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Abstract— This paper presents the concept of non-integer
analytical dynamic modeling of soft tissue deformation. The
main idea of the paper is to introduce a variable order equation
for the single-dimensional viscoelastic stress-strain relation. A
set of experimental data and an identification method are
used to validate such idea. Afterwards, we extend the stress-
strain relationship to the multi-dimensional case. Combining
this equation with the equations of motion for a soft continuum
body leads to the set of force-displacement equations. The
model is rearranged to form a standard state space dynamical
system. Then, these equations are analyzed and compared with
a previously developed integer-order model.

I. INTRODUCTION

Soft tissue deformation modeling mainly refers to deriving
a model to describe the force – displacement relation of
the tissue. Tissue models are used in surgery simulators [1],
needle – tissue interaction in needle insertion procedure [2],
brachytherapy [3], etc. A precise and accurate model of tissue
facilitates the insertion procedure and results in less surgical
injuries. It is reported that neglecting this important issue in
brachytherapy leads to inaccurate seed implantation [4].

Among all possible approaches, here we focus on deriving
an analytical model, i.e., we aim to derive a set of Partial Dif-
ferential Equations (PDE) describing the tissue deformation.
There are several approaches to find an analytical model for
soft tissue. The tissue models can be categorized in two main
classes of static and dynamic models [5], [6]. The former
studies the tissue in relaxation mode and the time is neglected
[7], [8]. This view point is not sufficient for needle insertion
applications where the tissue deformation is being changed
during the procedure [9], [10]. Hence, the tissue should be
considered as a dynamic environment in such cases. The
tissue is considered to be a viscoelastic environment [11]. A
viscoelastic material is something “between” the elastic and
viscous ones. The most prevalent approach for modeling such
behavior is to use the Kelvin-Voigt model [12], [13] where
the viscoelastic material is considered to be a combination
of a Hookean spring and a Newtonian damper, [12]. The
stress-strain relationship is the main characteristic used to
categorize different materials. The stress-strain relation of
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a Hookean spring is given by σ = kε where stress and
strain vectors are indicated by σ and ε, respectively, and
k is the elasticity tensor. For the Newtonian dampers, the
stress-strain relation is considered to be σ = bε̇ where,
ε̇ = dε

dt and b is the viscosity tensor. The main idea of the
Kelvin-Voigt model is to consider a viscoelastic material as
a parallel-series combination of an ideal Hookean spring and
a Newtonian damper [12], i.e.,

σ = kε+ bε̇ (1)

There can be a different interpretation for the word “be-
tween”. In this point of view, the stress-strain relationship of
the elastic and viscous materials can be respectively written
as σ = kD0

t ε and σ = bD1
t ε, where, Dn

t is defined as the nth

time derivation operator (the 0th derivative of a function is
considered to be itself.) Now, if a material behaves between
these, its stress-strain relation can be considered as:

σ = ηDq
t ε, 0 < q < 1 (2)

Equation (2) is the main idea of many recently published
papers, based on the fractional (or, to be more precise, non-
integer) order modeling of viscoelasticity, some examples
of which can be found in [14], [15]. In (2), Dq

t (the non-
integer order derivation operator) can be defined in various
ways with the most common ones being the definition
in the sense of Caputo and Riemann-Liouville [16]. The
following equations show the definitions of left-sided non-
integer variable order derivation of order 0 < q(t) < 1 in the
sense of Caputo and Riemann-Liouville, respectively, [16]:

CD
q(t)
t f =

1

Γ(1− q(t))

∫ t

0

(t− τ)−q(t)
d

dτ
f(τ)dτ (3)

RLD
q(t)
t f =

1

Γ(1− q(t))
d

dt

∫ t

0

(t− τ)−q(t)f(τ)dτ (4)

where Γ(.) i the extension of the factorial function to non-
integer arguments, Γ(w) =

∫∞
0
rw−1e−rdr.

