
49

&

www.ietdl.org
Published in IET Control Theory and Applications
Received on 8th June 2007
Revised on 4th January 2008
doi: 10.1049/iet-cta:20070195

ISSN 1751-8644

Discrete-time bilateral teleoperation:
modelling and stability analysis
M. Tavakoli1 A. Aziminejad2,3 R.V. Patel2,3 M. Moallem4

1School of Engineering and Applied Sciences, Harvard University, 60 Oxford Street, Cambridge, MA 02138, USA
2Department of Electrical and Computer Engineering, University of Western Ontario, London, ON, Canada N6A 5B9
3Canadian Surgical Technologies and Advanced Robotics (CSTAR), 339 Windermere Road, London, ON, Canada N6A 5A5
4School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
E-mail: tavakoli@seas.harvard.edu

Abstract: Discretisation of a stabilising continuous-time bilateral teleoperation controller for digital
implementation may not necessarily lead to stable teleoperation. While previous research has focused on the
question of passivity or stability of haptic interaction with a discretely simulated virtual wall, here the stability
of master– slave teleoperation under discrete-time bilateral control is addressed. Stability regions are
determined in the form of conditions involving the sampling period, control gains including the damping
introduced by the controller and environment stiffness. Among the obtained stability conditions are lower and
upper bounds on the controller damping in addition to upper bounds on the sampling period and the
environment stiffness, implying that as the sampling period is increased, the maximum admissible stiffness of
the environment with which a slave robot can stably interact is reduced. An outcome of the paper is a set of
design guidelines in terms of selection of various control parameters and the sampling rate for stable
teleoperation under discrete-time control. Because of the sampling period–environment stiffness tradeoff and
the stability– transparency tradeoff, the obtained stability boundaries are of particular importance for
hard-contact teleoperation or when the teleoperation system has near-ideal or ideal transparency. The results
of the stability analysis are confirmed by a simulation study in which the bilateral controller is realised by
z-domain transfer functions while the master, the slave and the environment are simulated in the s-domain.
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Nomenclature
a ratio of Cm(s) to Cs(s)

Dj determinant for Routh–Hurwitz test

g1 lower bound on ke

g2 upper bound on ke

f̃e (t) environment’s exogenous input force

f̃h (t) operator’s exogenous input force

b haptic interface damping

bw virtual wall damping

C1, . . . , C6 bilateral control gains

Cm(s) master’s PD controller

Cs(s) slave’s PD controller

f �(t) sampled-data f (t)
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fe(t) slave/environment interaction

fh(t) hand/master interaction

fm(t) master control signal

fs(t) slave control signal

Gh0(s) zero-order hold

H(s) hybrid matrix

hij(s) hybrid matrix element

ke environment stiffness

kw virtual wall stiffness

kpm proportional gain of Cm(s)

kps proportional gain of Cs(s)

kvm derivative gain of Cm(s)

kvs derivative gain of Cs(s)

Mm master inertia
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Ms slave inertia

S(s) scattering matrix

T sampling period

V3 third-order Verlet approximation

V5 fifth-order Verlet approximation

xm(t) master position

xs(t) slave position

Ze(s) remote environment’s impedance

Zh(s) operator hand’s impedance

Zm(s) master impedance

Zs(s) slave impedance

Zt(s) impedance transmitted to the operator

1 Introduction
In bilateral master–slave operation, a user operates from and
receives feedback of slave/environment interactions via a
master interface while a slave robot mimics the user’s hand
manoeuvres on the remote environment. Besides stability
which is the primary requisite for safe teleoperation, the
ideal performance goal is that the combination of the
master, the slave and the bilateral controller is ‘transparent’,
implying that the dynamics of the environment is displayed
to the user with no distortion. For achieving stable and
possibly transparent teleoperation, various teleoperation
control architectures are proposed and used in the literature
[1–3] including position-error-based (PEB) control, direct
force reflection (DFR) control and four-channel control.
The four-channel bilateral teleoperation method is the
most comprehensive architecture, as it can represent other
teleoperation methods through appropriate selection of its
control parameters. It is also the most flexible method
because, unlike other methods, it can guarantee ideal
transparency.

The stability and/or transparency of a teleoperation system
can be jeopardised due to non-idealities which exist in practice
and are often not considered during control design. Among
the effects studied so far are master–slave communication
delays [4–6] including variable delays in Internet-based
teleoperation [7], contact transition [8] and friction [9].

Another detriment to teleoperation stability and
transparency, whose importance warrants a separate
analysis, is sampling during discrete-time implementation
of bilateral controllers. Problems with teleoperation stability
arise when a bilateral controller designed in the
continuous-time domain is converted into the discrete-time
domain for implementation as a digital controller. Because
of the wealth of continuous-time design methods,
discretising predesigned continuous-time controllers rather
than direct discrete-time design is very common and, in
teleoperation control, overwhelmingly the method of
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choice. In this approach, the sampling frequency is chosen
based on the continuous-time closed-loop bandwidth,
which is available from the knowledge of the analogue
control system. As will be seen in this paper, such a system
may become unstable particularly when the slave robot is
interacting with a stiff environment or when the
teleoperation system has near-ideal or ideal transparency
(which corresponds to a small stability margin).

With passivity being a sufficient condition for stability of a
system terminated to other passive elements, previous research
has investigated the passivity of a communication channel
over a sampled data, packet-switched network such as the
Internet in the face of varying delay and packet loss [10, 11].
Since a zero-order hold (ZOH) creates energy leaks that can
make an otherwise passive system non-passive [12], some
researchers have studied the effect of sampled-data control on
system passivity. Leung and Francis [13] found that the
discrete-time counterpart of a continuous-time stabilising
bilateral controller may not necessarily stabilise the
teleoperator, but the sampled-data system could be stabilised
for sufficiently small sampling periods by using six low-pass
filters. To address the problem of passivity-preserving
sampling, Anderson [14] proposed to model a control system
as a cascade of passive scattering modules and discretise each
module using Tustin’s method, which has been shown to
maintain the passivity of a passive scattering operator. On the
basis of port-Hamiltonian systems framework, sampling in a
way that passivity is preserved is investigated by Secchi et al.
[15] and Stramigioli et al. [16].

