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Abstract— Robotics-assisted needle steering can enhance the
performance of needle-based clinical procedures such as biopsy,
brachytherapy, and drug delivery. We present an automated
needle steering system capable of steering needles in 3D toward
targets in tissue while avoiding anatomical obstacles. The system
comprises a nonholonomic model of needle steering in tissue
and a nonlinear controller for 3D trajectory tracking in soft
tissue. First, a new reduced-order model of needle steering is
presented. The proposed model is fully controllable and all
the system states can be estimated on the fly. Next, the model
is transformed to a local coordinate system using the Serret-
Frenet formulation. By means of this transformation, the needle
steering problem is converted to the regulation of the distance
of the needle tip from a desired 3D trajectory. Finally, using the
transformed model, a novel nonlinear controller is developed to
steer the needle in 3D while avoiding anatomical obstacles. The
control strategy is validated through simulations. The simula-
tions indicate that the system is stable and can successfully
follow a 3D trajectory. The results are promising, enabling
future research in flexible needle path planning and control
using the proposed reduced-order model and the controller.

I. INTRODUCTION

Needle-based medical interventions are used for diagnostic
and therapeutic applications such as biopsy, drug delivery,
and cancer treatment. In needle insertions, long flexible
needles with beveled tips are steered in soft tissue to reach
designated targets. A needle with an asymmetric beveled
tip has an uneven distribution of forces at the tip, which
causes the needle to deflect from a straight path during the
insertion. Using these needles, a surgeon can control the
needle tip deflection by axially rotating the needle’s base
thus changing the orientation of the beveled tip. The term
“steering” implies control of the needle tip deflection and
controlling the direction of the needle tip trajectory as the
needle is being inserted (see Fig. 1).

Robotics-assisted needle insertion can enhance the per-
formance of needle-based surgeries. Modeling and control
of continuum (continously flexible) robots with medical
applications has been widely studied [1]–[7]. Park et al.
developed a nonholonomic unicycle-like model to describe
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Fig. 1. A schematic of needle insertion in prostate brachytherapy. In
brachytherapy a flexible needle is inserted in tissue, such that radioactive
sources loaded in the needles can be placed in or near the tumor. The
surgeon can steer the needle toward the target location by changing needle
insertion velocity or axially rotating the beveled tip needle.

how an ideal needle with bevel tip moves through firm tissue
[1]. They assumed that the needle tip motion in tissue is
constrained to a circular path similar to a unicycle mobile
robot. Webster et al. extended this idea and developed and
experimentally validated kinematics-based model generaliz-
ing the unicycle model [2]. Several research groups have used
classical beam theories to develop mechanics-based models
of needle deflection [3].

The nonholonomic unicycle model [2] is extensively used
for needle steering. Kallem and Cowan presented the unicy-
cle model in generalized coordinates and designed a linear
observer to partially observe system states. The observations
was used in a linear feedback control system for 2D needle
steering [8]. Minhas et al. presented the idea of duty cycled
spinning of the needle during insertion and showed that
the curvature of the needle can be controlled via periodic
needle rotations [9]. Rucker et al. proposed a sliding-mode
controller based on the unicycle model and used it to
track a desired trajectory within the tissue [10]. Waine et
al. describe a method for controlling needle deflection in
one plane through the use of an integrator backstepping
control approach [11]. Patil et al. developed a needle steering
strategy that relies on a rapid motion planner [12]. The
planner incorporates the unicycle model to calculate the
optimal needle axial rotations for steering the needle in 3D.
Maghsoudi and Jahed introduced and simulated a model-
based robust controller to address needle insertion in the
presence of tissue parameter uncertainty [13]. We previously
developed a nonlinear MPC controller for 2D needle steering
using a mechanics-based model of needle insertion [14].

The 3D unicycle-like kinematic model [2] is nonlinear
and most of its states cannot be directly measured during
the needle insertion. Thus, most of the presented needle
steering strategies can only steer the needle in 2D and
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neglect needle deflection out of the 2D plane [9], [13]–[15].
Researchers have attempted to use the unicycle model for
3D needle steering by developing nonlinear state observers
for calculating unmeasurable system states [8], [16], [17],
or by assuming that some of the model states are small
and negligible [11]. Several 3D needle steering algorithms
are developed by incorporating image-based algorithms for
calculating the needle pose in 2D ultrasound images and
consequently estimating unicycle model parameters [18].

