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Abstract: The Rotational/Translational Actuator (RTAC) benchmark problem considers a 
fourth-order dynamical system involving the nonlinear interaction of a translational oscillator 
and an eccentric rotational proof mass. This problem has been posed to investigate the utility of 
a rotational actuator for stabilizing translational motion. In order to experimentally implement 
any of the model-based controllers proposed in the literature, the values of model parameters 
are required which are generally difficult to determine rigorously. In this paper, an approach to 
the least-squares estimation of the parameters of a system is formulated and practically applied 
to the RTAC system. On the other hand, this paper shows how to model a nonlinear system as a 
linear uncertain system via nonparametric system identification, in order to provide the 
information required for linear robust H∞ control design. This method is also applied to the 
RTAC system, which demonstrates severe nonlinearities due to the coupling from the rotational 
motion to the translational motion. Experimental results confirm that this approach can 
effectively condense the whole nonlinearities, uncertainties, and disturbances within the system 
into a favorable perturbation block. 
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parametric identification, least squares estimation, nonparametric identification, prediction 
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NOMENCLATURE 
 
Air viscous coefficient c  
Arm angular position θ  
Arm angular velocity θ�  
Arm eccentricity e  
Arm inertia I  
Arm mass m  
Arm rotation viscous coefficients 1vK , 2vK  

Backward shift operator 1−q  
Cart mass M  
Cart translation Coulomb coefficient d  
Cart translational position q  

Cart translational velocity �q  
Complementary sensitivity transfer function ( )T s  
Controller transfer function ( )C s  
Coupling parameter ε  
Current-to-torque gain mK  
Disturbance force F  
Expectation operator E  
Kronecker delta δ ,t s  
Model input ( )u t  
Model output ( )y t  
Model parameter vector Θ  
Motor current i  
Motor torque N  
Noise covariance matrix Λ  
Nominal system transfer function 0 ( )P s  
Normalized cart position ξ  
Normalized cart velocity ξ�  
Normalized disturbance force w  
Normalized motor torque u  
Observation vector Q  
Perturbation ∆  
Predicted output ˆ( )θ;y t  
Prediction error η( )θ,t  

__________  
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Regressed variables vector Θ  
Regressor matrix Φ  
Sensitivity transfer function ( )S s  
Spring stiffness k  
Spring viscous coefficient b  
System transfer function ( )P s  
Uncertainty weighting transfer function ( )W s  
White noise ( )e t  
 

1. INTRODUCTION 
 

The Rotational/Translational Actuator (RTAC) 
experiment has originally been studied as a simplified 
model of a dual-spin spacecraft. It has been shown 
that this system is mathematically and qualitatively 
equivalent to a dual-spin spacecraft, i.e., they have 
similar averaged equations and exhibit similar 
dynamic behaviors [1]. One important issue with 
regard to the control of dual-spin spacecrafts is the 
resonance capture phenomenon1. As a result of the 
similarities, spacecraft control strategies aimed at 
minimum-effort stabilization while avoiding resonance 
capture can first be tried on the RTAC system which 
possesses all essential characteristics of the spacecraft 
dynamic behavior [1]. 

Later, the RTAC system has been studied to 
investigate the usefulness of a rotational actuator for 
stabilizing translational motion [2]. In this nonlinear 
system, unlike a linear actuator, the actuator stroke 
limitations are implicitly involved in the system 
dynamics [3]. Consider the translational oscillator with 
an eccentric rotational proof mass shown in Fig. 1. The 
oscillator consists of a cart of mass M  connected to a 
fixed wall by a linear spring of stiffness k . The motion 
is confined in one direction and is merely in the 
horizontal plane so that gravitational forces do not 
contribute. The proof mass attached to the cart has 
mass m  and moment of inertia I  about its center of 
mass, which is located at a distance e  from the point 
about which the proof mass rotates. N  denotes the 
control torque applied by the rotational actuator to the 
proof mass, and F  is the disturbance force on the cart.  

