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Abstract— Discretization of a stabilizing continuous-time
bilateral teleoperation controller for digital implementation
may not necessarily lead to stable teleoperation. This paper
addresses the stability of master-slave teleoperation under
discrete-time bilateral control. Stability regions are determined
in the form of conditions involving the sampling period, control
gains including the damping introduced by the controller, and
environment stiffness. Due to the tradeoff between stability
and transparency in bilateral teleoperation, such stability
boundaries are of particular importance when the teleoperation
system has good transparency.

I. Introduction
Problems with haptic teleoperation stability arise when

a bilateral controller designed in the continuous-time (CT)
domain is converted into the discrete-time (DT) domain for
implementation as a digital controller. Due to the wealth of
CT design methods, discretizing predesigned CT controllers
rather than direct DT design is very common and, in teleop-
eration control, overwhelmingly the method of choice.

Since a zero-order hold (ZOH) creates energy leaks that
can make an otherwise passive system non-passive [1], some
researchers have studied the effect of sampled-data control
on system passivity [2], [3] or stability [4]. For the problem
of haptic rendering of a discretely-simulated virtual wall,
Colgate and Schenkel [5] found the necessary and sufficient
conditions for passivity of the virtual wall as

b >
kwT

2
+ bw (1)

where b > 0 is the haptic interface damping and kw > 0
and bw > 0 are the virtual wall stiffness and damping,
respectively. It is confirmed by (1) that passivity competes
with transparency, which requires high kw and bw. Abbott
et al. [6] found an upper bound on virtual wall stiffness as a
function of sampling rate, encoder resolution and friction
in order to ensure virtual wall passivity. Also, Gil et al.
[7] applied the Routh-Hurwitz criterion to the characteristic
equation of the system to obtain a necessary and sufficient
condition for stability that can be approximated by

b >
kwT

2
− bw. (2)

Therefore, the stability condition (2) is less conservative than
the passivity condition (1) and allows for higher transparency
[8]. Moreover, the haptic interface damping b and the virtual
wall damping bw both help to achieve stability with longer
sampling periods and for stiffer environments.

While research so far has focused on the passivity or
stability of haptic interaction with a discretely-simulated
virtual wall, this paper addresses the stability of master-
slave teleoperation under discrete-time bilateral control. In
this paper, we consider constant sampling periods and the
4-channel bilateral teleoperation architecture [9], which can
represent other teleoperation methods including position-
error based (PEB) and direct force reflection (DFR) control
through appropriate selection of its control gains. Regions of

Fig. 1. Block diagram of a master-slave teleoperation system.

stability of the discrete-time controlled teleoperation system
are obtained in the form of conditions on the sampling
period, environment stiffness and control parameters.
II. Teleoperation Stability Analysis Tools

The block diagram of a bilateral master-slave system is
shown in Figure 1. Here, f̃h(t) and f̃e(t) are respectively the
operator’s and the environment’s exogenous input forces and
are independent of the teleoperation system behavior. The
hand/master and the slave/environment interactions (force
or torque) are denoted by fh(t) and fe(t), respectively.
The master and the slave positions and control signals
(force or torque) are shown by xm(t), xs(t), fm(t) and
fs(t), respectively. The impedances Zh(s), Ze(s), Zm(s)
and Zs(s) denote the dynamic characteristics of the human
operator’s hand, the remote environment, the master robot,
and the slave robot, respectively. The impedance Zt(s) is
the perception of the user about the environment impedance
Ze(s). Based on Figure 1, the dynamics of the master and
the slave can be written in the frequency domain as:

Fm + Fh = ZmXm = Mms2Xm

Fs − Fe = ZsXs = Mss
2Xs (3)

where Mm and Ms are the master and the slave inertias,
respectively. The teleoperation system of Figure 1 can be
modeled as a two-port network with the following hybrid
matrix representation[

Fh

−Xs

]
=

[
h11(s) h12(s)
h21(s) h22(s)

] [
Xm

Fe

]
(4)

For analysis of stability of a teleoperation system, the
knowledge of the human operator and the environment
dynamics are needed in addition to the teleoperation system
model (4). Analysis of passivity, however, is independent of
Zh(s) and Ze(s), and only assumes that the environment is
passive (f̃e = 0) and the operator is passive in the sense that
he/she does not perform actions that will make the teleoper-
ation system unstable. With passive but otherwise arbitrary
terminations Zh(s) and Ze(s) and using Llewellyn’s criterion
or based on the singular values of the scattering matrix of
the teleoperation system, stability conditions independent of
the human operator and the environment (absolute stability)
may be derived. The scattering matrix S(s) of a teleoperation
system satisfies F − X = S(s)(F + X) where F =
[Fh Fe]

T and X = [Xm −Xs]
T .