In (2), when q → 0, the behavior tends to elasticity and as
q → 1, it tends to viscosity. As shown in (3) and 4, the order
can vary in time. Variable order dynamics are widely used in
modeling various phenomena. Such operators are interpreted
as the human’s ability to forget and remember [17], also
used to develop mechanical laws in [18]. In [19], the theory
of viscoelasticity and the abilities of variable order calculus
build a framework for modeling viscoelastic behavior. In
[20], variable order differential equations are used to describe
anomalous diffusion modeling. The effect of tension on
cable deformation is modeled in [21] using variable order
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dynamics. In-line with such papers, this manuscript aims
to propose a novel variable order model for describing soft
tissue difformation and validate it using experimental data.
In this regard, the rest of the paper is organized as follows:

In Section II, the definitions of stress and strain and
the equations of motion for a continuum environment are
introduced. The experimental study will be presented in
Section III. In Section IV, the linear non-integer model of
viscoelasticity in two dimensions is introduced and the model
of the soft tissue displacement is derived. Then, the model
is discretized and rearranged to the state-space form, the
proposed model is compared to the model introduced in
Section II, and its advantages are explained. Finally, Section
IV concludes the paper.

II. DYNAMICS OF A SOFT CONTINUUM BODY

This section studies the effect of the force applied on a soft
continuum body on its formation as a function of time and
space. Due to its non-rigidity, each single point of the body
should be considered, thus, the body is assumed to consist of
a combination of infinitesimal parts. Hence, the mechanical
behavior of the material is modeled as a continuous mass
rather than an aggregation of discrete particles. Modeling
an object as a continuum assumes that the substance of
the object completely fills the space it occupies. Modeling
objects in this way makes it possible to utilize mathematical
tools (e.g., PDEs) to describe them.

For analyzing the kinematics, mechanics and dynamics of
a continuum material, some quantities such as stress and
strain have to be defined. In fact, these quantities help us
relate the external applied force to the deflection of each
point of the body. Moreover, physical laws such as Newton’s
second law should be rewritten for such materials. Our aim
in this section is to derive such equations.

A. Strain and Stress

Strain is the normalized measure of deformation represent-
ing the displacement between particles in a body relative to
a reference length. More precisely, in a single-dimensional
environment, it can be defined as ε = lim∆l→0

∆l
l0

[22],
where, ε denotes the strain, l0 is the initial length and ∆l is
the displacement. In the three-dimensional space, the strain
can be defined for each direction. In a continuum body,
εxx, εyy, εzz are the strain along x, y, z axes, respectively.
The definitions of these quantities are [22]

εxx =
∂ux
∂x

, εyy =
∂uy
∂y

, εzz =
∂uz
∂z

(5)

where ux, uy, uz are the displacements in x, y, z axes, re-
spectively. In addition, the engineering shear strains can be
defined according to the following equations [22]:

εxy =
∂ux
∂y

+
∂uy
∂x

εyz =
∂uy
∂z

+
∂uz
∂y

εxz =
∂ux
∂z

+
∂uz
∂x

(6)

Stress is defined as the average force per unit area that
some particle of a body exerts on an adjacent particle, across
an imaginary surface that separates them [22]. The stress
tensor can be represented in any chosen Cartesian coordinate
system by a 3 × 3 matrix of real numbers. Depending on
whether the coordinates are numbered (x1, x2, x3) or named
(x, y, z), the matrix may be written as [22]:σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 or

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz


For each particle of the body, each entry of the stress tensor
is defined as Fi =

∑3
j=1 σijAj [22], where Fi is the

force applied on the particle along the ith axis [22]. The
relation between stress and strain in a material is a basis of
categorizing material to the classes such as elastic, viscous,
viscoelastic, hyper-elastic, etc. [22].

B. Two-Dimensional Motion of a Continuum Body

The motion of a continuum body mainly refers to the
displacement of each particle caused by an external force or
an initial displacement of a sub-region of it. The equations
of motion are derived as follows, using the Newton’s second
law [22]: {

∂σxx

∂x +
∂σyx

∂y + Fx = ρ∂
2ux

∂t2

∂σxy

∂x +
∂σyy

∂y + Fy = ρ
∂2uy

∂t2

(7)

In the above equations, Fx and Fy are the components of
the external force in x and y axes, respectively and ρ is the
density, considered here to be a constant parameter. It should
be noted that the arguments of the functions are omitted for
brevity. In fact,

σxx = σxx(x, y, t) , σyx = σyx(x, y, t)