In this nonlinear benchmark problem, the control 
objective is the oscillator stabilization despite external 
disturbances via the control torque provided by the 
rotational actuator. More specifically, it is required to 
design a controller such that:  

a) The closed-loop system is stable.  
b) The closed-loop system exhibits good settling 

behavior for a class of initial conditions.  
c) The closed-loop system exhibits good disturbance 

rejection compared to the uncontrolled oscillator for  

                                                        
1The attraction of a system into a state of sustained reso-

nance. 

 
Fig. 1. Rotational actuator to control a translational 

oscillator. 
 
 a class of disturbance signals.  
d) The control effort is feasible.  

A number of research works are reported on this 
problem. For instance, Bupp, Bernestein and Coppola 
implement four nonlinear controllers on the RTAC, 
including an integrator back-stepping controller and 
three passivity-based controllers [4]. Also Jankovic, 
Fontaine and Kokotovic design and compare linear 
cascade controllers and passivity-based controllers for 
the system [5]. Kanellakopoulos and Zhao design a 
back-stepping controller for tracking [6], and Jiang 
and Kanellakopoulos design an output feedback 
controller through observer/controller back-stepping 
design [7]. Mracek and Cloutier use the state-
dependent Riccati equation technique to produce a 
nonlinear controller for the benchmark problem [8]. 
Kolmanovsky and McClamroch propose a hybrid 
feedback control law expressed in terms of a 
continuous feedback part and a part including 
switched parameters [9]. Haddad and Chellaboina 
apply their method of designing nonlinear fixed-order 
dynamic passive controllers to the RTAC system [10]. 
Dussey and El-Ghaoui develop a measurement-
scheduled output-feedback controller with an LMI 
approach for the system [11]. Tsiotras, Corless and 
Rotea use the theory of L2 disturbance attenuation to 
obtain solutions to the RTAC problem [12].  

To implement any of the above-mentioned model-
based controls in practice, it is necessary to have the 
values of the system parameters. While rigorous 
determination of the parameters of the actual system is 
quite difficult, this paper proposes a least-squares 
method for estimation of the parameters of this system 
and similar dynamical systems. On the other hand, the 
stated control objectives are very well suited for the 
linear robust control of the system. The second 
contribution of this paper is an identification-based 
method for representing the experimental RTAC 
system as a nominal linear system in addition to an 
uncertainty block, as required by the linear H∞ 
control synthesis.  

This paper is organized as follows. In Section 2, the 
nonlinear equations of motion and the system 
linearization around an equilibrium point are 
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discussed. Section 3 describes the experimental setup 
which realizes the equations of motion of the 
nonlinear system. Section 4 addresses the least-
squares estimation of the system parameters aimed at 
model-based control. In Section 5, the time-domain 
nonparametric identification of the system suited for 
the H∞ synthesis framework is discussed. 

 
2. SYSTEM MODELLING 

 
Let q  and �q  denote the translational position 

and velocity of the cart, and let θ  and θ�  denote 
the angular position and velocity of the rotational 
proof mass (Fig. 1). Assuming that the system shown 
in Fig. 1 operates in a horizontal plane, the equations 
of motion for the system are given as:  

2( ) ( cos sin )θ θ θθ+ + = − − + ,�� ���M m q kq me F    (1) 
2( ) cosθ θ+ = − + .�� ��I me meq N                (2) 

With some transformations [2], the nondimension-
alized state equations of the system are given by  

( ) ( ) ( )= + + ,x f x g x d x� u w                   (3) 
where  

T2 2
1 4 3 3 1 4 3

2 42 2 2 2
3 3

ε sin ε cos ( ε sin )
( ) ,

1 ε cos 1 ε cos

 − + −
=   − − 

f x
x x x x x x x

x x
x x

T 2 2
3 3(0 εcos 0 1)( ) (1 ε cos )−= / −g x x x , 

T 2 2
3 3(0 1 0 ε cos )( ) (1 ε cos )−= / −d x x x . 

Here, TT
1 2 3 4 )( (ξ )ξ θ θ= =x � �x x x x , where ξ  

is the normalized cart position, and u and w represent 
the normalized control torque and disturbance, 
respectively. In (3), the differentiation is performed 
with respect to the normalized time τ . The parameter 

2ε ( )( )me I me M m= / + +  represents the coupling 
between the translational and rotational motions.  