Analysis of stability based on Llewellyn’s criterion or
singular values of the scattering matrix is conservative as
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Fig. 2. The 4-channel bilateral teleoperation system. The shaded blocks
represent control components.
it ensures stability regardless of the teleoperation system’s
terminations (i.e., the human operator and the remote envi-
ronment). While it is useful to remove any assumption on
the operator, the environment model can be incorporated into
the analysis for less conservative stability regions. With the
remote environment impedance Ze, i.e., Fe = ZeXs, the
general teleoperation system given by (4) has the following
transfer function from Fh to Xm:

Xm

Fh
=

1 + h22Ze

h11(1 + h22Ze)− h12h21Ze
(5)

Assuming the environment is modeled by a linear spring,
Ze = ke, the characteristic equation for the transfer function
from Fh to Xm (and to any other output) is given by

h11s + ke(h11h22 − h12h21) = 0 (6)

The characteristic equation (6) must have no zeros in the
right-half plane (RHP) for the teleoperation system to be
stable regardless of the operator dynamics.

To remove any assumption on the human operator’s
impedance Zh, we model the operator as an exogenous
input force. In practice, the human operator with a finite
impedance dynamic range acts as a negative feedback and
only improves the stability [10], so the stability regions
found in this paper correspond to a worst-case scenario and
are independent of the operator’s dynamical characteristics.
Also, note that we have assumed linear models in (3) and
have neglected nonlinear terms such as friction and encoder
quantization. It is well known that friction plays a stabilizing
role in a teleoperation system. Indeed, it has been shown
that Coulomb friction can dissipate the energy introduced by
encoder quantization [11], [6]. Therefore, stability analysis
using linear models results in worst-case stability conditions
[12].
III. Continuous-Time Bilateral Teleoperation Stability

Figure 2 depicts a 4-channel (4CH) bilateral teleoperation
architecture [9]. The compensators C5 and C6 in Figure 2
constitute local force feedback at the slave side and the
master side, respectively. Selecting C1 = Cs, C4 = −Cm

and C2 = C3 = C5 = C6 = 0 amounts to position-
error based (PEB) control and C1 = Cs, C2 = 1 and
C3 = C4 = C5 = C6 = Cm = 0 leads to direct force
reflection (DFR) control.

The controllers Cm and Cs are usually chosen as
proportional-derivative controllers. Taking Cm = kvm

s+kpm

and Cs = kvs
s+kps

, as shown in [13], the PEB teleoperation
architecture is absolutely stable if kvm

, kpm
, kvs

, kps
> 0 and

Cm(s)
Cs(s)

= α (7)

where α is a nonnegative constant. Throughout this paper,
we assume (7) in the general case of 4-channel control. With
direct force reflection teleoperation, α = 0.

Fig. 3. A digitally-controlled 4-channel bilateral teleoperation system.

For ideal transparency, i.e., xm = xs and fh = fe

regardless of the operator and environment dynamics, the
hybrid matrix in (4) should be

H =
[

0 1
−1 0

]
(8)

which happens in the 4CH system for

C1 = Zts, C2 = 1 + C6, C3 = 1 + C5, C4 = −Ztm (9)

By selecting the bilateral teleoperation controllers as in (9),
the hybrid and scattering matrices of the 4CH teleoperation
system become

H =
[

0 D
D

−D
D 0

]
, S =

[
−D2+D2

2D2
2D2

2D2

2D2

2D2
D2−D2

2D2

]
(10)

where D = −C3C4 + Zts(1 + C6), Ztm = Zm + Cm

and Zts = Zs + Cs. Using either Llewellyn’s criterion
or the scattering matrix condition, the ideally transparent
teleoperation system is stable iff D is RHP-analytic. If so,
H simplifies to (8), and S is reduced to an off-diagonal,
reciprocal matrix with both of its singular values equal to
1. Since under ideal transparency condition the system is
reciprocal, the stability of the system can be deduced1.

As a result, under ideal transparent conditions, the tele-
operation system stability critically depends on exact imple-
mentation of control laws because any departure from (9)
risks violating σ̄ ≤ 1. Such a low stability margin for the
ideally transparent teleoperator can be explained by the trade-
off that exists between stability and transparency in bilateral
teleoperation [9]. Therefore, it is important to investigate the
effect of discrete-time control law implementation on the
teleoperation system stability. It must be noted that while this
research has been mainly motivated by the critical stability
of an ideally transparent 4CH teleoperation system, in the
stability analysis that follows we make no assumptions on
C2, C3, C5 or C6 as was done in (9), in order to cover all
teleoperation methods including PEB and DFR architectures.