For the specific problem of haptic rendering of a discretely
simulated virtual wall, Colgate and Schenkel [17] found the
necessary and sufficient conditions for passivity of the
virtual wall as

b .
kwT

2
þ bw (1)

where b . 0 is the haptic interface damping and kw . 0 and
bw . 0 are the virtual wall stiffness and damping,
respectively. It is confirmed by (1) that passivity competes
with transparency, which requires high kw and bw. Colgate
and Schenkel attempted to avoid explicit modelling of
human operator’s dynamics by establishing the passivity of
the haptic display (haptic device, virtual coupling and
virtual environment). Miller et al. [18] extended this basic
approach to haptic systems incorporating a broad class of
nonlinear time-delayed virtual environments. In a general
nonlinear regime, they introduced the concept of cyclo-
passivity in order to mitigate the intrinsic restrictions of the
problem. Moreover, their extension included non-passive
virtual environments and guidelines were provided to
design nonlinear virtual environments to ensure the absence
of oscillation and other chaotic behaviour in the signal
presented to the human operator. Mahvash and Hayward
extended the above result to nonlinear multidimensional
virtual environments and nonlinear devices [19]. On the
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other hand, Abbott and Okamura [20] found an upper
bound on the virtual wall stiffness as a function of the
sampling rate, encoder resolution and friction in order to
ensure virtual wall passivity. Diolaiti et al. [21] analysed
how Coulomb friction allows a haptic interface that is in
violation of passivity conditions during interaction with a
virtual wall to operate stably.

Rather than passivity, Love and Book [22] directly studied
the stability of haptic rendering of a discretely simulated
virtual wall by applying Jury stability criterion. Also, Gil et al.
[23, 24] applied the Routh Hurwitz criterion to the
characteristic equation of the system to obtain a necessary
and sufficient condition for stability that can be approximated
by

b .
kwT

2
� bw (2)

Evidently, the stability condition (2) is less conservative than
the passivity condition (1) and allows for higher transparency.
Moreover, both the haptic interface damping b and the
virtual wall damping bw help to achieve stability with longer
sampling periods and for stiffer environments. Although
the above indicates that the stiffness that can be rendered
by a haptic interface is upper bounded by the sampling
frequency, in practice an excessive increase in sampling
frequency can push vibration frequencies into ranges more
easily perceptible by the sense of touch [25]. On the other
hand, Shen and Goldfarb [26] proposed to use pneumatic
actuation in a haptic interface to increase the open-loop
stiffness, thus enhancing the range of achievable closed-
loop stiffnesses compared with electric motor actuation.

While research so far has focused on the passivity or
stability of haptic interaction with a discretely simulated
virtual wall, this paper for the first time addresses the
stability of master–slave teleoperation when the bilateral
controller is implemented in discrete-time using constant
sampling periods. The contributions of this paper are as
follows. First, considering the general four-channel bilateral
teleoperation architecture, which can represent other
teleoperation methods including PEB and DFR control
The Institution of Engineering and Technology 2008
through appropriate selection of its control gains, we derive
a hybrid model of the digitally controlled teleoperation
system. Using this model and without making any
assumption about the human operator dynamics (by
modelling the operator as an exogenous input force),
regions of stability of the discrete-time controlled
teleoperation system are obtained in the form of conditions
involving the sampling period, the environment stiffness
and the control parameters including the controller
damping. Specifically, requirements on the control
parameters and the sampling period are found such that
stability is ensured when the slave is in free space. For the
case that the slave is in contact with an environment,
stability conditions are derived in the form of lower and
upper bounds on the controller damping in addition to
upper bounds on the sampling period and the environment
stiffness. An outcome of the paper is a set of design
guidelines in terms of selection of various control
parameters and the sampling rate for stable bilateral
teleoperation under discrete-time control. The obtained
stability boundaries are of particular importance for
teleoperation on a rigid environment or when the
teleoperation system has near-ideal or ideal transparency.
We confirm our theoretical results by a simulation study
containing a z-domain bilateral controller and s-domain
master, slave and environment models.

2 Teleoperation stability analysis
tools
The block diagram of a bilateral master–slave system is
shown in Fig. 1. Here, ~fh(t) and

~f e(t) are, respectively, the
operator’s and the environment’s exogenous input forces
and are independent of the teleoperation system behaviour.
The hand/master and the slave/environment interactions
(force or torque) are denoted by fh(t) and fe(t), respectively.
The master and the slave positions and control signals
(force or torque) are shown by xm(t), xs(t), fm(t) and fs(t),
respectively. The impedances Zh(s), Ze(s), Zm(s) and Zs(s)
denote the dynamic characteristics of the human operator’s
hand, the remote environment, the master robot and the
slave robot, respectively. The impedance Zt(s) is the
perception of the user about the environment impedance
Figure 1 Block diagram of a master–slave teleoperation system
IET Control Theory Appl., 2008, Vol. 2, No. 6, pp. 496–512
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Ze(s). As shown in Fig. 1, the dynamics of the master and the
slave can be written in the frequency domain as

Fm þ Fh ¼ ZmXm ¼ Mms
2Xm

Fs � Fe ¼ ZsXs ¼ Mss
2Xs

(3)

where Mm and Ms are the master and the slave inertias,
respectively. If the master and slave impedances included
damping terms, in continuous-time, they would contribute
to the closed-loop equations in the same way as the
derivative terms of the master and slave PD controllers (Cm

and Cs in Section 3). When the PD controllers are
discretised, however, the robot and controller damping
terms can no longer be dumped together, resulting in
mathematical complexities in our stability analysis.
Therefore we assume no damping for the master or the slave.

The teleoperation system of Fig. 1 can be modelled as a
two-port network with the following hybrid matrix
representation

Fh

�Xs

� �
¼

h11(s) h12(s)

h21(s) h22(s)

� �
Xm

Fe

� �
(4)

Each element of the H matrix has a physical meaning. The
hybrid parameter h11 ¼ Fh=XmjFe¼0 is the input impedance
in free-motion condition. Non-zero values for h11 mean
that even when the slave is in free space, the user will
receive some force feedback, thus giving a ‘sticky’ feel of
free-motion movements. The parameter h12 ¼ Fh=FejXm¼0

is a measure of force tracking for the haptic teleoperation
system when the master is locked in motion (perfect force
tracking for h12 ¼ 1). The parameter h21 ¼ �Xs=XmjFe¼0 is
a measure of position tracking performance when the slave
is in free space (perfect position tracking for h21 ¼ 21).
The parameter h22 ¼ �Xs=FejXm¼0 is the output
admittance when the master is locked in motion. Non-zero
values for h22 indicate that even when the master is locked
in place, the slave will move in response to slave/
environment contacts.