The above formulation of the RTAC experiment 
does not account for the effects of friction and spring 
damping which do exist in practice. The air friction 
and spring damping can be considered as disturbances 
on the cart, and may be modelled as viscous frictions 
with coefficients b and c, respectively. Therefore, (1) 
becomes  

2( ) ( cos sin )θ θ θθ+ + + = − − − .�� ��� � �M m q kq bq me cq  

The equilibrium point is T
00 0 0)( θ=ex  and 

0=eu , where 0θ  is any arbitrary value, provided 
the disturbance w is zero. Using Jacobians for this 
equilibrium point, the transfer function from the 
normalized torque u to the normalized cart position ξ  
is found to be  

 
Fig. 2. The RTAC setup. 

 
0

2 2 2
0 ( )

ε cosΞ( )
( ) (ε cos 1) 1

θ
θ

+

=
− − −v

k M m

s
U s s s ,

     (4) 

where = +v b c . This transfer function has a DC gain 
that varies with 0θ , however, the poles are fairly 
insensitive to the variations of 0θ . The term 0cosθ  
in the numerator implies that the pendulum vibrations 
about 0θ =  have the most influence on the cart 
displacement, while at 90θ = D  they have the least 
effect. 

 
3. EXPERIMENTAL TESTBED 

 
The experimental testbed, aimed to realize the 

model depicted in Fig. 1, is constructed (Fig. 2). The 
basis for this setup, which is provided by an 
aluminum plate, is connected to a rigid ceiling by five 
perpendicularly mounted steel bars. The spring is 
realized by two beams fastened to the ceiling. These 
beams also serve to suspend the cart made of acrylic 
plates in the air, in order to reduce the friction as 
much as possible2. Due to the setup rigidity, the cart 
translation is merely confined to one direction, and 
roll, yaw and pitch rotations are suppressed as well. A 
DC motor and a tachometer are centered on the lower 
and upper plates of the cart, with their shafts secured 
together through a coupling to avoid eccentricity. The 
same coupling also serves to hold the eccentric arm 
and the proof mass.  

The control torque is provided by the DC motor. A 
PWM current drive controls, through a PI feedback 
loop, the torque applied by the motor on the eccentric 
arm. The angular position of the arm is determined by 
integrating the angular velocity readings from the 
                                                        

2To reduce the friction, an air-cushion table solution was 
originally proposed by Bupp, Bernestein and Coppola [2]. To 
alleviate the mechanical complexities associated with the air 
table, we built the system with flexible beams used to 
implement both the spring and the suspension [13]. 
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tachometer. In order to determine the cart translational 
position, a linear variable differential transformer 
(LVDT) is utilized. It consists of a body which is 
mounted on the basis, and a core which is attached to 
the cart and travels within the body. Therefore, the 
cart travels are translated to a proportional voltage at 
the output terminals of the LVDT which is logged by 
a PCL-818 data acquisition card from Advantech. 

 
4. PARAMETRIC IDENTIFICATION FOR 

MODEL-BASED CONTROL 
 
To implement any of the model-based controls such 

as [1,2,4-12], it is necessary to have the values of 
system parameters. Since it is not always easy to 
rigorously determine the values of model parameters, 
a scheme for estimating these parameters using the 
least-squares method is formulated below. 

 
4.1. Method 

The system equations of motion can be viewed as a 
set of equations in which the system parameters are 
regressed variables (unknowns) and certain functions 
of the measured variables serve as regressors. The 
first equation of motion of the RTAC system can be 
written as 

2sgn( ) ( cos sin )θ θ θθ
+

+ + + − = − ,�� ��� � �M m v d meq q q q
k k k k  

where v  is due to the air friction and spring damping, 
and d  is the Coulomb friction coefficient. In a “free-
oscillation experiment”, in which the motor is idle and 
the cart is subject to free oscillations due to its initial 
position, the term 2cos sinθ θ θθ−�� �  will be negligible. 
Therefore, at the i -th sampling time during an 
identification experiment:  

T

Φ Θ
Φ ( sgn( )),

Θ .