IV. Discrete-Time Bilateral Teleoperation Modeling
The 4-channel architecture of Figure 2 under discrete-time

control is shown in Figure 3. As shown, the operator, the
master, the slave and the environment remain continuous-
time entities. For an input f(t) to an ideal sampler starting
at t = 0, the output is f∗(t) =

∑∞
k=0 f(kT )δ(t−kT ) where

T is the sampling period. Since z = esT , the Laplace and Z

1The necessary and sufficient condition for absolute stability of a recipro-
cal two-port network (S12 = S21) with an RHP-analytic scattering matrix
S(s) is σ̄[S(jω)] ≤ 1 where σ̄ represents the maximum singular value of
S(jω).
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transforms of the sampled-data signal f∗(t) are F ∗(s) =
L[f∗(t)] =

∑∞
k=0 f(kT )e−kTs and F (z) = Z[f∗(t)] =

F ∗(s)|s= 1
T ln z . In Figure 3, the two zero-order hold (ZOH)

blocks reconstruct continuous-time control signals fm(t) and
fs(t) from discrete-time counterparts f∗m(t) and f∗s (t) via the
following transfer function:

Gh0(s) =
1− e−Ts

s
(11)

With the 4-channel structure shown in Figure 3, since Cm,
Cs, C1, · · · , C6 are all discrete-time controllers, the discrete-
time control signals for the master and the slave can be
written as

F ∗
m = −CmX∗

m − C4X
∗
s + C6F

∗
h − C2F

∗
e

F ∗
s = C1X

∗
m − CsX

∗
s + C3F

∗
h − C5F

∗
e (12)

Using (12) and substituting for Fm = Gh0F
∗
m and Fs =

Gh0F
∗
s in (3), the closed-loop dynamics of the master and

the slave in discrete-time are written as

Xm(z) = Z[Z−1
m Fh] + Z[Z−1

m Gh0](−Cm(z)Xm(z)
− C4(z)Xs(z) + C6(z)Fh(z)− C2(z)Fe(z))

Xs(z) = −Z[Z−1
s Fe] + Z[Z−1

s Gh0](C1(z)Xm(z)
− Cs(z)Xs(z) + C3(z)Fh(z)− C5(z)Fe(z))

(13)

With Zm = Mms2 and Zs = Mss
2, we have

Z[Z−1
m,sGh0] =

T 2

2Mm,s

z + 1
(z − 1)2

(14)

where, for brevity, commas in subscripts mean “or” and
present multiple equations. Using Tustin’s method, the PD
controller Cs is discretized as Cs = kvs

2(z−1)
T (z+1) + kps and

Cm is obtained from (7). Also, C1 = Cs and C4 = −Cm

are selected, which involve a slight departure from the ideal
transparent design (9) as the acceleration terms are neglected
to reduce noise. At this stage, we make no assumptions on
C2, C3, C5 or C6 in order to cover all teleoperation methods.

Note that in (13), Z[Z−1
m Fh] 6= Z−1

m (z)Fh(z) and
Z[Z−1

s Fe] 6= Z−1
s (z)Fe(z) because the master and the

slave transfer functions Z−1
m and Z−1

s operate in continuous
time (i.e., Fh and Fe are not sampled). To be able to
derive a hybrid model representation from (13), we need to
approximate Z[Z−1

m Fh] and Z[Z−1
s Fe] by products of Fh(z)

and Fe(z) given that Z−1
m and Z−1

s are double integrators.
Two Taylor series expansions of g(t) =

∫ t

0

∫ s

0
f(r)drds

around the sampling instant kT are

g(kT ± T ) = g(kT )± Tg′(kT ) + (T 2/2)g′′(kT )
± (T 3/6)g′′′(kT ) +O(T 4) (15)

Since g′′(kT ) = f(kT ), summing g(kT +T ) and g(kT−T )
and taking Z transform on both sides gives the Verlet double
integrator

G(z) = T 2 z

(z − 1)2
F (z) = V3(z)F (z) (16)

which is an order more accurate than integration by the Euler
method as third-order terms in the Taylor expansions cancel
out. The double integration precision can be increased to
O(T 6) where fifth-order terms cancel out:

G(z) =
4T 2

3
z(z2 + z + 1)

(z2 − 1)2
F (z) = V5(z)F (z) (17)

where the Tustin’s transformation 2(z−1)
T (z+1) has replaced the

derivative operator s.
Based on (16) and (17),

Z[Z−1
m,sFh,e] =

Vi(z)
Mm,s

Fh,e(z), i = 3, 5 (18)

Replacing (14) and (18) in (13) gives the hybrid model of
the digitally-controlled teleoperation system as[

Fh(z)
−Xs(z)

]
=

[
h11(z) h12(z)
h21(z) h22(z)

] [
Xm(z)
Fe(z)

]
(19)