For analysis of stability of a teleoperation system, the
knowledge of the human operator and the environment
dynamics are needed in addition to the teleoperation
system model (4). Analysis of passivity, however, is
independent of Zh(s) and Ze(s), and only assumes that the
environment is passive ( ~f e ¼ 0), and the operator is passive
in the sense that he/she does not perform actions that will
make the teleoperation system unstable. With passive but
otherwise arbitrary terminations Zh(s) and Ze(s) and using
Llewellyn’s criterion or based on the singular values of the
scattering matrix of the teleoperation system (Appendix 1),
stability conditions independent of the human operator and
the environment (absolute stability) may be derived. The
scattering matrix S(s) of a teleoperation system satisfies
F � X ¼ S(s)(F þ X ) where F ¼ [Fh Fe]

T and
X ¼ [Xm �X s]

T.
Control Theory Appl., 2008, Vol. 2, No. 6, pp. 496–512
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Analysis of stability based on Llewellyn’s criterion or
singular values of the scattering matrix is conservative as it
ensures stability regardless of the teleoperation system’s
terminations (i.e. the human operator and the remote
environment). Although it is useful to remove any
assumption on the operator, the environment model can be
incorporated into the analysis for less conservative stability
regions. With the remote environment impedance Ze, that
is Fe ¼ ZeXs (for passivity reasons, ~Fe ¼ 0), the general
teleoperation system given by (4) has the following transfer
function from Fh to Xm

Xm

Fh

¼
1þ h22Ze

h11(1þ h22Ze)� h12h21Ze

(5)

Assuming that the environment is modelled by a linear
spring, Ze ¼ ke, the characteristic equation for the
transfer function from Fh to Xm (and to any other output)
is given by

h11s þ ke(h11h22 � h12h21) ¼ 0 (6)

The characteristic equation (6) must have no zeros in the
right-half plane (RHP) for the teleoperation system to be
stable regardless of the operator dynamics.

To remove any assumption on the human operator’s
impedance Zh, we model the operator as an exogenous
input force. In practice, the human operator with a finite
impedance dynamic range relaxes the absolute stability
conditions and improves the stability robustness [27]. Also
note that we have assumed linear models in (3) and have
neglected nonlinear terms such as friction and encoder
quantisation. It is well known that friction plays a
stabilising role in a teleoperation system. Indeed, it has
been shown that Coulomb friction can dissipate the energy
introduced by encoder quantisation [21, 20]. Therefore the
stability analysis using linear models results in worst-case
stability conditions [24].

3 Stability of a teleoperation
system with continuous-time
bilateral control
Fig. 2 depicts a general bilateral teleoperation architecture, in
which position and force values are transmitted from the
master to the slave and vice versa through four
communication channels (4CH architecture) [1]. The
compensators C5 and C6 in Fig. 2 constitute local force
feedback at the slave and the master sides, respectively. The
4CH architecture can represent other teleoperation
structures through appropriate selection of subsystem
dynamics C1 to C6. For instance, C1 ¼ Cs, C4 ¼ 2Cm and
C2 ¼ C3 ¼ C5 ¼ C6 ¼ 0 amounts to PEB control and
C1 ¼ Cs, C2 ¼ 1 and C3 ¼ C4 ¼ C5 ¼ C6 ¼ Cm ¼ 0 leads
to DFR control.
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Figure 2 Four-channel bilateral teleoperation system

Shaded blocks represent control components
The controllers Cm and Cs are usually chosen as
proportional-derivative controllers. Taking Cm ¼ kvm s þ kpm
and Cs ¼ kvs s þ kps , as shown in [8] and Appendix 2, the
PEB teleoperation architecture is absolutely stable if
kvm, kpm , kvs , kps . 0 and

Cm(s)

Cs(s)
¼ a (7)

where a is a non-negative constant. Throughout this paper,
we assume (7) in the general case of four-channel control.
With DFR teleoperation, a ¼ 0.

In contrast to two-channel teleoperation architectures such
as the PEB and the DFR methods, a sufficient number of
parameters (degrees of freedom) in the 4CH architecture
enables it to achieve ideal transparency (i.e. xm ¼ xs and
fh ¼ fe regardless of the operator and environment
dynamics). For ideal transparency, the hybrid matrix in (4)
should be

H ¼
0 1
�1 0

� �
(8)

Equating the 4CH system hybrid parameters to (8) leads to
the following teleoperation control design

C1 ¼ Zts, C2 ¼ 1þ C6, C3 ¼ 1þ C5, C4 ¼ �Ztm

(9)

By selecting the bilateral teleoperation controllers as in (9),
the hybrid and scattering matrices of the 4CH
teleoperation system become

H ¼
0 D

D

� D
D 0

� �
, S ¼

�D2
þD2

2D2

2D2

2D2

2D2

2D2

D2
�D2

2D2

2
664

3
775 (10)

where D ¼ �C3C4 þ Zts(1þ C6), Ztm ¼ Zm þ Cm and
0
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Zts ¼ Zs þ Cs. Using either Llewellyn’s criterion or the
scattering matrix condition (Appendix 1), the ideally
transparent teleoperation system is stable iff D is RHP-
analytic. If so, H simplifies to (8), and S is reduced to an
off-diagonal, reciprocal matrix with both of its singular
values equal to 1. Since under ideal transparency condition
the system is reciprocal, according to Appendix 1, the
stability of the system can be deduced.

As a result, under ideal transparent conditions, the
teleoperation system stability critically depends on exact
implementation of control laws because any departure from
(9) risks violating (59) (i.e. a singular value may become
larger than unity). Such a low stability margin for the
ideally transparent teleoperator can be explained by the
tradeoff that exists between stability and transparency in
bilateral teleoperation [1]. Therefore it is important to
investigate the effect of discrete-time control law
implementation on the teleoperation system stability. It
must be noted that although this research has been mainly
motivated by the critical stability of an ideally transparent
4CH teleoperation system, in the stability analysis that
follows we make no assumptions on C2, C3, C5 or C6 as
was done in (9), in order to cover all teleoperation methods
including PEB and DFR architectures.

4 Modelling of a teleoperation
system with discrete-time bilateral
control
The four-channel architecture of Fig. 2 under discrete-time
control is shown in Fig. 3. As shown, the operator, the
master, the slave and the environment remain continuous-
time entities. For an input f (t) to an ideal sampler starting
at t ¼ 0, the output is f �(t) ¼

P1
k¼0 f (kT )d(t � kT )

where T is the sampling period. Since z ¼ esT, the
Laplace and Z transforms of the sampled-data signal f �(t)
are F �(s) ¼ L[ f �(t)] ¼

P1
k¼0 f (kT )e�kTs and F (z) ¼

Z[ f �(t)] ¼ F �(s)js¼(1=T ) ln z. In Fig. 3, the two ZOH
blocks reconstruct continuous-time control signals fm(t)
IET Control Theory Appl., 2008, Vol. 2, No. 6, pp. 496–512
doi: 10.1049/iet-cta:20070195
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Figure 3 Digitally controlled four-channel bilateral teleoperation system

Shaded blocks represent control components
IET
do
and fs(t) from discrete-time counterparts f �m(t) and f �s (t) via
the following transfer function

Gh0(s) ¼
1� e�Ts

s
(11)

With the four-channel structure shown in Fig. 3, since Cm,
Cs, C1, . . . , C6 are all discrete-time controllers, the discrete-
time control signals for the master and the slave can be
written as

F �
m ¼ �CmX

�
m � C4X

�
s þ C6F

�
h � C2F

�
e

F �
s ¼ C1X

�
m � CsX

�
s þ C3F

�
h � C5F

�
e

(12)