= − ,

=

+ =  
 

�� � �
i i

i i i i

q
q q q

M m v d
k k k

 

Therefore, the vector of regressed variables Θ  can 
be estimated through the least-squares method if we 
have measurements leading to the values of the 
regressor matrix T

1(Φ Φ )Φ n= "  and the observation 

vector T
1 )(− −= " nq qQ :  

T 1 TΘ (Φ Φ) Φ−= .Q                        (5) 

A similar scheme can be used to find the rest of 
system parameters through a set of “forced-oscillation 
experiments" in which inputs are provided to the 
motor. Incorporating the rotational viscous friction 
into the second equation of motion, (1)-(2) can be 

rewritten as  

2

2
1 2

( cos sin ) ( ) sgn( )

cos ( )θ θ

θ θ θθ
θ θ θ θ−

− = − − + − − ,

− + + = − + ,� �

�� � �� � �
� � ���� m v v

me kq M m q vq d q

meq K i K u K u I me
(6) 

where i  is the motor current, mK  is the motor 
torque constant, and 1vK  and 2vK  represent the 
coefficients of asymmetric viscous friction in the arm 
rotational motion. As discussed in the next section, (6) 
can be solved simultaneously with respect to the 
unknown parameters 1, ,m vme K K  and 2vK  once 
the other parameters have been estimated through the 
free-oscillation experiments.  

A consistency measure has been defined as the ratio 
of standard deviation of the parameter estimates to 
their mean value. Through a comprehensive set of 
simulations and experiments, it has been empirically 
shown that if this measure is less than 30% for all 
parameter estimates, then the model based on the 
mean values of parameter estimates is in good 
agreement with the actual system [14]. With two sets 
of data (the free- and forced-oscillation experiments) 
and a subset of the parameters estimated using each of 
these data sets, more consistent parameter estimates 
will be found compared to the case that all of the 
parameters were estimated at one attempt. 

 
4.2. Experimental results 

Using ten free-oscillation experiments obtained for 
different cart initial positions, the least-squares 
estimates of M m

k
+ , v

k  and d
k  can be found using 

(5). To find Φ  and Q, the cart position data are 
logged and then filtered by a th9 -order Chebychev 
filter implemented using a zero-phase-distortion 
routine (Matlab function filtfilt [15]) to remove the 
measurement noise. The filtered cart position data are 
then differentiated to find q�  and q�� . Since the least-
squares estimation is done offline, the filtered cart 
position data are differentiated using the two-point 
central difference formula which is a non-causal and 
more accurate method. The least-square estimations of 
M m

k
+ , v

k  and d
k  from the free-oscillation 

experiments are listed in Table 1(a). Weighing the 
acrylic plates, motor, tachometer and arm results in 

1 230M m+ = .  kg, and therefore 132 6k = .  N/m, 
0 5543v = .  and 324 10d −= × .  

Twenty forced-oscillation experiments with 
different cart initial positions and arm initial angles 
are performed while the input amplitudes are swept 
from 50% to 100% of their maximum value. For the 
setup built in the laboratory, I + me2 is mathematically 
determined to be 59 5 10−. × . Having obtained the 
estimates of M m+ , k , v  and d  from the free-
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oscillation experiments, (6) can simultaneously be 
solved with respect to the parameters 1, ,m vme K K  
and 2vK . The estimates are listed in Table 1(b).  

Small consistency measures for the parameters 
estimated through free- and force-oscillation 
experiments ensure a good match between the 
estimated mathematical model and the actual system. 
Estimated values of important system parameters are 
summarized in Table 1(c). 

 
5. NONPARAMETRIC IDENTIFICATION 

FOR ROBUST H∞ CONTROL 
 
The RTAC problem was originally posed as a 

nonlinear benchmark problem and, as a result, the 
previous research has relied on an ideal, non-
dissipative and fixed nonlinear model of the system 
given (1) and (2). Such an approach, however, does 
not consider the unmodelled dynamics, parametric 
uncertainties, disturbances or other deviations from 
the nonlinear model which do exist in practice. 
Therefore, it is important to look for more realistic 
control strategies, such as robust control, that can 
effectively take into account the deviations of a 
system from the theoretical model. Interestingly, the 
stated control objectives for the RTAC problem, 
namely the internal stability, fast settling, and good 
disturbance rejection in spite of limited control effort, 
are well suited for the robust control framework. 