V. Discrete-Time Bilateral Teleoperation Stability
Using the discrete-time hybrid parameters (19) in (6),

the characteristic equation of the teleoperation system is
obtained. The characteristic equation has 10 roots on the
unit circle irrespective of the system parameters, leaving for
stability analysis a fourth- and an eight-order polynomial
in z when i = 3 and i = 5 in (18), respectively. To be
able to apply the Routh-Hurwitz criterion to the simplified
characteristic equation, we consider the r-transformation z =
(r + 1)/(r − 1) which maps the interior of the unit circle
|z| = 1 onto the left half of the r-plane. The result is a
fourth-order polynomial in r if i = 3 and a sixth-order
polynomial in r (after factoring out r2) if i = 5. To derive the
stability requirements based on these characteristic equations,
we frequently utilize the following basic facts.
• The polynomial rn + b1r

n−1 + · · · + bn = 0 is Hurwitz
(i.e., its coefficients are positive real numbers and its zeros
are located in the left half-plane of the complex plane) if
and only if for j = 1, · · · , n,

∆j =

∣∣∣∣∣∣
b1 1 0 · · · 0
...

...
...

...
. . .

b2j−1 b2j−2 b2j−3 · · · b2j

∣∣∣∣∣∣ > 0 (20)

• The quadratic equation ax2 +bx+c = 0 has two solutions
x1 and x2 for which x1 + x2 = −b/a and x1x2 = c/a. If
b2−4ac < 0 (two complex conjugate roots), the expression
ax2 + bx + c has the same sign as a regardless of x. If
b2 − 4ac ≥ 0 (two real roots), ax2 + bx + c has the same
sign as a only for x < min{x1, x2} or x > max{x1, x2}.
Moreover, the two real roots will have the same sign if
c/a > 0 (positive if b/a < 0, negative if b/a > 0).
Each ∆j is a function of T , ke, C2, C5, Cs, α, Zm and

Zs but not a function of C3 or C6 as the last two parameters
only appear in the numerator of (5). Therefore, conditions
(20) determine the space of stabilizing controllers, sampling
time, and environment stiffness for given master and slave
inertias. In addition, for practical reasons, we impose the
following conditions on the control parameters C2 and C5:
• The force feedback gain C2 should be nonnegative, other-

wise the direction of the reflected force will be wrong.

C2 ≥ 0 (21)

• The slave local feedback gain C5 should be nonpositive
as a measure to counteract the environment force fe but it
should not be less than -1 (note the term −(1 + C5)fe in
the control effort of the slave in Figures 2 and 3.)

−1 ≤ C5 ≤ 0 (22)

Each ∆j is a polynomial of order j − 1 in ke. Therefore,
for given master and slave inertias and to have stable
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teleoperation, conditions (20) set lower and upper bounds
on the environment stiffness as

γ1 ≤ ke ≤ γ2 (23)

where γ1 and γ2 are functions of the control gains and the
sampling time. With regard to (23), two points should be
considered:

• It is desirable to have

γ2 → +∞, (24)

in order to have maximum stability robustness against
variations in ke.

• It is imperative to have

γ1 = 0, (25)

otherwise the teleoperation system would not be stable
when the slave is in free space.

It turns out that i = 3 and i = 5 in (18), which correspond
to n = 4 and n = 6 in (20) respectively, lead to an almost
identical lower bound γ1, thus we proceed with i = 3 for less
complexity. Each ∆j has a factor kj

ps
[C2 + α(1 + C5)]j in

its denominator. Therefore, knowing that kps
> 0, we must

have
C2 + α(1 + C5) > 0 (26)

in order to prevent abrupt sign changes in ∆j , j = 1, · · · , 4.
Otherwise, an infinitesimal change in C2 or C5 such that
C2 + α(1 + C5) crosses zero causes the terms of odd order
(∆1 and ∆3) to change sign and destabilizes the system.
Fortunately, (26) is ensured due to constraints (21) and (22)
that we have already assumed for C2 and C5.

In the rest of this Section, we derive additional conditions
for having ∆j > 0 for each j. Without loss of generality,
since we are only concerned about conditions for stability, we
assume strict inequalities. Replacing inequalities by equali-
ties in the the stability conditions that will follow gives the
borderline of stability and instability.

A. j = 1

The expression for ∆1 is independent of ke and ∆1 > 0
imposes the following lower bound on kvs

kvs
> ϕ1(T, kps

, Ci, α) = kps
T

(
1− α/2

C2 + α(1 + C5)

)
(27)

or, alternatively, the following upper bound on T

T < ζ1(kvs , kps , Ci, α) =
kvs

kps

(
1− α/2

C2+α(1+C5)

) (28)