In this paper, we present a new reduced-order noholo-
nomic model of needle steering. The proposed model is fully
controllable and all of the system states can be estimated
on the fly. Next, the proposed model is presented in a
local coordinate system using the Serret-Frenet frame. By
means of this transformation, the needle steering problem is
converted to the regulation of the distance from a desired
curved trajectory. Finally, using the transformed model, a
novel nonlinear controller is developed to steer the needle in
3D while avoiding anatomical obstacles. The performance of
the proposed approach is verified through several simulated
scenarios.

This paper is organized as follows: Section II describes the
3D kinematic model of needle steering. Section III details
the conversion of the system into the chained form and the
control law that allows the path following. Details of the
controller is presented in Section IV. Section V shows the
validation results.

II. REDUCED-ORDER MODEL OF NEEDLE STEERING

Here, we present a nonholonomic model of needle steering
based on the bicycle model first presented in [2]. The bicycle
model is a generalization of a nonholonomic mobile robot
model and assumes that the needle is torsionally stiff and the
insertions and twists applied to the needle base are directly
transmitted to the tip. The motion of the needle is then fully
determined by the motion of the needle tip. The needle tip
bends under the asymmetric distribution of forces applied to
the beveled tip and follows a path with a constant radius
of curvautre in a plane defined by the orientation of the
needle beveled tip. To track a desired 3D trajectory using the
bicycle model, one needs to control the needle position and
the needle tip orientation (6 states of the system). However,
tracking the needle tip with a 2D imaging systems typically
enable us to measure only the position of the needle and not
its orientation (without the use of any observer). Here, we
introduce a new reduce-order model of needle steering that
can be simply implemented in needle steering.

Fig. 2 shows a schematic of 3D needle steering in tissue.
An inertial coordinate frame {O} is fixed on the needle point
of entry and a local body-fixed frame {N} is attached to the
needle tip. The two frames initially coincide. Let v, ω ∈ R
denote the needle insertion velocity and the rotation speed
expressed in the local frame. We use Z-Y-X rotation angles
φ-ψ-θ around the local frame to parameterize the rotation of
the needle tip. The beveled tip of the needle lies in the local
x′y′ plane. Thus, the needle tip follows a constant curvature
path in the x′y′ plane. The needle rotation along the y′-axis

is assumed to be negligible, thus ψ = 0. Let the position of
the origin of needle tip be p = [x, y, z]T in R3 relative to the
inertial frame. Using this notation, the generalized coordinate
of the needle tip is q = [x, y, z, φ, θ]T ∈ C, where C ⊂ R5 is
the configuration space (i.e., the space of all possible needle
configurations).

The needle tip always follows a constant curvature path
along the x′ axis of the local frame at the velocity of v.
It is also assumed that during the insertion, the needle tip
rotation around z′ axis is a linear function of the needle
insertion velocity [2]:

θ̇ = κv (1)

Here, κ is the needle tip deflection curvature and depends on
the mechanical characteristics of the tissue and the needle.
Considering two consecutive rotations around the local x′

and y′ axes, the rotation matrix ORN allowing to rotate any
vector from the local frame of the needle tip ({N}) to the
inertial coordinate frame ({O}) is given by

ORN =

 Cθ −Sθ 0
CφSθ CφCθ −Sφ
SφSθ SφCθ Cφ

 (2)

Throughout this paper, shorthand notations S, C, T, and SC
describe sin(·), cos(·), tan(·), and sec(·), respectively.

The needle tip (i.e., the steering wheel) always follows a
constant curvature path along the x′ axis of the local frame
at the velocity of v. Thus, the needle tip velocity is zero
in y′ and z′ directions in the needle tip local frame, i.e.,
ORT

N [ẋ ẏ ż]T = [v 0 0]T . Using (2), we can construct
the following constraints:

− ẋSθ + ẏCθCφ+ żCθSφ = 0 (3a)
− ẏSφ+ żCφ = 0 (3b)

So far, we have three independent constraints given by (1),
(3a), and (3b). (1) is a holonomic constraint and reduces the
system’s degrees of freedom (DoF) and the configuration
space (C) dimension to 4. (3a) and (3b) are nonholonomic
constraints and decrease the DoF to 2. However, they do not
introduce any loss of accessability in C. We can write (3a)
and (3b) as a set of Pfaffian constraints A(q)q̇ = 0, where

A =

[
−Sθ CθCφ CθSφ 0 0
0 −Sφ Cφ 0 0

]
(4)