 
5.1. Method 

We propose to estimate a nonlinear system as a 
nominal linear system in addition to uncertainty, in 

order to provide the information required for the linear 
H∞ control synthesis. While the determination of the 
weighting functions representing the uncertainty level 
of a system is a problem with the robust control, we 
will use system identification to find out the nominal 
model in addition to the corresponding uncertainty 
level. This scheme for representing nonlinear systems 
has successfully been applied to the control of 
harmonic drives by one of the authors [16]. It is 
interesting to observe the capability of a similar 
approach in capturing the dynamics of the RTAC 
system, which has severe nonlinearities due to the 
coupling from the rotational motion to the 
translational motion through a sinusoidal term. The 
next subsections explain how system identification 
can be used to model a nonlinear system in the format 
required by the linear robust H∞ control. For a 
unified system identification/robust control design, 
see [17,18] and the references therein. 

 
Prediction-error identification 
To produce a linear frequency response estimate of a 
nonlinear system, prediction-error system identification 
can be performed. In the prediction-error method [19], 
a general model structure (Θ)M  and a linear 
predictor (Θ)P , which is only a function of past 
data, are considered: 

(Θ)M 1 1( ) ( Θ) ( ) ( Θ) ( )y t G q u t H q e t− −: = ; + ; ,  
T( ) ( ) Λ(Θ)δt sE e t e s ,= ,  

(Θ)P 1 1
1 2ˆ( 1 Θ) ( Θ) ( ) ( Θ) ( ).y t t L q y t L q u t− −: | − ; = ; + ;  

Here, ( )u t  and ( )y t  denote the model input and 
output at time t. ˆ( 1 Θ)y t t| − ;  represents the predicted 
value of the output at time t, and e(t) is white noise. The 
argument 1q−  denotes the backward shift operator, 
and Θ  is the model parameter vector. In the 
prediction-error method, a least-squares minimization 
is used to determine the model parameter vector Θ  in 
such a way that the sum square of the prediction errors 

ˆη( Θ) ( ) ( 1 Θ) 1 2 ,t y t y t t t N, = − | − ; , = , , ,…  

is minimized. 
 
Identification for robust H∞ control 
A nonlinear system can be modelled as an 
unstructured set P  of linear plants. In other words, 
a nominal model 0 ( )P s , a weight ( )W s , and a stable 
perturbation ∆  satisfying ∆ 1∞ ≤  may be found 
in such a way that the frequency response of the 
nonlinear system is represented as3 ( ) (1 ∆P s = + (s) 

                                                        
3Perturbations other than multiplicative are also allowed. 

Table. 1. From top to bottom: Least square parameter 
estimates from (a) the free-oscillation 
experiments, and (b) the forced-oscillation 
experiments; (c) RTAC system parameter 
estimates. 

 +M m
k  v

k  d
k  

Mean 9.27 3×10−  4.18 3×10−  1.81 4×10−

Std dev
Mean
. .  0.64 % 9.68 % 14.74 % 

 

 me  mK  1vK  2vK  

Mean 1.06 3×10−  8.04 2×10−  1.39 4×10−  1.49 4×10−

Std dev
Mean
. .  15.5 % 6.2 % 34 % 33 % 

 

Total mass M m+  1.23 kg 
Arm inertia moment 2I me+  950  g.cm 2

Spring stiffness k  132.6 N/m 
Coupling parameter ε  0.1 

Torque constant mK  0 08.  N.m./A
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0( )) ( )W s P s . If a set of identification experiments is 
performed on the nonlinear system under different 
operating conditions, the resulting linear frequency 
response estimates ( ω)P j  will form the set .P  By 
finding a nominal fit 0 ( ω)P j  through these frequency 
response estimates, which reduces the variations 
among them to a minimum, and encapsulating the 
whole nonlinearities, disturbances and uncertainties of 
the system into the perturbation ∆W , the information 
needed for linear H∞  controller design are generated. 
Since ∆ 1∞ ≤ , ( ω)W j  needs to be chosen no 
smaller than the upper bound of the uncertainty profile 
at each frequency:  

0

( ω) 1 ( ω) ω
( ω)

P j W j
P j
| − |≤ , ∀ .                 (7) 

The details of each step of this nonparametric 
identification scheme as applied to the RTAC system 
is reported next. 