Using (12) and substituting for Fm ¼ Gh0F
�
m and

Fs ¼ Gh0F
�
s in (3), the closed-loop dynamics of the master

and the slave in discrete-time are written as

Xm(z) ¼ Z[Z�1
m Fh]þZ[Z�1

m Gh0](� Cm(z)Xm(z)

� C4(z)Xs(z)þ C6(z)Fh(z)� C2(z)Fe(z))

Xs(z) ¼� Z[Z�1
s Fe]þ Z[Z�1

s Gh0](C1(z)Xm(z)

� Cs(z)Xs(z)þ C3(z)Fh(z)� C5(z)Fe(z))

(13)

With Zm ¼ Mms
2 and Zs ¼ Mss

2, we have

Z[Z�1
m,sGh0] ¼

T 2

2Mm,s

zþ 1

(z� 1)2
(14)

where, for brevity, commas in subscripts mean ‘or’ and present
multiple equations. Using Tustin’s method, the PD controller
Cs is discretized as Cs ¼ kvs (2(z� 1)=(T (zþ 1)))þ kps and
Cm is obtained from (7). Also, C1 ¼ Cs and C4 ¼ 2Cm are
selected, which involve a slight departure from the ideal
Control Theory Appl., 2008, Vol. 2, No. 6, pp. 496–512
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transparent design (9) as the acceleration terms are neglected
to reduce noise. At this stage, we make no assumptions on
C2, C3, C5 or C6 in order to cover all teleoperation methods.

Note that in (13), Z[Z�1
m Fh] = Z�1

m (z)Fh(z) and
Z[Z�1

s Fe] = Z�1
s (z)Fe(z) because the master and the slave

transfer functions Z�1
m and Z�1

s operate in continuous time
(i.e. Fh and Fe are not sampled). To be able to derive a
hybrid model representation from (13), we need to
approximate Z[Z�1

m Fh] and Z[Z�1
s Fe] by products of Fh(z)

and Fe(z) given that Z�1
m and Z�1

s are double integrators.

Two Taylor series expansions of g(t) ¼
Ð t
0

Ð s
0 f (r) dr ds

around the sampling instant kT are

g(kT + T ) ¼ g(kT )+ Tg0(kT )þ (T 2=2)g00(kT )

+ (T 3=6)g 000(kT )þO(T 4) (15)

Since g00(kT ) ¼ f (kT ), summing g(kT þ T ) and g(kT � T )
and taking Z transform on both sides gives the Verlet double
integrator

G(z) ¼ T 2 z

(z� 1)2
F (z) ¼ V3(z)F (z) (16)

which is an order more accurate than integration by the Euler
method as third-order terms in the Taylor expansions cancel
out. The double integration precision can be increased to
O(T 6) where fifth-order terms cancel out:

G(z) ¼
4T 2

3

z(z2 þ zþ 1)

(z2 � 1)2
F (z) ¼ V5(z)F (z) (17)

where the Tustin’s transformation 2(z� 1)=(T (zþ 1)) has
replaced the derivative operator s.
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On the basis of (16) and (17)

Z[Z�1
m,sFh,e] ¼

Vi(z)

Mm,s

Fh,e(z), i ¼ 3, 5 (18)

Replacing (14) and (18) in (13) gives the hybrid model of the
digitally controlled teleoperation system as

Fh(z)

�X s(z)

� �
¼

h11(z) h12(z)

h21(z) h22(z)

� �
Xm(z)

Fe(z)

� �
(19)

5 Stability of a teleoperation
system with discrete-time bilateral
control
Using the discrete-time hybrid parameters (19) in (6), the
characteristic equation of the teleoperation system is
obtained. The characteristic equation has ten roots on the
unit circle irrespective of the system parameters, leaving for
stability analysis a fourth- and an eighth-order polynomial
in z when i ¼ 3 and i ¼ 5 in (18), respectively. To be able
to apply the Routh–Hurwitz criterion to the simplified
characteristic equation, we consider the r-transformation
z ¼ (r þ 1)=(r � 1) which maps the interior of the unit
circle jzj ¼ 1 onto the left half of the r-plane. The result is
a fourth-order polynomial in r if i ¼ 3 and a sixth-order
polynomial in r (after factoring out r2) if i ¼ 5. To derive
the stability requirements based on these characteristic
equations, we frequently utilise the following basic facts.

† The polynomial rn þ b1r
n�1

þ � � � þ bn ¼ 0 is Hurwitz
(i.e. its coefficients are positive real numbers and its zeros
are located in the left half-plane of the complex plane) if
and only if for j ¼ 1, . . . , n

Dj ¼

b1 1 0 � � � 0

..

. ..
. ..

. ..
. . .

.

b2j�1 b2j�2 b2j�3 � � � b2j

�������
������� . 0 (20)

† The quadratic equation ax2 þ bxþ c ¼ 0 has two
solutions x1 and x2 for which x1 þ x2 ¼ �b=a and
x1x2 ¼ c=a. If b2 � 4ac , 0 (two complex conjugate roots),
the expression ax2 þ bxþ c has the same sign as a
regardless of x. If b2 � 4ac � 0 (two real roots),

ax2 þ bxþ c has the same sign as a only for
x , min {x1, x2} or x . max {x1, x2}. Moreover, the two
real roots will have the same sign if c/a . 0 (positive if
b/a , 0, negative if b/a . 0).

Each Dj is a function of T, ke, C2, C5, Cs, a, Zm and Zs but
not a function of C3 or C6 as the last two parameters only
appear in the numerator of (5). Therefore conditions (20)
determine the space of stabilising controllers, sampling
time and environment stiffness for given master and slave
inertias. In addition, for practical reasons, we impose the
following conditions on the control parameters C2 and C5:
The Institution of Engineering and Technology 2008
† The force feedback gain C2 should be non-negative,
otherwise the direction of the reflected force will be wrong

C2 � 0 (21)

† The slave local feedback gain C5 should be non-positive as
a measure to counteract the environment force fe but it should
not be less than21 (note the term2(1þ C5)fe in the control
effort of the slave in Fig. 2)

� 1 � C5 � 0 (22)

Each Dj is a polynomial of order j2 1 in ke. Therefore for
given master and slave inertias and to have stable
teleoperation, conditions (20) set lower and upper bounds
on the environment stiffness as

g1 � ke � g2 (23)

where g1 and g2 are functions of the control gains and the
sampling time. With regard to (23), two points should be
considered:

† It is desirable to have

g2 ! þ1 (24)

to have maximum stability robustness against variations in ke.

† It is imperative to have

g1 ¼ 0 (25)

otherwise the teleoperation system would not be stable when
the slave is in free space.