σxy = σxy(x, y, t) , σyy = σyy(x, y, t)

ux = ux(x, y, t) , uy = uy(x, y, t)

Fx = Fx(x, y, t) , Fy = Fy(x, y, t)

(8)

In addition to the equations of motion and the definition
of strain, the characteristic property of the material (i.e.,
the stress-strain relation) is needed for deriving the force-
displacement equations. Fig. 1 shows such relations as a
block diagram. The input of the main model is the applied
force and the output is the displacement. Furthermore, there
are some internal blocks, the first with force and stress as
inputs and displacement as output, the second for relating
strain and displacement, and the third one for relating stress
and strain. Blocks 1 and 2 are fixed and determined based
on the physical laws. Different modeling approaches affect,
the various ways in which block 2 is chosen. Our novelty
in this paper is to use a variable order relation for Block 2.
To provide a comparative study, the traditional Kelvin-Voigt
model is used in the next subsection for the stress-strain
relation. Using this relation, a set of PDEs will be derived
as a model for soft tissue. Considering this model makes
it possible to compare and evaluate the suggested model
proposed in this paper.
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Fig. 1. Force-Displacement relation block diagram

C. Force-Displacement Equations Using a Simple Kelvin-
Voigt Model

The generalization of (1) in two-dimensional environment
leads to the following equation for stress-strain relation:

σxx = (λ+ 2µ)εxx + λεyy + (b+ 2µ)ε̇xx + bε̇yy

σyx = σxy = µεxy + bε̇xy

σyy = (λ+ 2µ)εyy + λεxx + (b+ 2µ)ε̇yy + bε̇xx
(9)

here, λ, b, µ are three independent parameters related to the
structure of the body. Substituting (9) into (7) and using the
definition of strain given in (5,6), it is straightforward to
derive the force-displacement equations as

(λ+ 2µ)
∂2ux
∂x2

+ λ
∂2uy
∂x∂y

+ (b+ 2µ)
∂2u̇x
∂x2

+ b
∂2u̇y
∂x∂y

+ µ(
∂2ux
∂y2

+
∂2uy
∂y∂x

) + b(
∂2u̇x
∂y2

+
∂2u̇y
∂y∂x

) + Fx = ρüx

(λ+ 2µ)
∂2uy
∂y2

+ λ
∂2ux
∂y∂x

+ (b+ 2µ)
∂2u̇y
∂y2

+ b
∂2u̇x
∂y∂x

+ µ(
∂2uy
∂x2

+
∂2ux
∂x∂y

) + b(
∂2u̇y
∂x2

+
∂2u̇x
∂x∂y

) + Fy = ρüy

(10)
The existence of the derivatives of u̇x and u̇y with respect
to displacement makes the model complicated. It is not easy
to express (10) as a dynamical system in time domain. As
will be shown, using non-integer order modeling leads to
a simpler more flexible model. The next section presents
a variable order stress-strain model verified using a single-
dimensional set of data.

III. SINGLE-DIMENSIONAL VARIABLE ORDER
MODELING AND IDENTIFICATION OF SOFT

TISUUE DIFORMATION

Before deriving the soft tissue model using variable order
model, we should make sure that such modeling concept
agrees with real data. To this aim consider (2), a single-
dimensional stress strain relationship with two parameters,
the constant coefficient η and the variable order q(t). The
material chosen for the experimental study is a symmetrical
slice of real beef tissue. It is indented in one dimension
using a needle insertion robot shown in Fig. 2. The setup
consists of a robotic system with two degrees of freedom
(DOF) for translational and rotational motions of the needle.

Tool
Encoder

Fig. 2. Data gathering apparatus
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Fig. 3. Top: Strain profiles in different experiments. Bottom: Stress in
Different Experiments

Forces and torques are measured at the needle base using a
6-DOF force sensor. After we replace the needle with a blunt
indenter, the setup can be used to apply controlled force or
displacement to the tissue for indentation tests. We have used
the encoder data to record the displacement and calculate the
strain. Since the tissue is symmetric, we will just consider
the indentation direction to get one dimensional stress-strain
data. The data gathering process is done through obtaining
force and displacement data from the force sensor and the
encoder and converting them to stress and strain, respectively,
using the one dimensional equations σ = F

a , ε = d
l , where

F is force, d is displacement, a is area, l is tissue length,
σ is stress and ε is strain. We have used controlled tissue
displacement with various similar profiles. The results are
shown in Fig. 3.