B. j = 2

The expression for ∆2 involves k−1
e ,

∆2 = Q2(M2 + N2/ke) (29)

where M2 and N2 are functions of the control and system
parameters and the sampling time, and Q2 is a positive
term. Assuming T 2, T 3 ≈ 0 for mathematical simplicity, the
solution to ∆2 = 0 is

ke0 =
−N2

M2
=

Tk2
ps

(Mm + αMs)(C2 + αC5)
m2k2

vs
+ n2kvs

+ p2
(30)

where

m2 = −2T [C2 + α(1 + C5)][C2 + α(C5 + 1/2)]
n2 = 2Mm(1 + C5)[C2 + α(1 + C5)]
p2 = −TMmkps [(1 + C5)(C2 + α(1 + C5)) + C2]

Due to (21), (22) and (26), we have n2 > 0 and p2 < 0.
Also, as will be seen later for that case that j = 3, ∆3 > 0
requires that

C2 + αC5 < 0 (31)

implying that N2 > 0.
In order to ensure (25), it is necessary that ke0 < 0

(because if ∆2 changes sign at a positive ke, then (25) would
be violated). To this end, since N2 > 0, M2 needs to be
positive. To find the conditions under which M2 > 0, we
distinguish the following four cases:
• Case 1: m2 < 0 and n2

2 − 4m2p2 < 0. The quadratic
polynomial M2 will never be positive for any kvs, and
therefore this case is not of interest.

• Case 2: m2 < 0 and n2
2 − 4m2p2 ≥ 0. Since n2 > 0

and p2 < 0, M2 = 0 has two real positive solutions
implying that M2 > 0 holds only if kvs is between these
two solutions.

• Case 3: m2 > 0 and n2
2 − 4m2p2 < 0. This is impossible

because we know p2 < 0.
• Case 4: m2 > 0 and n2

2 − 4m2p2 ≥ 0. Since n2 > 0
and p2 < 0, M2 = 0 has one real positive and one real
negative solution and M2 > 0 holds if kvs (positive) is
greater than the positive root.

Similar to a discretely-simulated virtual wall (conditions (1)
and (2)), Case 2 is not opted for as an upper bound on kvs

is not desirable. Consequently, Case 4 is the only possibility
for ensuring M2 > 0 and therefore (25), resulting in the
following two conditions

C2 + α(C5 + 1/2) < 0 (32)
kvs

> ϕ2(T, kps
, Ci, α,Mm) = max{Root(M2)}(33)

In the above discussion, to ensure M2 > 0, a lower bound
on kvs

was imposed. Alternatively, an upper bound on T can
be derived to fulfil M2 > 0. To this end, note that M2 =
m′

2T +n′2 > 0 where, due to (32), m′
2 = (m2k

2
vs

+p2)/T <
0 and n′2 = n2kvs

> 0. Therefore, (33) and the following
upper bound on T have the same effect

T < ζ2(kvs
, kps

, Ci, α,Mm) = − n′2
m′

2

(34)

C. j = 3
We have

∆3 = Q3(M3 + N3/ke + P3/k2
e) (35)

where Q3 > 0. Assuming T 2, · · · , T 6 ≈ 0, we have

M3 = −M2
mTC5(1 + C5)[C2 + α(1 + C5)]

N3 = m3k
2
vs

+ n3kvs
+ p3

P3 = −Tk2
ps

(Mm + αMs)2(C2 + αC5)

where

m3 = −T (C2 + αC5)(Mm + αMs)[C2 + α(1 + C5)]
n3 = 2Mm[C2 + α(1 + C5)][−C2Ms + Mm(1 + C5)]
p3 = a3(Mm − αMs)2 + b3(Mm − αMs) + c3 (36)
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and a3 and b3 are functions of the system and control
parameters and the sampling time, and

c3 = −2TαM2
s kps [α

2(1 + C5)− 2C2(C2 + αC5)] (37)

Due to (22) and (26), we have M3 > 0. Therefore, if
P3 < 0, then N2

3 − 4M3P3 > 0 implying that (35) will
have a negative and a positive root with respect to ke. As a
result, if P3 < 0, since M3 > 0 the condition ∆3 > 0 will
hold only if ke is greater than the positive root, amounting
to a nonzero, positive γ1 in breach of (25). Therefore, we
are only interested in P3 > 0, which leads to (31).

Having ensured P3 > 0, we distinguish the following two
cases:
• Case 1: N2

3 −4M3P3 < 0. In this case, since M3 > 0, the
condition ∆3 > 0 will hold regardless of ke.

• Case 2: N2
3 − 4M3P3 ≥ 0. In this case, we need N3 > 0

in order to ensure (25). Otherwise, since M3 > 0 and
P3 > 0, (35) will have two real positive roots, resulting in
a nonzero, positive lower bound on ke.