Considering the 5-dimensional configuration space, the
system of the 2 Pfaffian constraints in (4) and the sin-
gle holonomic constraint in (1) entails that the admissible
generalized velocities at each configuration q belongs to
the 2-dimensional null space of matrix A(q). Denoting
by {g1(q), g2(q)} a basis of the null space N (A(q)), the
admissible trajectories for the needle tip can be characterized
as the solution of g1(q)u1 + g2(q)u2, where u1 and u2 ∈ R
are the input vectors for the two remaining DoF. The bases
of N (A(q)) can be easily calculated from (4) as

g1(q) = [Cθ SθCφ SθSφ 0 κ]T

g2(q) = [0 0 0 1 0]T
(5)
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Fig. 2. A schematic of needle steering in tissue. An inertial coordinate frame O is fixed at the needle point of entry and the needle tip position is
[x, y, z]T ∈ R3. a local body-fixed frame N attached to the needle tip initially coincides with the inertial frame. The needle is inserted and follows a
constant curvature path in x′y′ plane while rotating around the z′-axis with an angle of θ. The needle can also rotate axially by an angle φ. Needle
rotation along the y′-axis is restricted by the surrounding tissue and is assumed to be negligible. The needle tip motion can be fully defined by a set of
generalized coordinates q = [x, y, z, φ, θ]T .

The bases are not unique, However. with the above selected
bases the input vectors have a clear physical interpretation
and are equal to the insertion velocity v and the rotation
velocity ω. Now using (5) and (1), we can write the final
kinematic model of needle steering as

ẋ
ẏ
ż

φ̇

θ̇

 =


Cθ

SθCφ
SθSφ
0
κ

 v +

0
0
0
1
0

ω (6)

(6) gives the reduced order system. The system in (6) is
driftless and affine in the inputs. Thus, we can verify the
systems controllablity using the accessibility rank condition,
i.e., the system is controllable if dim(∆(q)) = dim(C), where
∆ is the involutive closure of ∆ = span{g1(q), g2(q)}. Using
Successive Lie brackets to calculate ∆(q), we obtain

dim(∆) = dim(∆3) =

dim(span{g1, g2, [g1, g2], [g1, [g1, g2]], [g2, [g1, g2]]})
(7)

(7) indicates that the system in (6) is controllable with a
nonholonomy degree of 3. In the next sections, we will use
the model to design a controller for 3D needle steering and
guiding the needle to follow a desired path.

III. TRANSFORMATION TO FRENET-SERRET FRAME

Here, we transform the reduce-order model of needle
steering, using a Frenet-Serret frame placed on an arbitrary
desired 3D trajectory. By means of the transformation to the
Frenet-Serret frame, the needle steering problem is converted
to the regulation of the distance of the needle tip from a
desired curved trajectory without the need for observing or
direct control of the needle tip orientation. In differential
geometry, the Frenet-Serret frame is commonly used to
describe the kinematic properties of a particle moving along
a continuous, differentiable curve in 3D. Following this

v

Fig. 3. Illustration of the needle path following problem.

approach, the needle tip motion is expressed in terms of
the desired path parameters (curvilinear abscissa s, path
curvature c, and path torsion τ ).

The needle tip and the path (P) to be followed are
presented in Fig. 3, where {F} is the orthogonal projection
of the needle tip frame {N} on the path. The tangent,
normal, and bi-normal unit vectors of the Frenet-Serret frame
associated with {F} are t, n, and b. Let dn and db denote the
signed distances between frame {N} and the origin of frame
{F}. Let s be the path’s abscissa, c the path’s curvature,
and τ its torsion. c and τ are assumed to be continuous
bounded functions of s with bounded derivatives. Based on
Frenet-Serret formulas, the angular velocity of F is given by
FWF = [τ ṡ 0 cṡ]T . The goal of the path following problem
is to set the needle tip distance from the path (dn and db)
to zero, while aligning the linear velocity of the needle tip v
with the tangent of the reference path t via manipulation of
needle tip angular velocity ω. Let FRN (φe, ψe, θe) be the
rotation matrix from the Frenet-Serret frame to the needle
frame, which aligns the velocity vector and tangent vector to
the path t. FRW is locally parameterized by Z-Y-X Eulerian
angles. Writing the linear velocity of the needle frame in the
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Frenet-Serret frame yields

FRN (φe, ψe, θe)
NVN = FVF +

dF
−−→
FN

dt
+ FWF × F−−→FN (8)

where NVN = [v 0 0]T is the vector velocity of needle tip
in needle frame {N}, FVF = [ṡ 0 0]T is the {F} frame
linear velocity and, F−−→FN = [0 dn db]

T is the vector of
needle tip position in frame {F}.

