the convergence of the pro-
posed observer, define the observation error as e = ∆θ(ŝ−s).
Using the system equation (7) and observer equation (9), we
have

ė = θ(A+ LC)e+ ∆−1
θ δφ(u, s) (11)
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with δφ1(u, s) = δφ2(u, s) = 0 and

δφ3(u, s) = kv(ŝ2 − s2)

+ ζu(
√

1− (ŝ2
2 + ŝ2

3)−
√

1− (s2
2 + s2

3))
(12)

If the nonlinear term δφ(u, s) is a Lipschitz function, i.e.
∃c > 0 such that ‖φ(u, s) − φ(u, s′)‖ ≤ c‖s − s′‖, where
‖.‖ denotes the euclidean norm of Rn, for θ > 1, equation
(9) forms an exponential observer [13]. However, since
the function

√
1− (s2

2 + s2
3) does not satisfy the Lipschitz

continuity condition as (s2
2 + s2

3) → 1, using the fact that
|si| ≤ 1 (i = 2, 3), assume√

1− (s2
2 + s2

3) ≥ ε (13)

due to which (12) can be upper bounded as

|δφ(3)| ≤ ū

2ε
((ŝ2

2 − s2
2) + (ŝ2

3 − s2
3)) + kv|ŝ2 − s2| (14)

where ū > 0 is the upper bound for the input signal u. (14)
can be simplified to

|δφ| ≤ (kv +
ū

ε
)‖e‖ (15)

Now consider the Lyapunov function

V (e) =
1

2
eTPe (16)

with P being a positive definite matrix. Since L is chosen
such that A + LC is Hurwitz, then P can be found as the
response of the algebraic Lyapunov equation (A+LC)TP+
P (A+ LC) = −I . We have

V̇ = −θ‖e‖2 + 2eTPδφ(s, u) (17)

From (15) the above equality can be written as

V̇ ≤ (−θ + 2‖P‖( ū
ε

+ kv))‖e‖2 (18)

Choosing θ > 2‖P‖( ūε + kv) leads to V̇ < 0.

B. Assumptions and Constraints
In the previous section, the convergence of the proposed

observer was shown for the region obtained from (13).
However if

√
1− (s2

2 + s2
3) → 0, which is equivalent to

| sinβ| → 1 or | sin γ| → 1, there is no guarantee for
convergence of the estimation error at these points as the
Lipschitz continuity condition is not satisfied. However if
the observer is combined with path planning methods and/or
controllers, it is possible to use the proposed observer. The
kinematic equations (1) are well defined on U in (2). If path
planners are employed to steer the needle on a desired path,
β = ±π2 can be avoided in planning level. On the other
hand, since γ is directly related to the input u, it may have
any value. Moreover, to have cos γ > 0 or cos γ < 0, which
affects the needle path in the y-direction, the angle γ should
pass the critical point cos γ = 0, meaning that it is not
possible to limit the angle γ to [−π/2, π/2]. Nevertheless,
in practice, if the input u is designed such that γ = nπ/2
is only a transient via point and the goal is to keep γ at
angles other that nπ/2, then the proposed observer can be
used to estimate the angles β and γ and the convergence of
the observation error to zero is guaranteed.

Needle/Tissue

Ultrasound,
Image Processing

Unicycle
 Equations

TransformationObserver Equations
Estimation Error

For Simulations

For Experiments

Compare

System Observer Comparison

Fig. 2. Block diagram of the observation system for (a): Simulation, (b):
experiments

C. Implementation Considerations

According to (9), in order to avoid any numerical problems
in implementing the observer equations, the term 1−(ŝ2

2+ŝ2
3)

should always be positive, so in any case that this condition
is not satisfied, this term is substituted by zero. Moreover,
from (4) for finding γ, ζ should be known which changes
as the angle γ passes the points nπ/2 which is equivalent
to
√

1− (ŝ2
2 + ŝ2

3) = 0. Since it is assumed that the critical
point γ = nπ/2 is a transient via point, by having the initial
value of γ, the condition

√
1− (ŝ2

2 + ŝ2
3) < ε can be used

to determine ζ.

V. SIMULATIONS

In this section, simulation results are presented to evaluate
the performance of the proposed observer. As shown in
Fig. 2 The system and observer are simulated using the
kinematic unicycle equations (1) and observer equations (9),
respectively. The simulations are performed for the insertion
velocity v = 2 mm/sec and the needle path curvature
k = 0.0019 mm−1 for system and k = 0.002 mm−1

for the observer to simulate 5% modeling error for this
parameter. The inputs to the observer are the input signal u
(needle rotation velocity) and the needle tip position in the
x direction and the outputs are transformed system states ŝ,
from which the angles β and γ can be calculated using (4).
In simulations, the value of γ is controlled to have different
values other than nπ/2. The observer gain is selected to be
L = [−100 −1.05 1.37] to make the matrix A+LC Hurwitz
θ = 6π × 104. The initial values for x and β is considered
to be zero and for γ is 3◦. The results are shown in Fig. 4.
The results show a maximum estimation error of 10−14 mm
and 10−7 rad for x and β and a maximum estimation error
of 0.05 rad for γ. The results show the convergence of the
proposed observer for the considered region.