It turns out that i ¼ 3 and i ¼ 5 in (18), which correspond
to n ¼ 4 and n ¼ 6 in (20) respectively, lead to an almost
identical lower bound g1, thus we proceed with i ¼ 3 for
less complexity. Each Dj has a factor k jps [C2 þ a(1þ C5)]

j

in its denominator. Therefore knowing that kp, . 0
(Appendix 2), we must have

C2 þ a(1þ C5) . 0 (26)

in order to prevent abrupt sign changes in Dj, j ¼ 1, . . . , 4.
Otherwise, an infinitesimal change in C2 or C5 such that
C2þ a(1þ C5) crosses zero causes the terms of odd order
(D1 and D3) to change sign and destabilises the system.
Fortunately, (26) is ensured due to constraints (21) and
(22) that we have already assumed for C2 and C5.

In the rest of this section, we derive additional conditions
for having Dj . 0 for each j. Without loss of generality, since
we are only concerned about conditions for stability, we
assume strict inequalities. Replacing inequalities by
equalities in the stability conditions that will follow gives
the borderline of stability and instability.
IET Control Theory Appl., 2008, Vol. 2, No. 6, pp. 496–512
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5.1 j ¼ 1

The expression for D1 is independent of ke and D1 . 0
imposes the following lower bound on kvs

kvs . w1(T , kps , Ci, a) ¼ kpsT 1�
a=2

C2 þ a(1þ C5)

� �
(27)

or, alternatively, the following upper bound on T

T , z1(kvs , kps , Ci, a) ¼
kvs

kps 1� (a=2)=(C2 þ a(1þ C5))
� �

(28)

5.2 j ¼ 2

The expression for D2 involves k
�1
e

D2 ¼ Q2(M2 þ N2=ke) (29)

where M2 and N2 are functions of the control and system
parameters and the sampling time, and Q2 is a positive
term. Assuming T 2, T 3 ’ 0 for mathematical simplicity,
the solution to D2 ¼ 0 is

ke0 ¼
�N2

M2

¼
Tk2ps (Mm þ aMs)(C2 þ aC5)

m2k
2
vs
þ n2kvs þ p2

(30)

where

m2 ¼ �2T [C2 þ a(1þ C5)][C2 þ a(C5 þ 1=2)]

n2 ¼ 2Mm(1þ C5)[C2 þ a(1þ C5)]

p2 ¼ �TMmkps [(1þ C5)(C2 þ a(1þ C5))þ C2]

Because of (21), (22) and (26), we have n2 . 0 and p2 , 0.
Also, as will be seen later, for the case j ¼ 3, D3 . 0
requires that

C2 þ aC5 , 0 (31)

implying that N2 . 0.

In order to ensure (25), it is necessary that ke0 , 0
(because if D2 changes sign at a positive ke, then (25)
would be violated). To this end, since N2 . 0, M2 needs to
be positive. To find the conditions under which M2 . 0,
we distinguish the following four cases:

† Case 1: m2 , 0 and n22 � 4m2p2 , 0. The quadratic
polynomial M2 will never be positive for any kvs , and
therefore this case is not of interest.

† Case 2: m2 , 0 and n22 � 4m2p2 � 0. Since n2 . 0 and
p2 , 0, M2 ¼ 0 has two real positive solutions implying
that M2 , 0 holds only if kvs is between these two solutions.

† Case 3: m2 . 0 and n22 � 4m2p2 , 0. This is impossible
because we know p2 , 0.
Control Theory Appl., 2008, Vol. 2, No. 6, pp. 496–512
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† Case 4: m2 . 0 and n22 � 4m2p2 � 0. Since n2 . 0 and
p2 , 0, M2 ¼ 0 has one real positive and one real negative
solution and M2 . 0 holds if kvs (positive, according to
Appendix 2) is greater than the positive root.

Similar to a discretely simulated virtual wall [conditions (1)
and (2)], Case 2 is not opted for as an upper bound on kvs
is not desirable. Consequently, Case 4 (whereby M2 has
one real positive and one real negative root) is the only
possibility for ensuring M2 . 0 and therefore (25),
resulting in the following two conditions

C2 þ a(C5 þ 1=2) , 0 (32)

kvs . w2(T , kps , Ci, a, Mm) ¼ max {Root(M2)} (33)

In the above discussion, to ensureM2 . 0, a lower bound on
kvs was imposed. Alternatively, an upper bound on T can be
derived to fulfil M2 . 0. To this end, note that
M 0

2 ¼ m0
2T þ n02 . 0 where, because of (32),

m0
2 ¼ (m2k

2
vs
þ p2)=T , 0 and n02 ¼ n2kvs . 0. Therefore

(33) and the following upper bound on T have the same
effect

T , z2(kvs , kps , Ci, a, Mm) ¼ �
n02
m0

2

(34)

5.3 j ¼ 3

We have

D3 ¼ Q3(M3 þ N3=ke þ P3=k
2
e ) (35)

where Q3 . 0. Assuming T 2, . . ., T 6 ’ 0, we have

M3 ¼ �M2
mTC5(1þ C5)[C2 þ a(1þ C5)]

N3 ¼ m3k
2
vs
þ n3kvs þ p3

P3 ¼ �Tk2ps (Mm þ aMs)
2(C2 þ aC5)

where

m3 ¼�T (C2þaC5)(MmþaMs)[C2þa(1þC5)]

n3 ¼ 2Mm[C2þa(1þC5)][�C2MsþMm(1þC5)]

p3 ¼ a3(Mm�aMs)
2
þ b3(Mm�aMs)þ c3

(36)

and a3 and b3 are functions of the system and control
parameters and the sampling time and

c3 ¼�2TaM2
s kps [a

2(1þC5)�2C2(C2þaC5)] (37)

Because of (22) and (26), we have M3 . 0. Therefore if
P3 , 0, then N 2

3 � 4M3P3 . 0 implying that (35) will
have a negative and a positive root with respect to ke. As a
result, if P3 , 0, since M3 . 0 the condition D3 . 0 will
hold only if ke is greater than the positive root, amounting
503
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to a non-zero, positive g1 in breach of (25). Therefore, we are
only interested in P3 . 0, which leads to (31).

Having ensured P3 . 0, we distinguish the following two
cases:

† Case 1: N 2
3 � 4M3P3 , 0. In this case, since M3 . 0, the

condition D3 . 0 will hold regardless of ke.

† Case 2: N 2
3 � 4M3P3 � 0. In this case, we need N3 . 0 in

order to ensure (25). Otherwise, since M3 . 0 and P3 . 0,
(35) will have two real positive roots, resulting in a non-
zero, positive lower bound on ke.

The expression N 2
3 � 4M3P3 can be viewed as a second-

order polynomial in T or a fourth-order polynomial in kvs.
In the following, we discuss why Case 1, that is,
N 2

3 � 4M3P3 , 0, is not an option regardless of how it is
viewed:

† Implications of N 2
3 � 4M3P3 , 0 on T: it turns

out that N 2
3 � 4M3P3 ¼ m0

3T
2
þ n03T þ p03 where p03 ¼

(n3kvs )
2
. 0. We distinguish the following four cases:

– Case 1: m0
3 , 0 and n03

2
� 4m0

3p
0
3 , 0. This is

impossible because we know that p03 . 0.