The expression N2
3−4M3P3 can be viewed as a second-order

polynomial in T or a fourth-order polynomial in kvs
. In the

following, we discuss why Case 1, i.e., N2
3 − 4M3P3 < 0,

is not an option regardless of how it is viewed:
• Implications of N2

3 − 4M3P3 < 0 on T : It turns out that
N2

3 −4M3P3 = m′
3T

2+n′3T +p′3 where p′3 = (n3kvs
)2 >

0. We distinguish the following four cases:

– Case 1: m′
3 < 0 and n′3

2 − 4m′
3p
′
3 < 0. This is

impossible because we know that p′3 > 0.
– Case 2: m′

3 < 0 and n′3
2 − 4m′

3p
′
3 ≥ 0. In this case,

since p′3 > 0, the second-order polynomial has one
real positive and one real negative solution. In order
to have N2

3 − 4M3P3 < 0, the sampling period T
needs to be greater than the positive root. However, a
non-zero lower bound on T is not acceptable because
as T → 0, the discrete-time system approaches the
continuous-time system, which was proven stable in
Section III.

– Case 3: m′
3 > 0 and n′3

2 − 4m′
3p
′
3 < 0. In this case,

N2
3 − 4M3P3 < 0 never happens.

– Case 4: m′
3 > 0 and n′3

2 − 4m′
3p
′
3 ≥ 0. In this case,

again since p′3 > 0, depending on the sign of n′3, the
second-order polynomial has either two real negative
or two real positive solutions, and N2

3 − 4M3P3 <
0 holds if T is between the two solutions. For the
negative solutions, this is impossible as T > 0 and
for the positive solutions, it is unacceptable to put a
non-zero lower bound on T .

• Implications of N2
3 − 4M3P3 < 0 on kvs

: The coefficient
of k4

vs
in N2

3−4M3P3 is equal to m2
3 > 0. The polynomial

can either have four distinct real roots or two distinct real
roots and two complex conjugate roots (note that if it has
four complex conjugate roots, then N2

3 − 4M3P3 < 0
will not hold as the coefficient of k4

vs
is positive; also,

note that duplicate real roots do not change the sign
of a polynomial). In order to have N2

3 − 4M3P3 < 0,
assuming roots kvs1 < kvs2 < kvs3 < kvs4 , we need either
kvs1 < kvs

< kvs2 or kvs3 < kvs
< kvs4 , in both cases

imposing an upper bound on kvs
. Consequently, this case

is not of interest as such upper bounds on kvs should be
avoided as far as possible.
In summary, N2

3 −4M3P3 < 0 imposes a lower bound on
T and an upper bound on kvs . While for specific choices of T

and kvs
such bounds may not create difficulties, in a general

analysis they need to be avoided for the reasons explained
earlier. Therefore, due to the unacceptable conditions that
N2

3 − 4M3P3 < 0 imposes on T and kvs
, we only seek

conditions that ensure Case 2, i.e., N2
3 − 4M3P3 ≥ 0 and

N3 > 0.

1) Conditions for ensuring N3 > 0
The expression for N3 is of second order in kvs

, N3 =
m3k

2
vs

+n3kvs
+p3, or of first order in T , N3 = m′′

3T +n′′3 .

a) N3 as a function of kvs

Noting that m3 > 0 as a result of (26) and (31), we
distinguish the following two cases.
• Case 1: n2

3 − 4m3p3 < 0. In this case, N3 > 0 holds for
all values of kvs

, thus no new condition is imposed.
• Case 2: n2

3 − 4m3p3 > 0. A lower bound equal to the
larger root of N3 = 0 will be imposed on kvs

.
In practice, the constant α = Cm/Cs is often chosen to be

α =
Mm

Ms
(38)

as the master and the slave control actions need to be
proportional to their inertias. This will ensure that the master
and the slave have similar closed-loop behavior. Choosing α
according to (38) simplifies p3 to c3 and therefore, based on
(21), (22) and (31), p3 < 0. Also, with (38),

n2
3 − 4m3p3 = −4α2M3

s [C2 + α(1 + C5)]R3 (39)

where

R3 = R′
3kps

T 2 −R′′
3 (40)

R′
3 = 4[α2(1 + C5)− 2C2(αC5 + C2)](αC5 + C2)

R′′
3 = Ms[C2 + α(1 + C5)][−C2 + α(1 + C5)]2

Due to (21), (22), (26) and (31), we have R′
3 < 0 and R′′

3 >
0. Therefore, R3 < 0 regardless of T and based on (39),
Case 1 never happens. Since m3 > 0, in Case 2, the root of
N3 = 0 lower bounds kvs:

kvs > ϕ4(T, kps , Ci, α,Mm,Ms) = max{Root(N3)} (41)

Since m3 > 0 and p3 < 0, N3 = 0 has a positive root and
therefore in (41), ϕ4 > 0.

b) N3 as a function of T

If arranged as N3 = m′′
3T + n′′3 ,

m′′
3 = m′′′

3 k2
vs + n′′′3

n′′3 = 2αkvsM
2
s [−C2 + α(1 + C5)][C2 + α(1 + C5)]