The identification process is converted to a minimization
process by defining the cost function as the integrated
squared error between measured and estimated stress. To
deal with the variable order q, we consider it as a piecewise
constant function, i.e., the interval [0 T ] is split into
N subintervals [ti−1 ti), i = 1, ...N, t0 = 0, tN = T
and q = q0 +

∑N
i=1 qi

(
Θ(t − ti) − Θ(t − ti−1)

)
where

Θ(.) is the Heaviside step function. Minimization process
is done using genetic algorithm with minimizing parameters
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Fig. 4. Measured and estimated stress in four different experiment

η and qis. Fig. 4 depicts the results. As shown, in all
experiments, the proposed model and identification approach
are able to identify the tissue deformation with an acceptable
level of precision. The presented approach is enough to
validate the idea of using a variable order. Hence, choosing
a variable order model for describing soft tissue stress-strain
relationship also makes sense from the experimental point
of view. Accordingly, since variable order modeling worked
in the single-dimensional case, in the next section we will
extend it to the two-dimensional case and derive the force-
displacement equations.

IV. NON-INTEGER ANALYTICAL MODEL OF SOFT
TISSUE DEFORMATION

A. Deriving the Dynamic Model

The non-integer order dynamic of soft tissue is the result of
considering a non-integer stress-strain relation for the tissue.
Assuming the symmetry, the generalization of (2) to the two-
dimensional case is obtained in a manner similar to (9):

σxx = α RLDq
t εxx + β RLDq

t εyy (11)

σyx = σxy = γRLDq
tεxy (12)

σyy = β RLDq
t εxx + α RLDq

tεyy (13)

To the best knowledge of the authors, this set of equations
are first introduced and used in this paper as an extension to
one-dimensional non-integer order viscoelastic relation. As
will be shown, this extension is well defined in the sense
that it leads to a set of PDEs which is consistent with the
former model of soft tissue in the relaxation mode. It should
be noted thatt here are four independent parameters in the set
of equations (11)-(13) which makes the model parametrically
richer than (9).

Using the equations of motion and a procedure similar to
the one used in part C of Section II, one may easily derive
the force - displacement equations as{
RLDq

t

(
α∂

2ux

∂x2 + β
∂2uy

∂x∂y + γ
∂2uy

∂y∂x + γ ∂
2ux

∂y2

)
+ Fx = ρüx

RLDq
t

(
α
∂2uy

∂y2 + β ∂
2ux

∂y∂x + γ ∂
2ux

∂x∂y + γ
∂2uy

∂x2

)
+ Fy = ρüy

(14)
It can be seen that the spatial derivatives of u̇x and u̇y are
eliminated and the model is simplified as compared with
(10). Furthermore, it can be shown that the model can be
presented in a more suitable way for simulation, estimation
and control goals. The following theorems help to simplify
the above equations to a standard state space format.

Theorem 1: When w is nonsingular, 0I
p
tw|t=0 = 0,∀0 <

p < 1; where 0I
p
tw is the non-integer order integral of w of

order p, defined as [23]

0I
p
tw =

1

Γ(p)

∫ t

0

(t− τ)p−1w(τ)dτ, 0 < p < 1 (15)

Proof: Define H(t) = 1
Γ(p)

∫ t
0
(t − τ)p−1w(τ)dτ . It

is worth mentioning that merely concluding H(0) = 0 due
to the fact that the lower and upper bounds of the integral
are equal is not true since the argument is not valid for
singular integrands [24]. In fact, H(0) = limε→0H(ε) =

1
Γ(p)

∫ ε
0

(ε− τ)p−1w(τ)dτ

However, the change of variable τ = t − r
1
p leads to a

nonsingular integrand:

τ = 0⇒ r = tp, τ = t⇒ r = 0, dτ = −1

p
r

1−p
p

H(t) =
1

Γ(p)

∫ t

0

(t− τ)p−1w(τ)dτ

=
1

pΓ(p)

∫ tp

0

w(t− r
1
p )dr

Now, since w is nonsingular, it can be concluded that H(0) =
0 and this proves the Theorem.