VI. EXPERIMENTS

This section shows the results from implementing the
proposed observer in real-time for estimating the angles β
and γ as the needle is inserted into phantom tissue. The
experimental setup used for conducting the experiments is
shown in Fig. 3 which is a 2-DOF prismatic-revolute robotic
system to insert and axially rotate the needle. The base of
the needle (attached to a DC motor to axially rotate the
needle) is instrumented with a force sensor not used in these
experiments. The position of this needle rotation motor is
controlled using a PID controller. The needle base’s angle is
measured by an encoders whose time derivative is considered
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Fig. 3. Experimental setup used to perform needle insertion experiments.
The setup provides translational and rotational motions of needle. An
ultrasound machine (SonixTouch, Ultrasonix, BC, Canada) is used to track
the needle tip position.

as the input signal u in (1). This motor is assembled on a
translational stage actuated by another DC motor. In these
experiments, the needle is a standard 18-gauge brachytherapy
needle (Eckert & Ziegler BEBIG Inc., Oxford, CT, USA)
made of stainless steel with a bevel angle of approximately
20◦. The phantom tissue used in these experiments is a
15% gelatin mixture made by mixing gelatin powder (Sigma-
Aldrich Co., ON, Canada) and 70◦C water. As the needle
is inserted, an ultrasound probe tracks the needle tip and
acquires 2D transverse images of the needle tip. Using these
transverse images, the needle tip position is estimated using
the random sample consensus (RANSAC) technique [14].
In the experiments, the control algorithm proposed in [15]
is employed in which the main goal is compensating for
the needle deflection in y direction by 180◦ axial rotations
at appropriate depths. This method only requires the needle
deflection in the y direction. The needle path curvature is
selected as 0.002 mm−1 which is obtained by fitting a circle
to the deflection data obtained by inserting the needle into
tissue without any axial rotations. The insertion velocity in
the experiments is 2 mm/sec and the maximum insertion
depth is 100 mm. The experiments are performed 6 times.
The observer gain L is identical to the values used in the
simulations and θ = 106.

The evaluation is performed by comparing the estimated
variables with the real values obtained from experiments.
As stated before, only the position of the needle tip can be
measured from 2D ultrasound images and the angles β and γ
can not be measured in real-time. However, the angle β can
be considered as the angle between the Z axis of the moving
frame {B} with respect to the z axis of the fixed frame {A}
in x− z plane, which can be found by off-line curve fitting
on position data. However, there is no way for measuring the
angle γ from 2D ultrasound images. The results are shown

TABLE I
SUMMARY OF THE EXPERIMENTAL RESULTS

Average Absolute
Estimation Error MRSE Standard Deviationσ

ex[mm] 2e-14 5e-13 5e-13
eβ [rad] 0.02 0.04 0.037

in Fig. 5. This figure represents the estimation error for
position in the x direction and the the angle β for 6 trials. In
this figure, to compensate for noisy position measurements,
polynomials are fitted to the position data and the real value
β is calculated at each insertion depth. The observer response
is also smoothed by fitting polynomials to the estimated value
β̂, as shown in Fig. 5 . The results are summarized in Table
I, which shows the performance of the observer in estimating
the position in the x direction and the angle β representing
average errors of 2× 10−14 mm and 0.02 rad, respectively.
Due to impossibility of measuring the real value of the angle
γ using the current equipment, this value is not shown in the
figures.

VII. CONCLUSION

In this paper, we have presented an observer for partially
estimating the needle tip orientation during insertion. In
this method, nonlinear transformations are applied on a
3D unicycle model of the needle, based on the observer
equations are formed. The inputs to the observer are the
input signal u (needle rotation velocity) and the position
measurements in x direction which is obtained from 2D
ultrasound images. Due to the singularities imposed by the
nonlinear transformations, the convergence of the observer
is shown under some assumptions and constraints. The
evaluation of the observer is performed using simulations
and experiments. The simulations are performed using the
3D unicycle equations as the real system while the value of
the needle path curvature parameter used in system equations
is different from the value used in the observer equations.
The experiments are performed by inserting the needle into
phantom tissue using an experimental setup. The position x
measurements are obtained from 2D transverse ultrasound
images. From this, the real value of the needle tip pitch
angle β is calculated using curve fitting techniques. Then,
the estimated variables x̂ and β̂ are compared to these real
values.

The proposed observer in this paper is able to estimate
the needle tip orientation in terms of β and γ and the
yaw angle α can not be estimated using this structure.
Moreover, in this formulation, the critical points limit the
observer to some extent. Further developments and different
observer structures are required to overcome these issues,
which remains as our future goals.
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