(42)

where

m′′′
3 = −2αMs[C2 + α(1 + C5)](C2 + αC5)

n′′′3 = −2αkpsM
2
s [α2(1 + C5)− 2C2(C2 + αC5)]

(43)

We need to have n′′3 > 0, resulting in

−C2 + α(1 + C5) > 0 (44)

Otherwise, either N3 > 0 is impossible (if m′′
3 < 0) or

imposes a lower bound on T (if m′′
3 > 0) which is not

acceptable as was discussed earlier. Also note that m′′′
3 > 0
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and n′′′3 < 0 as a result of (21), (22), (26) and (31). Having
ensured n′′3 > 0, we distinguish the following two cases.
• Case 1: m′′

3 < 0. In this case, an upper bound on T (to
satisfy N3 > 0) and an upper bound on kvs

(to satisfy
m′′

3 < 0) are simultaneously imposed.
• Case 2: m′′

3 > 0. In this case, no condition on T (to satisfy
N3 > 0) and a lower bound on kvs

(to satisfy m′′
3 > 0)

are imposed.
As was discussed earlier, we would like to avoid an upper
bound on kvs

as much as possible. Therefore, we opt for
Case 2, which imposes the following condition on kv2 :

kvs > ζ3(kps , Ci, α,Ms) =

√
−n′′′3

m′′′
3

(45)

2) Conditions for ensuring N2
3 − 4M3P3 ≥ 0

Since N2
3 − 4M3P3 is a fourth-order polynomial in kvs

in which the coefficient of k4
vs

is positive, the following
condition is sufficient for N2

3 − 4M3P3 > 0

kvs > ϕ5(T, kps , Ci, α,Mm,Ms) (46)

where

ϕ5 = max{Root(N2
3 − 4M3P3)} (47)

Again, N2
3 − 4M3P3 can be viewed as a second-order

polynomial in T leading to a similar constraint involving
kvs

and T , which is not discussed here for brevity.
D. j = 4

While conditions (20) for j = 1, 2, 3 imposed conditions
on C2, C5, α, T , kps and kvs such that the teleoperation
system is stable with the slave in free space (i.e., γ1 = 0 in
(23)), condition ∆4 > 0 affects both the lower bound γ1 and
the upper bound γ2. Therefore, we split the discussion into
the following two parts.

1) Slave in free space; ke = 0
While we previously derived lower bounds on kvs , con-

dition ∆4 > 0 also puts an upper bound on kvs
. Indeed,

excessively high values for kvs
can cause ∆4 < 0 when

ke = 0, jeopardizing stability when the slave is in free space.
To investigate this issue, assuming T 3, · · · , T 10 ≈ 0, we have

∆4 |ke=0= Q4(M4k
2
vs

+ N4kvs
+ P4) (48)

where Q4 > 0 and

M4 = 256T 2k2
ps

(Mm + αMs)3(C2 + αC5)

N4 = −512TMmMskps
2(Mm + αMs)2(C2 + αC5)

P4 = 256T 2MmMsk
3
ps

(Mm + αMs)2(C2 + αC5)

Therefore, based on (31), M4 < 0, N4 > 0 and P4 < 0. In
order to have ∆4 |ke=0> 0, it is required that N2

4−4M4P4 >
0, which results in the following condition:

kps
T 2 < ϕ6(α, Mm,Ms) =

MmMs

Mm + αMs
(49)

When (49) holds, (48) has two positive roots, which are the
lower and upper bounds on kvs such that ∆4 |ke=0> 0

ϕ7 < kvs < ϕ8 (50)

where

ϕ7 = min{Root(∆4 |ke=0)} (51)
ϕ8 = max{Root(∆4 |ke=0)} (52)

2) Slave in contact with an environment; ke 6= 0

Condition ∆4 > 0 decides the upper bound on ke, i.e.,
γ2. While taking i = 3 or i = 5 in (18) yield similar results
with respect to γ1, using i = 5 gives a less conservative (i.e.,
larger) γ2. However, increasing the order of approximation
in (15) to O(T 8) affects γ2 negligibly. With i = 5 in (18)
and assuming T 4, · · · , T 10 ≈ 0, we have

∆4 |ke 6=0= R′
4(M

′
4k

3
e + N ′

4k
2
e + P ′

4ke + Q′
4) (53)

where R′
4 > 0, and N ′

4, P ′
4 and Q′

4 are polynomials in kvs

of orders 3, 4, and 2, respectively. Also,

M ′
4 =

256
3

T 3M3
mkvsC5(1 + C5)[C2 + α(1 + C5)] (54)

Based on (22) and (26), M ′
4 < 0. This means that ke →∞

causes ∆4 < 0 and thus the system becomes unstable. The
upper bound on ke is obtained as

ke ≤ γ2(T, kps
, kvs

, Ci, α,Mm,Ms)
= max{Root(∆4 |ke 6=0)} (55)

Again, (53) can be viewed as a 3rd-order polynomial in T ,
which imposes an upper bound on T if ke and kvs are given.
Also, (53) is a 4th-order polynomial in kvs

imposing lower
and upper bounds on kvs for given T and ke.