Theorem 2: If w is nonsingular, the equation RLDq
tw +

F = ρü, 0 < q < 1 can be rewritten in the following state-
space format:

u̇ =
1

ρ
z +

1

ρ
g , u(0) = 0

ġ = F , g(0) = ρu̇(0)
RLDp

t z = w , z(0) = 0

(16)

where p = 1− q and z and g are the internal states.
Proof: According to definition (3), we have

d

dt
0I

1−q
t w + F = ρ

d

dt
u̇ (17)

Now, integrating both sides of (17) leads to

0I
1−q
t w − 0I

1−q
t w|t=0 +

∫ t

0

Fdτ = ρu̇− ρu̇(0) (18)

According to Theorem 3.1, 0I
p
tw|t=0 = 0. Now, define

g =

∫ t

0

Fdτ + ρu̇(0)⇒ g(0) = ρu̇(0)

z = 0I
1−q
t w ⇒ z(0) = 0
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The main property of the non-integer order operators is
that

[RL
Dp
t 0I

p
t

]
w = w [23]. Hence, RLD1−q

t z = w, and

u̇ =
1

ρ
z +

1

ρ
g, u(0) = 0

ġ = F, g(0) = ρu̇(0)
RLDp

t z = w, z(0) = 0
and the Theorem is proved.

According to Theorem 3.2, (14) can be reformed as the
following form which is more suitable for many applications,
as it can be discretized using finite difference approximation.

u̇x(x, y, t) =
1

ρ
zx(x, y, t) +

1

ρ
gx(x, y, t)

, ux(x, y, 0) = ux0

ġx(x, y, t) = Fx(x, y, t)

, gx(x, y, 0) = ρu̇x(x, y, 0)

RLDp
t zx = α

∂2ux
∂x2

+ β
∂2uy
∂x∂y

+ γ
∂2uy
∂y∂x

+ γ
∂2ux
∂y2

, zx(x, y, 0) = 0

u̇y(x, y, t) =
1

ρ
zy(x, y, t) +

1

ρ
gy(x, y, t)

, uy(x, y, 0) = uy0

ġy(x, y, t) = Fy(x, y, t)

, gy(x, y, 0) = ρu̇y(x, y, 0)

RLDp
t zy = α

∂2uy
∂y2

+ β
∂2ux
∂y∂x

+ γ
∂2ux
∂x∂y

+ γ
∂2uy
∂x2

, zy(x, y, 0) = 0

(19)

Keeping the time derivations, the spatial derivatives are
approximated. Consider a two-dimensional layer of the tissue
gridded into (Nx+1)×(Ny+1) points with equal step length
h. On such grid, we define xi = ih, i = 0, 1, ..., Nx and
yj = jh, j = 0, 1, ..., Ny and for a smooth enough function
V defined on the surface, V (i, j, t) = V (xi, yj , t) The spatial
derivatives of V can be approximated using the following
formulas [25]:

∂2V

∂x2
≈
[
V (i+ 1, j)− 2V (i, j) + V (i− 1, j)

]
h2

∂2V

∂x∂y
=

∂2V

∂y∂x
≈ V (i+ 1, j + 1) + V (i− 1, j − 1)]

4h2

− V (i+ 1, j − 1) + V (i− 1, j + 1)

4h2

∂2V

∂y2
≈
[
V (i, j + 1)− 2V (i, j) + V (i, j − 1)

]
h2

i = 1, ..., Nx − 1

j = 1, ..., Ny − 1
(20)

Substituting these approximations in (19) leads to the fol-
lowing equations, in which if we consider the state vari-
ables ux(i, j, t), uy(i, j, t), gx(i, j, t), gy(i, j, t), zx(i, j, t),
zy(i, j, t), i = 1, ..., Nx − 1, j = 1, ..., Ny − 1, it can be
considered as a pure state space system with 6× (Nx−1)×
(Ny − 1) state variables.



u̇x(i, j, t) =
1

ρ
zx(i, j, t) +

1

ρ
gx(i, j, t)

, ux(i, j, 0) = ux0

ġx(i, j, t) = Fx(i, j, t), gx(i, j, 0) = ρu̇x(i, j, 0)