 
5.2. Simulation study 

Prior to identification of the actual system in 
practice, a simulation study is done based on the 
nonlinear system of Section 2 to test the effectiveness 
of the proposed approach. In simulations, it was found 
that the knowledge of the linearized system can 
greatly help to overcome possible difficulties during 
identification. One such difficulty for which simulations 
were done was the handling of the varying DC gain of 
the transfer function in (4). The DC gain which varies 
with the arm angle 0θ  can reduce the accuracy of the 
frequency response estimates, because for different 
operating conditions of the pendulum, the optimization 
is bound to converge to different local minima. A well-
conditioned solution to this problem, as shown in Fig. 3, 
is to identify only that portion of transfer function (4) 
which is time invariant4, i.e., 

2 2 2
0 ( )

( ) ε
( ) (ε cos 1) 1θ

+

= ,
− − −� v

k M m

y t
x t s s

 

and then put the term 0cosθ  back to get the actual 
transfer function using the θ values obtained from 
the system. 

For identification tests, a concatenation of positive 
and negative multisines is used as the excitation input5. 
The reason is that a multisine signal demonstrates a 
rich and almost uniform spectrum over the frequency 
range of interest and is highly persistent excitation 
(pe) as the sum of n  sinusoids is pe of an order not 
                                                        

4The poles of (4) change negligibly with 0θ . 
5Functions msinclip and msinprep in the Matlab’s Frequen-

cy Domain Identification Toolbox (FDIDENT) [20]. 

less than 2 2n −  [19]. 
Despite the requirement that the identification input, 

motor torque, should be limited to 0 1N| |≤ .  N.m., it 
must be able to stimulate the states of the system and 
to excite all nonlinearities under a wide range of 
operating conditions. For this purpose, it is essential 
to select the frequency range within which the 
excitation input needs to be pe, and the distribution of 
the amplitude and phase of the sinusoids over this 
frequency range. As it can be seen from (4), the 
magnitude of the normalized system transfer function 
is much larger around 0ω 1=  rad/s than other 
frequencies ( ε  and v  are small) and, consequently, 
the system output is less sensitive to harmonics other 
than 0ω . In order to normalize the distribution of 
amplitudes over the frequencies, the spectral content of 
the multisine is divided by the magnitude of the 
linearized system frequency response at each frequency. 
As a result, the harmonics of the normalized multisine 
will be equally pronounced at the output.  

The amplitude of the input excitation signal is 
adjusted through experiments such that the output 
remains within the admissible limits of cart travel, yet 
it covers all the workspace of the system confirming 
that the states are persistently excited. It was found 
through the simulation study that, in this particular 
problem, detrending the input-output data6 reduces 
the accuracy of the frequency response estimates at 
low frequencies and, therefore, was avoided. Indeed, 
as discussed in [21], subtracting the mean from 
nonlinear data can cause a steady-state offset in the 
model (i.e. poor low frequency estimation) because 
the mean does not necessarily correspond to the 
operating point around which a nonlinear system is 
being perturbed. Identification is performed using 
both the transient and the steady-state responses of the 
system. Following the identification, residuals are 
checked to make sure they are within confidence 
intervals and, therefore, the identification results are 
valid.  

To further verify the identification, the responses of 
the nonlinear system, the linearized system given by 
(4) and the identified system to a multisine input are 
                                                        

6Subtracting the means from the data. 