– Case 2: m0
3 , 0 and n03

2
� 4m0

3p
0
3 � 0. In this case,

since p03 . 0, the second-order polynomial has one real
positive and one real negative solution. In order to have
N 2

3 � 4M3P3 , 0, the sampling period T needs to be
greater than the positive root. However, a non-zero
lower bound on T is not acceptable because as T ! 0,
the discrete-time system approaches the continuous-time
system, which was proved stable in Section 3.

– Case 3: m0
3 . 0 and n03

2
� 4m0

3p
0
3 , 0. In this case,

N 2
3 � 4M3P3 , 0 never happens.

– Case 4: m0
3 . 0 and n03

2
� 4m0

3p
0
3 � 0. In this case,

again since p03 . 0, depending on the sign of n03, the
second-order polynomial has either two real negative or
two real positive solutions, and N 2

3 � 4M3P3 , 0 holds
if T is between the two solutions. For the negative
solutions, this is impossible as T . 0 and for the
positive solutions, it is unacceptable to put a non-zero
lower bound on T.

† Implications of N 2
3 � 4M3P3 , 0 on kvs: The coefficient

of k4vs in N 2
3 � 4M3P3 is equal to m2

3 . 0. The polynomial
can either have four distinct real roots or two distinct real
roots and two complex conjugate roots (note that if it has
four complex conjugate roots, then N 2

3 � 4M3P3 , 0 will
not hold as the coefficient of k4vs is positive; also, note
that duplicate real roots do not change the sign of
a polynomial). In order to have N 2

3 � 4M3P3 , 0,
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assuming roots kvs1 , kvs2 , kvs3 , kvs4 , we need either
kvs1 , kvs , kvs2 or kvs3 , kvs , kvs4 , in both cases
imposing an upper bound on kvs. Consequently, this case is
not of interest as such upper bounds on kvs should be
avoided as far as possible.

In summary, N 2
3 � 4M3P3 , 0 imposes a lower bound on T

and an upper bound on kvs. Although for specific choices of T
and kvs such bounds may not create difficulties, in a general
analysis they need to be avoided for the reasons explained
earlier. Therefore because of the unacceptable conditions
that N 2

3 � 4M3P3 , 0 imposes on T and kvs, we only seek

conditions that ensure Case 2, that is, N 2
3 � 4M3P3 � 0

and N3 . 0.

5.3.1 Conditions for ensuring N3 . 0: The
expression for N3 is of second order in kvs,
N3 ¼ m3k

2
vs
þ n3kvs þ p3, or of first order in T,

N3 ¼ m00
3T þ n003.

N3 as a function of kvs: Noting that m3 . 0 as a result of
(26) and (31), we distinguish the following two cases.

† Case 1: n23 � 4m3p3 , 0. In this case, N3 . 0 holds for all
values of kvs, thus no new condition is imposed.

† Case 2: n23 � 4m3p3 . 0. A lower bound equal to the larger
root of N3 ¼ 0 will be imposed on kvs.

In practice, the constant a ¼ Cm=Cs is often chosen to be

a ¼
Mm

Ms

(38)

as the master and the slave control actions need to be
proportional to their inertias. This will ensure that the
master and the slave have similar closed-loop behaviour.
Choosing a according to (38) simplifies p3 to c3 and
therefore on the basis of (21), (22) and (31), p3 , 0. Also,
with (38)

n23 � 4m3p3 ¼ �4a2M3
s [C2 þ a(1þ C5)]R3 (39)

where

R3 ¼ R0
3kpsT

2
� R00

3

R0
3 ¼ 4[a2(1þ C5)� 2C2(aC5 þ C2)](aC5 þ C2)

R00
3 ¼ Ms[C2 þ a(1þ C5)][� C2 þ a(1þ C5)]

2

(40)

Because of (21), (22), (26) and (31), we have R0
3 , 0 and

R00
3 . 0. Therefore R3 , 0 regardless of T and based on

(39), Case 1 never happens.
IET Control Theory Appl., 2008, Vol. 2, No. 6, pp. 496–512
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Since m3 . 0, in Case 2, the root of N3 ¼ 0 lower bounds
kvs :

kvs . w4(T , kps , Ci , a, Mm, Ms) ¼ max {Root(N3)} (41)

Since m3 . 0 and p3 , 0, N3 ¼ 0 has a positive root and
therefore in (41), w4 . 0.

N3 as a function of T : If arranged as N3 ¼ m00
3T þ n003

m00
3 ¼m000

3 k
2
vsþn0003

n003 ¼ 2akvsM
2
s [�C2þa(1þC5)][C2þa(1þC5)]

(42)

where

m000
3 ¼�2aMs[C2þa(1þC5)](C2þaC5)

n0003 ¼�2akpsM
2
s [a

2(1þC5)�2C2(C2þaC5)]
(43)

We need to have n003 . 0, resulting in

� C2 þ a(1þ C5) . 0 (44)

Otherwise, either N3 . 0 is impossible (if m00
3 , 0) or

imposes a lower bound on T (if m00
3 . 0) which is not

acceptable as was discussed earlier. Also note that m000
3 . 0

and n0003 , 0 as a result of (21), (22), (26) and (31). Having
ensured n003 . 0, we distinguish the following two cases.

† Case 1: m00
3 , 0. In this case, an upper bound on T (to

satisfy N3 . 0) and an upper bound on kvs (to satisfy
m00

3 , 0) are simultaneously imposed.

† Case 2: m00
3 . 0. In this case, no condition on T (to satisfy

N3 . 0) and a lower bound on kvs (to satisfy m00
3 . 0) are

imposed.

As was discussed earlier, we would like to avoid an
upper bound on kvs as much as possible. Therefore we
opt for Case 2, which imposes the following condition
on kv2

kvs . z3(kps , Ci , a, Ms) ¼

ffiffiffiffiffiffiffiffiffiffi
�n0003
m000

3

s
(45)

5.3.2 Conditions for ensuring N3
2 2 4M3P3 � 0:

Since N 2
3 � 4M3P3 is a fourth-order polynomial in kvs in

which the coefficient of k4vs is positive, the following
condition is sufficient for N 2

3 � 4M3P3 . 0

kvs . w5(T , kps , Ci, a, Mm, Ms) (46)

where w5 is the biggest real root of N
2
3 � 4M3P3

w5 ¼ max {Root(N 2
3 � 4M3P3)} (47)
Control Theory Appl., 2008, Vol. 2, No. 6, pp. 496–512
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Again, N 2
3 � 4M3P3 can be viewed as a second-order

polynomial in T leading to a similar constraint involving kvs
and T, which is not discussed here for brevity.