RLDp
t zx(i, j, t) =

α

h2

(
ux(i+ 1, j)− 2ux(i, j)

+ ux(i− 1, j)
)

+
β + γ

4h2

(
uy(i+ 1, j + 1)− uy(i+ 1, j − 1)

− uy(i− 1, j + 1) + uy(i− 1, j − 1)
)

+
γ

h2

(
ux(i, j + 1)− 2ux(i, j) + ux(i, j − 1)

)
, zx(i, j, 0) = 0

u̇y(i, j, t) =
1

ρ
zy(i, j, t) +

1

ρ
gy(i, j, t)

, uy(i, j, 0) = uy0

ġy(i, j, t) = Fy(i, j, t), gy(i, j, 0) = ρu̇y(i, j, 0)

RLDp
t zy(i, j, t) =

γ

h2

(
uy(i, j + 1)− 2uy(i, j)

+ uy(i, j − 1)
)

+
β + γ

4h2

(
ux(i+ 1, j + 1)− ux(i+ 1, j − 1)

− ux(i− 1, j + 1) + ux(i− 1, j − 1)
)

+
α

h2

(
uy(i+ 1, j)− 2uy(i, j) + uy(i− 1, j)

)
, zy(i, j, 0) = 0

(21)

B. Relaxation Mode Model

The relaxation mode is considered as the state where the
tissue rests in a static manner, without being exposed to
an external force. Hence, the tissues transient time domain
dynamic has died out. Since the tissue deformation will not
then change with respect to time, the time derivations can
be omitted and the model can be interpreted using a spatial
partial differential equation. Kelvin-Voigt is a well-known
model for describing soft tissue in relaxation mode [26].
Hence, the model proposed in this paper should agree with
Kelvin-Voigt in the relaxation mode. Consider (10) where the
Kelvin-Voigt based model is described. Using this model, the
relaxation mode is described by the following equation:{

(λ+ 2µ)∂
2ux

∂x2 + λ
∂2uy

∂x∂y + µ(∂
2ux

∂y2 +
∂2uy

∂y∂x ) = 0

(λ+ 2µ)
∂2uy

∂y2 + λ ∂
2ux

∂y∂x + µ(
∂2uy

∂x2 + ∂2ux

∂x∂y ) = 0
(22)

In fact, the relaxation mode formation of the tissue is the
response of (22). Let us calculate the relaxation mode model
of our proposed model, which is the equilibrium state of
the state-space equations, given in (19) by setting the time
derivatives and external forces to zero. The third and sixth
equations of (19) lead to{

α∂
2ux

∂x2 + β
∂2uy

∂x∂y + γ
∂2uy

∂y∂x + γ ∂
2ux

∂y2 = 0

α
∂2uy

∂y2 + β ∂
2ux

∂y∂x + γ ∂
2ux

∂x∂y + γ
∂2uy

∂x2 = 0
(23)
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Comparing (22) and (23), it can be easily seen that the
relaxation mode formations are structurally the same, using
integer or non-integer models. In fact, there is no difference
between our proposed model and the Kelvin-Voigt one in the
steady state.

V. CONCLUSION
The goal of this paper is to derive a dynamic model for soft

tissue displacement, based on a non-integer variable order
model for stress-strain relation. Such a model can be used
for enhancing the accuracy of tissue behavior represented in
surgery simulators.

As shown, the concept of the non-integer modeling of
the tissue is validated using an experimental study. Also,
it leads to the general state-space equations of the soft tissue
displacement. The proposed model has been compared to the
Kelvin-Voigt model based analytical tissue dynamic model.
Bringing all the results together, one may conclude that:
1. The proposed model is the same as the Kelvin-Voigt model
in the steady state.
2. In the transient mode, the proposed model is simpler than
the previous ones and it can be described in a state space
form.
3. Due to the parameter order, the model is more flexible in
comparison with the Kelvin-Voigt model.
The identification approach used in this paper is an offline
one based on Genetic Algorithm. Future researches may
concentrate on developing real-time or adaptive identification
methods to estimate the order and parameters. Also, the
proposed model can be combined with the needle dynamical
model to compose a model for describing needle-tissue
interactions.
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