 
Fig. 3. Compensation of the varying DC gain. 
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shown in Fig. 4. The identified system demonstrates a 
response much closer to the nonlinear system 
compared to the linearized system. The occasional 
discrepancies between the amplitudes of the nonlinear 
and identified systems outputs can be explained by the 
fact that, while the nonlinear system frequency 
response experiences expected variations for different 
operating conditions, the identified system represents 
an average fixed linear model that, only together with 
an uncertainty block, can fully explain the behavior of 
the nonlinear system.  

Frequency response estimates resulted from 
prediction-error identification for various operating 
conditions in addition to the frequency response of the 
linearized system are illustrated in Fig. 5. The 
uncertainty profile 

0

( ω)
( ω) 1P j

P j| − |  has an upper 

magnitude limit of 10 dB−  at low frequencies. This 
shows that not only the RTAC nonlinear system is 

represented by an average linear model and 
uncertainty, but also the low values of uncertainty at 
low frequencies promise the effectiveness of H∞  
synthesis in order to achieve a robust performance for 
the closed-loop system. 

 
5.3. Experimental results 

By applying the methods developed in the 
simulation study of Section 5.2 including the 
compensation of the varying DC gain and the 
excitation input selection, we proceed to the 
experimental identification of the RTAC system. 
Identification tests are done on the actual system for 
different initial conditions (i.e. different arm angles) 
such that the estimated transfer functions are valid 
representatives of the nonlinear system all over the 
workspace. The amplitudes of the multisine range 
from 50%  to 100%  of their maximum value, with 
the maximum value being where the limits of cart 
travel are violated. Since the RTAC system is 
uncontrollable at 0 ±90θ = D , the excitation input is 
taken to be zero when 0cosθ  nears zero, e.g. when 

0cos 0 05θ| |≤ . . Within this uncontrollable span and in 
the absence of an input, the arm momentum of inertia 
passes the arm through this region. Finally, the 
prediction-error minimization is initialized with a 
parameter vector Θ  specifying the model structure 
of the linearized model (4).  

The resultant frequency response estimates as well 
as the frequency response of the selected average 
(nominal) system 0 ( )P s  are shown in Fig. 6(a) where  

3
0 ( ) 3 7 10

( 175 7)( 32 7)( 14 5 26 6)
( 2 7 12 9)( 4 1 37 4)

P s
s s s j

s j s j

−= . ×

− . + . + . ± .
× .

+ . ± . + . ± .

 

While the magnitudes of the frequency response 
estimates experience two peaks at 12.9 rad/s and 37.4 
rad/s, our simulation study had previously shown the 
first peak only (see Fig. 5). The reason for this is that 
the flexible beams used to realize the springs in the 
experimental setup form a spring-mass-spring-mass 
system that has one rigid and one flexible modes. The 
peak at 12.9 rad/s corresponds to the rigid mode of the 
mechanical structure, while the 37.4 rad/s harmonic 
represents the fundamental frequency of the flexible 
structure. 

The uncertainty profile 
0

( ω)
( ω) 1P j

P j| − |  and the 

uncertainty weighting function selected as  

ω ω
2 80
ω ω
5 1000

( 1)( 1)
( ω) 0 55

( 1)( 1)

j j

j jW j
+ +

= .
+ +

              (8) 

are depicted in Fig. 6(b). For best fulfillment of H∞ 

Fig. 4. Response of the nonlinear system (solid),
linearized system (dash-dot) and identified
system (dotted) to a multisine input during
simulations. 

 

Fig. 5. Frequency response of the estimated and
nominal systems during simulations. 
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control performance requirements, which are mainly 
influenced by the low-frequency characteristics, and 
to avoid conservatism in the control design, the 
selected uncertainty weighting function falls slightly 
lower than the uncertainty level over low frequencies. 
The low values of ( ω)W j  at low frequencies 
promise an effective linear H∞ synthesis. 