5.4 j ¼ 4

While conditions (20) for j ¼ 1, 2, 3 imposed conditions on
C2, C5, a, T, kps and kvs such that the teleoperation system is
stable with the slave in free space [i.e. g1 ¼ 0 in (23)],
condition D4 . 0 affects both the lower bound g1 and the
upper bound g2. Therefore we split the discussion into the
following two parts.

5.4.1 Slave in free space; ke ¼ 0: While we
previously derived lower bounds on kvs, condition D4 . 0
also puts an upper bound on kvs. Indeed, excessively high
values for kvs can cause D4 , 0 when ke ¼ 0, jeopardising
stability when the slave is in free space. To investigate this
issue, assuming T 3, . . ., T 10 ’ 0, we have

D4 jke¼0 ¼ Q4(M4k
2
vs
þ N4kvs þ P4) (48)

where Q4 . 0 and

M4 ¼ 256T 2k2ps (Mm þ aMs)
3(C2 þ aC5)

N4 ¼ �512TMmMsk
2
ps
(Mm þ aMs)

2(C2 þ aC5)

P4 ¼ 256T 2MmMsk
3
ps
(Mm þ aMs)

2(C2 þ aC5)

Therefore based on (31), M4 , 0, N4 . 0 and P4 , 0. In
order to have D4 jke¼0. 0, it is required that
N 2

4 � 4M4P4 . 0, which results in the following condition

kpsT
2
, w6(a, Mm, Ms) ¼

MmMs

Mm þ aMs

(49)

When (49) holds, (48) has two positive roots, which are the
lower and upper bounds on kvs such that D4jke¼0 . 0

w7 , kvs , w8 (50)

where

w7 ¼ min {Root(D4jke¼0)} (51)

w8 ¼ max {Root(D4jke¼0)} (52)

5.4.2 Slave in contact with an environment;
ke = 0: Condition D4 . 0 decides the upper bound on
ke, that is, g2. While taking i ¼ 3 or i ¼ 5 in (18) yield
similar results with respect to g1, using i ¼ 5 gives a less
conservative (i.e. larger) g2. However, increasing the order
of approximation in (15) to O(T 8) affects g2 negligibly.
With i ¼ 5 in (18) and assuming T 4, . . . , T 10 ’ 0, we have

D4jke=0 ¼ R0
4(M

0
4k

3
e þ N 0

4k
2
e þ P 0

4ke þ Q0
4) (53)

where R0
4 . 0, and N 0

4, P
0
4 and Q0

4 are polynomials in kvs of
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orders 3, 4 and 2, respectively. Also

M 0
4 ¼

256

3
T 3M3

mkvsC5(1þ C5)[C2 þ a(1þ C5)] (54)

On the basis of (22) and (26), M 0
4 , 0. This means that

ke ! 1 causes D4 , 0 and thus the system becomes
unstable. The upper bound on ke is obtained as

ke � g2(T , kps , kvs , Ci , a, Mm, Ms) ¼ max {Root(D4 jke=0 )}

(55)

Again, (53) can be viewed as a third-order polynomial in T,
which imposes an upper bound on T if ke and kvs are given.
Also, (53) is a fourth-order polynomial in kvs imposing
lower and upper bounds on kvs for given T and ke.

5.5 j ¼ 5, 6

As was mentioned earlier, for i ¼ 3 in (18), we will have
terms up to D4 in (20). For i ¼ 5 in (18), there will also be
D5 and D6. However, in this case it can be shown that the
previous conditions ensuring D1, . . . , D4 . 0 also ensure
D5 . 0 and D6 . 0, thus no new additional conditions are
imposed on the system and control parameters, the
sampling time or the environment stiffness.

6 Simulation study
To further investigate the stability and performance of a
teleoperation system under discrete-time control, we
simulated a general four-channel teleoperation control
architecture using SimuLink. The input fh simulates a
human operator pushing the master with a force of 1 N at
The Institution of Engineering and Technology 2008
t ¼ 0 ! 5 s such that the slave makes contact with the
environment, and retracting the master to the original
position at t ¼ 5 ! 10 s. This input waveform repeats
every 10 s. This input simulates a soft-tissue palpation task,
which is used in surgeries to estimate tissue characteristics
and whose effectiveness greatly depends on haptic
sensations. Since the system is linear time-invariant, any
scaling of the input will be linearly reflected at the output.
We chose Mm ¼ Ms ¼ 1 kg (thus a ¼ Mm/Ms ¼ 1), kvs ¼
20 Ns/m, kps ¼ 100 N/m (thus Cm ¼ aCs ¼ 20sþ 100),
C2 ¼ 0.2, C5 ¼ 20.75, and based on (9), C6 ¼ C22

1 ¼ 20.8 and C3 ¼ C5þ 1 ¼ 0.25. These choices meet
the design conditions derived in Section 5 for ensuring
stability.

While the control blocks, which are shaded in Fig. 3, were
discretised using the Tustin’s transformation
s ¼ 2(z� 1)=(T (zþ 1)) and realised using z-domain
transfer functions, the rest of the system was implemented
using s-domain transfer functions. To enable transfer of
data between continuous- and discrete-time blocks, which
operate at different rates, rate transition blocks were used
for implementation of samplers and ZOHs in Fig. 3. A
variable-step, Dormand–Prince (ode45), continuous-time
solver was used.

Fig. 4 shows the maximum environment stiffness for a
given sampling time such that teleoperation remains stable
for the cases of i ¼ 3 (i.e. V3), i ¼ 5 (i.e. V5), and
simulations. Fig. 4 can be considered a tradeoff graph as
it demonstrates the tradeoff between the contact stiffness
and the sampling period. As expected and similar to the
case of a discretely simulated virtual wall with stability
Figure 4 Stability/instability regions in ke-T plane for kvs ¼ 20 Ns/m
IET Control Theory Appl., 2008, Vol. 2, No. 6, pp. 496–512
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Figure 5 Profiles of positions and forces for the master (solid) and the slave (dashed) when T ¼ 20 ms, kvs ¼ 20 Ns/m and
ke ¼ 103, 104 and 1.37 � 104 N/m

a Position profile
b Force profile
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condition (2), higher sampling periods allow for lower
maximum environment stiffnesses (ke can vary from zero
up to g2). As can be seen, increasing i in (18) from 3 to 5
enhances the precision of the upper bound on ke given

by (55). It was confirmed by both analysis and simulation
that further increase in i to 7 or 9 has a negligible effect on
the precision of g2 (the obtained curves coincide with
that of i ¼ 5).