E. j = 5, 6

As was mentioned earlier, for i = 3 in (18), we will have
terms up to ∆4 in (20). For i = 5 in (18), there will also be
∆5 and ∆6. However, in this case it can be shown that the
previous conditions ensuring ∆1, · · · ,∆4 > 0 also ensure
∆5 > 0 and ∆6 > 0, thus no new additional conditions are
imposed on the system and control parameters, the sampling
time, or the environment stiffness.

VI. Simulation study
In order to further investigate the stability and performance

of a teleoperation system under discrete-time control, we
simulated a general 4-channel teleoperation system using
SimuLink. In the simulation environment, Rate Transition
blocks were used for realizing samplers and zero-order-
holds in the block diagram of Figure 3. While the control
blocks, which are shaded in Figure 3, were realized using
z-domain transfer functions, the rest of the system was
implemented using s-domain transfer functions. A variable-
step, Dormand-Prince (ode45), continuous-time solver was
used. The input f̃h simulates a human operator pushing
the master at t = 2 → 7 sec such that the slave makes
contact with the environment, and retracting the master to
the original position at t = 7 → 12 sec. We chose Mm =
Ms = 1 kg, Cs = 20s + 100, α = Mm/Ms = 1, C2 = 0.2,
C5 = −0.75, and based on (9), C6 = C2 − 1 = −0.8
and C3 = C5 + 1 = 0.25. These choices meet the design
conditions derived in Section V for ensuring stability.

Figure 4 shows the maximum environment stiffness for a
given sampling time such that teleoperation remains stable
for the cases of i = 3 (i.e., V3), i = 5 (i.e., V5), and simula-
tions. As expected and similar to the case of a discretely-
simulated virtual wall with stability condition (2), higher
sampling periods allow for lower maximum environment
stifnesses (ke can vary from zero up to γ2). As can be seen,
increasing i in (18) from 3 to 5 enhances the precision of
the upper bound on ke given by (55). It was confirmed by
both analysis and simulation that further increase in i to 7 or
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Fig. 4. Stability/instability regions in ke-T plane for kvs = 20.

Fig. 5. Stability/instability regions in T -kvs plane for ke = 1000 N/m.

9 has a negligible effect on the precision of γ2 (the obtained
curves coincide with that of i = 5).

When i = 5, the order of precision of the differentiation
method affects the accuracy of γ2 as given by (55). For
instance, it was observed that using s = T/(z − 1) or
s = Tz/(z−1) (based on backward- and forward-rectangular
integration) instead of s = 2(z − 1)/(T (z + 1)) (based
on Trapezoidal integration) in determining (17) drives γ2

very distant from the simulation results. In fact, increasing
the order of precision of differentiation reduces the distance
between the theoretical and the simulation results at the cost
of higher computational complexity and less mathematical
tractability.

Figure 5 illustrates the effect of the damping introduced
by the controller on the maximum allowable sampling period
for a typical environment stiffness ke = 1000 N/m (the same
simulation parameters as before were used). From (50), the
stabilizing range of kvs

for ke = 0 is 0 < kvs
< 200. As

can be seen in Figure 5, added damping up to kvs = 6.8
has a constructive effect on system robust stability while
further increase in damping reduces the maximum allowable
sampling period. Simulation results precisely match the
theoretical results of Figure 5 for T ≤ 49 msec and therefore
they are not shown separately. For T > 49 msec, the fact that
high orders of T were ignored during the stability analysis
for less complexity causes some discrepancy between the
simulation results and the outcome of the theoretical analysis.

VII. Conclusions
In this paper, first the hybrid model of the digitally

controlled 4-channel teleoperation system was derived. Next,
without making any assumption about the human operator
dynamics, regions of stability of the discrete-time controlled
teleoperation system were obtained in the form of conditions
on the control parameters, sampling period and environment
stiffness. Specifically, requirements on the control parameters
and the sampling period were found such that stability is
ensured when the slave is in free space. It was shown that
when the slave is in contact with an environment, stability
conditions involve upper bounds on the sampling period.
These theoretical results were confirmed by a simulation
study in which the bilateral controller was realized by z-
domain transfer functions while the master, the slave and
the environment were simulated in the s-domain. Since
in real life the human operator has an impedance with a
finite dynamic range and acts as a negative and stabilizing
feedback, the stability regions found in this paper correspond
to a worst-case scenario due to their independence from the
operator’s dynamical characteristics.
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