 
5.4. Robust H∞ control formulation 

The H∞ controller must internally stabilize the 
closed-loop system, reject the disturbances and 
increase the damping of the system dominant 
oscillatory mode as much as possible while the 
control effort is limited. The block diagram shown in 
Fig. 7 formulates the above-mentioned problem as a 
standard H∞ problem. The generalized regulator 
problem is defined as finding a controller ( )C s  such 
that:  

a) Ty1u1 is internally stable  

 
Fig. 7. Closed-loop system as a generalized regulator 

problem. 
 
b) 

1 1y uT ∞|| ||  is minimized  

where 
1 1y uT  is the transfer matrix from input 1u  to 

output vector T
1 1 1 1( )a b cy y y y= . This problem is 

equivalent to the so-called mixed sensitivity problem:  

1

2

3

min
d

d
C

d

W W CS
W W T
W W S

∞

 
 
 
 
 

                        (9) 

in which andS T are sensitivity and complementa-
ry sensitivity functions, respectively. 

Having obtained a nominal system 0 ( )P s , the 
weighting functions in (9) remain to be appropriately 
shaped for best fulfillment of the control objectives. 
To satisfy the primary closed-loop requirement, 
namely fast settling of the cart, the controller must 
increase the damping of the system oscillatory modes. 
The following weight dW  replaces the dominant 
oscillatory modes of the nominal system at 

2 7 12 9j− . ± .  with more stable ones at 10 12 9j− ± . :  

( ( 10 12 9))( ( 10 12 9))( )
( ( 2 7 12 9))( ( 2 7 12 9))d

s j s jW s
s j s j
− − + . − − − .

= .
− − . + . − − . − .

 

Choosing 2 dW W W= / , where W  is the uncertainty 
weighting function of (8), ensures closed-loop robust 
stability as 1WT ∞ < . To avoid actuator saturation, 

weight 1W  should be used to penalize the control 
effort. Furthermore, 1 dW W  should form a band-stop 
filter to allow maximum control effort around the 
system dominant oscillatory mode:  

2 2 2 2

1 2 2
1 4 0 7

( 2 4 8 )( 4 2 14 ) 1( ) 0 15 .
( )( 8) ( 14)s s d

s s s sW s
W s

. .

+ . + + . +
= . ×

+ +
 

For simplicity, W3 which reflects the disturbance 
rejection properties of the closed-loop system is 
chosen to be a constant, W3=0.17. With the nominal 

Fig. 6. Experimental results. From top to bottom: (a)
The frequency responses of the estimated and
nominal systems (top), and (b) the uncertainty
profile and the uncertainty weighting function
(bottom). 
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linear system 0 ( )P s  and the uncertainty weighting 
functions 1 2 3( ), ( ), ( )W s W s W s and ( )dW s , all the 
information needed for designing a linear H∞ 

controller for the RTAC nonlinear system are 
provided.  

Open-loop and closed-loop simulations based on 
the actual estimated system (Table 1(c)) and the 
designed H∞ controller are set up, with the results 
depicted in Fig. 8. As it is seen, in response to the 
natural oscillations caused by the nonzero initial 
position of the cart, while the uncompensated system 
shows a poor settling behavior, the H∞  controller 
stabilizes the closed-loop system quite effectively. The 
control effort is also well between the admissible 
limits. Therefore, the robust H∞ control design is 
entirely successful in satisfying the required control 
objectives based on the estimation of the nonlinear 
system as a linear uncertain system. The results show 
the success and effectiveness of the proposed 
approach in dealing with a system that demonstrates 
extreme nonlinearities due to the coupling between 
the translational and rotational motions. 

 
6. CONCLUSIONS 

 
The RTAC benchmark problem investigates the 

utility of a rotational actuator for stabilizing 
translational motion. In this paper, system parameters 
were estimated in a least-squares framework based on 
free- and forced-oscillation identification experi-
ments. On the other hand, the control requirements 
lend themselves well to the robust control synthesis 
framework. A time-domain nonparametric identifica-
tion method was used by which the nonlinear system 
was modelled as a nominal linear system plus 
uncertainty. It was confirmed in practice that the 
deviations of the nonlinear system from the average 
linear system can successfully be condensed into a 

small perturbation block. An effective mixed-
sensitivity problem that uses the average model and 
uncertainty information was developed to satisfy all 
performance requirements as well as robust stability 
despite actuator saturation. 
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