Figure 6 Profiles of positions and forces for the master (solid) and the slave (dashed) when ke ¼ 104 N/m, kvs ¼ 20 Ns/m and
T ¼ 10, 20 and 23 ms

a Position profile
b Force profile
08 IET Control Theory Appl., 2008, Vol. 2, No. 6, pp. 496–512
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When i ¼ 5, the order of precision of the
differentiation method affects the accuracy of g2 as given
by (55). For instance, it was observed that using s ¼ T/
(z2 1) or s ¼ Tz/(z2 1) (based on backward- and
forward-rectangular integration) instead of s ¼ 2(z� 1)=
(T (zþ 1)) (based on trapezoidal integration) in
determining (17) drives g2 very distant from the
simulation results. In fact, increasing the order of
precision of differentiation reduces the distance between
the theoretical and the simulation results at the cost of
higher computational complexity and less mathematical
tractability.

Fig. 5 shows the master and the slave position and force
profiles for T ¼ 20 ms and kvs ¼ 20 Ns/m. As expected,
with an increase in the environment stiffness from
ke ¼ 103 N/m to ke ¼ 104 N/m, the master and the slave
peak positions are reduced to a tenth as the operator’s input
force profile remains the same. As can be seen, the
teleoperation system is stable for ke ¼ 103 N/m and
104 N/m but is unstable for ke ¼ 1.37 � 104 N/m. This
result was to be expected from the stability/instability
regions of Fig. 4.

Fig. 6 shows the same profiles for ke ¼ 104 N/m and
kvs ¼ 20 Ns/m. As can be seen, as T is increased from
T ¼ 10 ms to 20 ms, the master’s position response
becomes underdamped as the effective damping introduced
by the controller is reduced [kvs s ¼ kvs (2(z� 1)=
(T (zþ 1)))]. With regard to stability, as expected based on
the regions of stability and instability shown in Fig. 4, the
Control Theory Appl., 2008, Vol. 2, No. 6, pp. 496–512
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teleoperation system is stable for T ¼ 10 ¼ ms and 20 ms
but not for 23 ms.

Fig. 7 illustrates the effect of the damping introduced by
the controller on the maximum allowable sampling period
for a typical environment stiffness ke ¼ 1000 N/m (the
same simulation parameters as before were used). Fig. 7
can be considered a design graph as it has the two main
control design parameters (T and kvs) as its coordinates.
From (50), the stabilising range of kvs for ke ¼ 0 is
0 , kvs , 200. As can be seen in Fig. 7, added damping
up to kvs ¼ 6:8 has a constructive effect on system robust
stability while further increase in damping reduces the
maximum allowable sampling period. Simulation results
precisely match the theoretical results of Fig. 7 for
T � 49 ms and therefore they are not shown separately on
this figure. For T . 49 ms, the fact that high orders of T
were ignored during the stability analysis for less
complexity causes some discrepancy between the
simulation results and the outcome of the theoretical
analysis.

Fig. 8 shows the master and the slave positions and
forces for ke ¼ 103 N/m and T ¼ 20 ms. As expected,
with an increase in the damping introduced by the
controller from kvs ¼ 3 Ns/m to 10 Ns/m, the master
and the slave responses are much less oscillatory. As can
be seen, consistent with the stability/instability regions
of Fig. 7, the teleoperation system is stable for
kvs ¼ 10 Ns/m but becomes unstable for kvs ¼ 3 Ns/m
and 48.7 Ns/m.
Figure 7 Stability/instability regions in T-kvs plane for ke ¼ 1000 N/m
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Figure 8 Profiles of positions and forces for the master (solid) and the slave (dashed) when ke ¼ 103 N/m, T ¼ 20 ms and
kvs ¼ 3, 10 and 48.7 Ns/m

a Position profile
b Force profile
0 IET Control Theory Appl., 2008, Vol. 2, No. 6, pp. 496–512
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7 Conclusions
Issues with the stability of teleoperation can arise when a
bilateral controller designed in the continuous-time domain
is converted into the discrete-time domain. In this paper,
first the hybrid model of a digitally controlled four-channel
teleoperation system was derived. Next, without making any
assumptions about human operator dynamics, regions of
stability of the discrete-time-controlled teleoperation system
were obtained in the form of conditions on the control
parameters, sampling period and environment stiffness.
Specifically, requirements on the control parameters
(notably, lower and upper bounds on the controller
damping) and upper bounds on the sampling period and
environment stiffness were derived such that stability of the
teleoperation system under discrete-time bilateral control is
ensured. It was found that as the sampling period is
increased, the maximum admissible stiffness of the
environment with which a slave robot can stably interact is
reduced. The result is a set of design guidelines in terms of
various digital control parameters and the sampling rate for
stable teleoperation, especially when interacting with a rigid
environment. The theoretical results obtained from the
stability analysis were confirmed by a simulation study in
which the bilateral controller was realised by z-domain
transfer functions, whereas the master, the slave and the
environment were simulated in the s-domain. Lastly, friction
dissipates energy and plays a stabilising role in a
teleoperation system. Therefore the stability regions found in
this paper correspond to a worst-case scenario.
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10 Appendix 1: absolute stability
theorems
10.1 Llewellyn’s criterion

The necessary and sufficient conditions [28] for absolute
stability of the teleoperation system (4) are: (a) h11(s) and
2
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h22(s) have no poles in the RHP, (b) any poles of h11(s) and
h22(s) on the imaginary axis are simple with real and
positive residues and (c) for s ¼ jv and all real values of v
the following conditions hold

<(h11) � 0 (56)

<(h22) � 0 (57)

2<(h11)<(h22)� <(h12h21)� jh12h21j � 0 (58)

where <(�) and j.j denote the real and absolute values.

10.2 Scattering matrix analysis

The necessary and sufficient condition [29] for absolute
stability of a reciprocal two-port network (S12 ¼ S21) with
an RHP-analytic scattering matrix S(s) is

s̄[S( jv)] � 1 (59)

where s̄ represents the maximum singular value of S( jv). In
the case of a non-reciprocal two-port network (S12 = S21),
the passivity condition (59) is only a sufficient condition
for stability.

11 Appendix 2: absolute stability
of PEB system
The hybrid matrix for the PEB teleoperation architecture is
given by

H ¼

Zm þ Cm

Zs

Zts

Cm

Zts

�
Cs

Zts

1

Zts

2
664

3
775 (60)

With regard to Llewellyn’s criterion, the characteristic
polynomial for h11 and h22 is Mss

2
þ kvs s þ kps , which has

no RHP poles if kvs , kps . 0. With respect to (56) and
(57), we have

<(h11) ¼
Ms(kvskpm � kvmkps þMskvmv

2)

k2vs þ (� kps=vþMsv)
2

(61)

<(h22) ¼
kvs

k2vs þ (� kps=vþMsv)
2

(62)

which are non-negative if kvm, kvs . 0 and

kvskpm � kvmkps ¼ 0 (63)

Also, the equality to zero in condition (58) holds if (63)
holds and kvm, kpm . 0. Therefore a sufficient condition for
absolute stability of the PEB teleoperation system is that
kvm, kpm , kvs , kps . 0 and Cm(s)=Cs(s) ¼ a where a is a
non-negative constant.
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