We can also compute the needle frame angular velocity
relative to the Frenet-Serret frame as

NWN,F = NWN − NRF (φe, ψe, θe)
FWF (9)

where NWN = [0 0 κv]T +RT (θ)[ω 0 0]T , and NWN,F

is given by

NWN,F =

φ̇e0
0

+RT (φe)

 0

ψ̇e

0

+ (R(ψe)R(φe))
T

 0
0

θ̇e


(10)

Solving (8) for ṡ, ḋn and ḋb and (9) for φ̇e, ψ̇e and θ̇e
gives the transformed system:

ṡ =
vCθeCψe

1− dnc
(11a)

ḋn = dbτ ṡ+ vCψeSθe (11b)

ḋb = −dnτ ṡ− vSψe (11c)

φ̇e = ωCθ − τ ṡCθeSCψe + κvCφeTψe + ωSθSφeTψe

(11d)

ψ̇e = ωSθCφe + τ ṡSθe (11e)

θ̇e = κvCφeSCψe + ωSθSφeSCψe − ṡτCθeTψe − cṡ
(11f)

We note that in (11) |dn| < 1/c(s), which means that the
transformation exists if the distance between the needle tip
and the desired path P is not too large (smaller than the
lower bound of the curve radii). Also, to avoid singularities
in (3), ψe, θe ∈ (−π/2, π/2). Finally, we remark that the 3D
Serret-Frenet frame transformation presented here is singular
if the trajectory is a straight-line, since the normal direction
of the straight-line could be either right or left direction.
One way to avoid the singularity is using a path with a
very small curvature rather than a completely straight line.
Another way for avoiding the transformation singularity is
using the parallel transport frame suggested in [19]. In the
next section, we will use the model in (11) to design a

controller to stabilize the needle distance from the path, i.e,
dn and db, at zero. Note that by means of the transformation
to the Frenet-Serret frame, the needle steering problem is
converted to the stabilization of the coordinates dn and db.

IV. REGULATION VIA FEEDBACK LINEARIZATION

The objective of the needle steering controller is to syn-
thesize a control law that allows the needle tip to follow a
desired path in a stable manner, independent of the sign of
the insertion velocity. We select the needle rotation velocity
ω as the control input. Considering the needle insertion
velocity v and its derivative are bounded, the needle steer-
ing problem consists of finding smooth feedback control
laws ω(v, s, dn, dl, φe, ψe, θe) such that limt→∞ dn(t) =
limt→∞ db(t) = 0.

To design the controller, first the kinematic equations
in (11) are transformed into the chain form via a change
of state and control variables. The conversion of multi-
input nonholonomic systems into the chained form was first
presented by Bushnell et al. [20]. Let us determine a change
of coordinates (s, dn, db, φe, θe, v, ω) → (z1, z2, z3, u1, u2)
allowing to transform (11) into the 3-dimensional chained
system

ż1 = u1

ż2 = u1z3

ż3 = u2

(12)

First, we set z1 = s. Thus u1 is given by (11a). Then, the
second state variable is chosen as z2 = 0.5(d2n + d2b). Using
(11b) and (11c) and eliminating ṡ by (11b) we have

ż2 = u1z3 = u1(1− dnc)(dnTθe − dbTψeSCθe) (13)

Taking derivative of ż3 in (13) with respect to time and
replacing ṡ, ḋn, ḋb, φ̇e, ψ̇e and θ̇e by their values in (11), the
input u2 is obtained as

u2 = a11ω + a12 (14)

where a11, a12, are given in (15).
We note that for |dn| < 1/c(s) and any θe, ψe ∈

(−π/2, π/2), (s, dn, dl, φe, ψe, θe) → (z1, z2, z3, ) defines
a mapping between R4 × (−π/2, π/2)2 and R3. Also, the
control variable involves the derivative of path curvature (c′),
whose value is thus needed.

The objective of the controller is to asymptotically bring
z2 = 0.5(d2n+d

2
b) to zero and also ensures that the constraint

on the distance to the path (i.e., |dn| < 1/c(s) is satisfied

a11 =− (1− dnc)
[
SCθeSθSCψe

(
Sφe(−dnSCθe + dbTθeTψe) + dbSCψeCφe)

))]
(15a)

a12 =
vCψe

1− dnc

{
(dnSθeCψe − dbSψe) (dnc

′ + cdbτ)+

(cdn − 1)Cψe

(
SCθe

(
−(cdn − 1)SC2ψe(dbκSCψeSφe + dnκSCθeCφe) + 1)− 1

)
+

Tθe
(
dbTψe

(
κ(cdn − 1)SCθeSC2ψeCφe + 2c

)
+ (1− 2cdn)Sθe

))}
(15b)
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Fig. 4. Simulated results of needle steering for (a) needle insertion on a straight line, (b) 2D needle insertion with obstacle avoidance, (3) tracking a 3D
path with a constant curvature. desired and actual needle deflection along y and z, and mean absolute error of tracking are shown in the figures.

along the trajectories of the controlled system. We consider
the following control law:

u2 = −u1k1z2 − |u1|k2z3, (k2, k3 > 0) (16)

It is then immediate to verify that the origin of the closed-
loop subsystem is asymptotically stable when u1 = ṡ, i.e.,
the velocity along the path is constant.

So far, we have assumed that the insertion velocity v is
either imposed or prespecified. Thus, we can use v in (11a)
to ensure ṡ is constant. Now, the steering angular velocity w
can be computed from (16) as

ω = a−1
11 (u1 − a12) (17)

Based on (15a) and following our assumptions that |dn| <
1/c(s) and θe, ψe ∈ (−π/2, π/2), ω in (17) is well defined
when θ ∈ (0, π/2). Based on (6) and considering the small
curvature κ of needle in tissue, this assumption is satisfied
when θ(0) > 0. Thus, it suffices to select a nonzero initial
condition for the needle initial pose θ. Also, ω asymptotically
increases when dn(t) = db(t) = 0. This motion, typically
known as duty-cycling, mimics a drilling behavior and stabi-
lizes the needle when the tracking error is zero. Duty-cycling
can increase tissue trauma in real practice. We can limit the
needle rotation velocity in the proximity of the desired path
to avoid the drilling motion of the needle.

V. SIMULATION RESULTS

In this section, several simulations are performed to vali-
date the proposed needle steering strategy. We will use the
feedback of needle global position (x, y, and z) to control the
needle tip to follow a desired trajectory. During the needle
insertion, these values can be calculated online using an
imaging system. By knowing the position of the needle and
the desired path parameters (s, τ and c), the steering angular
velocity can be computed from (17).

Three clinical scenarios are simulated:

TABLE I
SIMULATION RESULTS. UNITS ARE IN MM.

1st scenario 2nd scenario 3rd scenario

ey 0.1 0.18 0.11
ez 0.076 0.108 0.095

RMSE 0.081 0.12 0.091

1) The needle is steered on a straight line to reach a target
placed at a depth of 140 mm. This is the most common
goal in needle-based interventions, where the needle
should be inserted along a straight line and the needle
is only rotated to compensate for deviations from the
straight path.

2) A 10 mm circular obstacle is positioned at a depth of
70 mm between the needle entry point into the tissue
and the target. The needle is steered to reach a target
at the depth of 140 mm while avoiding the obstacle.

3) The needle is steered on a 3D arbitrary curve with a
constant radius of curvature.

We note that 3D Serret-Frenet frame transform presented
in Section III is singular if the trajectory is a straight-line. In
order to avoid this singularity, we assumed that the desired
path in the first scenario has a very small curvature (0.0001
mm). In the 2nd scenario, the desired needle deflection in
the z direction is zero and is a circular path with a radius
of 130 mm in the y direction. The needle desired trajectory
in the 3rd scenario is a 3D curve with constant radius of
curvature of 600 mm. In the simulations, the needle curvature
(κ) is set equal to 0.002 mm, which is selected based on the
experimentally obtained mean radius of curvature for a 18G
flexible brachytherapy needle [21]. We introduce 10% error
in the measured value of κ to simulate uncertainty. Also,
the maximum allowable rotation velocity is 10 radiant per
second . The results are shown in Fig. 4.

Simulation results are summarized in Table I. The maxi-
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mum error in the y direction, ey , the maximum error in the
z direction, ez , and the root mean squared error (RMSE)
of tracking are reported. The maximum tracking error is in
the y direction in the 2nd scenario and it is equal to 0.18
mm. This error is below the accepted margin of error in
clinical needle insertions (∼ 5 mm) [14]. The results show
that the controller is accurate, stable, and has a satisfactory
performance.

VI. CONCLUDING REMARKS

In this paper, a new reduced-order model of needle steer-
ing is proposed by modifing a bicycle-like model of needle
steering. Next, the kinematic model of needle steering is
expressed in a chained format using a transformation to the
Frenet-Serret frame. Finally, a feedback control law is pro-
posed to stabilize the chained system. The proposed method
was validated and analyzed through several simulations. The
results show that the controller is accurate and stable. Future
efforts will focus on validating the controller by perform-
ing experiments with biological tissue in a realistic testing
scenario. Also, the reduced-order model presented in Frenet-
Serret frame can be used with several other controllers.
Further work is required to make the control laws robust in
the presence of parametric uncertainty including saturation
in the actuation signal and reject constant perturbations such
as soft tissue reaction forces. In the future, our efforts will
focus on developing nonlinear controller implementing other
control inputs such as insertion velocity for more robust
needle steering.
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