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Abstract— RTAC1 benchmark problem considers a
nonlinear fourth-order dynamical system involving the
nonlinear interaction of a translational oscillator and an
eccentric rotational proof mass. This problem has been
posed to investigate the utility of a rotational proof
mass actuator for stabilizing translational motion. In
order to implement any of the model-based controllers
proposed in the literature, the values of model parame-
ters are required which are generally difficult to deter-
mine rigorously. In this paper, an approach to the least-
squares estimation of system parameters is discussed
and practically applied to the benchmark problem.
Next, in order to design an H∞ controller, the nonlinear
system is modelled as a perturbed linear system using
an effective identification scheme. Experimental results
confirm that this approach can effectively condense the
whole nonlinearities, uncertainties, and disturbances
within the system into a favorable perturbation block.
Finally, an effective mixed-sensitivity problem is de-
veloped for the system to satisfy all performance re-
quirements as well as robust stability despite actuator
saturation.

I. Introduction

The RTAC experiment has originally been studied as a
simplified model of a dual-spin spacecraft to investigate
the resonance capture phenomenon [1]. It is shown that
this system is mathematically and qualitatively equivalent
to a dual-spin spacecraft, i.e., they have similar averaged
equations and exhibit similar dynamic behaviors.

The RTAC system has been studied later to investigate
the usefulness of a rotational proof mass actuator for sta-
bilizing translational motion [2]. In this nonlinear system,
unlike a linear proof mass actuator, the actuator stroke
limitations are implicitly involved in the system dynamics
[3].

Consider the translational oscillator with an eccentric
rotational proof mass actuator shown in Figure 1. The
oscillator consists of a cart of mass M connected to a fixed
wall by a linear spring of stiffness k. The motion is confined
in one direction and is merely in the horizontal plane, so
that gravitational forces do not contribute. The proof mass
actuator attached to the cart has mass m and moment
of inertia I about its center of mass, which is located
at a distance e from the point about which the proof
mass rotates. N denotes the control torque applied to the
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Fig. 1. Rotational actuator to control a translational oscillator

proof mass, and F is the disturbance force on the cart.
The control objective is the oscillator stabilization despite
external disturbances via the control torque provided by
the rotational proof-mass actuator.

In this nonlinear benchmark problem, it is required to
design a controller such that:

a) The closed-loop system is stable.
b) The closed-loop system exhibits good settling
behavior for a class of initial conditions.
c) The closed-loop system exhibits good dis-
turbance rejection compared to the uncontrolled
oscillator for a class of disturbance signals.
d) The control effort is feasible.

A number of research work are reported on this problem.
For instance, Bupp, Bernestein and Coppola implement
four nonlinear controllers on the RTAC, including an
integrator back-stepping controller and three passivity-
based controllers [4]. Haddad and Chellaboina apply their
method of designing nonlinear fixed-order dynamic passive
controllers for passive systems to the RTAC system [5].
Dussey and El-Ghaoui develop a measurement-scheduled
output-feedback controller with an LMI approach for the
system [6].

II. System Modelling

Let q and q̇ denote the translational position and veloc-
ity of the cart, and let θ and θ̇ denote the angular position
and velocity of the rotational proof mass (Figure 1). The
equations of motion for the system are given as:

(M + m)q̈ + kq = −me(θ̈ cos θ − θ̇2 sin θ) + F, (1)
(I + me2)θ̈ = −meq̈ cos θ + N. (2)
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With some transformations [2], the nondimensionalized
state equations of the system are given by

ẋ = f(x) + g(x)u+d(x)w,

where,

f(x) =
(
x2

−x1+εx2
4 sin x3

1−ε2 cos2 x3
x4

ε cos x3(x1−εx2
4 sin x3)

1−ε2 cos2 x3

)T
,

g(x) = ( 0 −ε cos x3 0 1 )T /(1 − ε2 cos2 x3),

d(x) = ( 0 1 0 −ε cos x3 )T /(1 − ε2 cos2 x3).

Here, x = ( x1 x2 x3 x4 )T = ( ξ ξ̇ θ θ̇ )T, where ξ
is the normalized cart position, and u and w represent the
normalized control torque and disturbance, respectively.
The parameter ε = me/

√
(I + me2)(M + m) represents

the coupling between the translational and rotational
motions.

The air friction and spring damping can be considered as
disturbances on the cart, and may be modelled as viscous
frictions with coefficients b and c, respectively. Therefore,
(1) becomes

(M + m)q̈ + kq + bq̇ = −me(θ̈ cos θ − θ̇2 sin θ) − cq̇.

The equilibrium point is xe = ( 0 0 θ0 0 )T and ue =
0, where θ0 is any arbitrary value, provided the distur-
bance w is zero. Using Jacobians for this equilibrium point,
the transfer function from the normalized torque u to the
normalized cart position ξ is found to be

Ξ(s)
U(s)

=
ε cos θ0

(ε2 cos2 θ0 − 1) s2 − v√
k(M+m)

s − 1
(3)

where v = b + c. This transfer function has a varying
DC gain, however, its modes are fairly insensitive to the
variations of θ0. The term cos θ0 in the numerator implies
that the pendulum vibrations about θ = 0 have the most
influence on the cart displacement, while at θ = 90◦ they
have the least effect.

III. Experimental Testbed

The experimental testbed, aimed to realize the model
depicted in Figure 1, is constructed (Figure 2). The basis
for this setup is provided by an aluminum plate onto
which five steel bars are perpendicularly mounted. Using
an upper plate, a rigid ceiling is provided for the setup.
The spring is realized by means of two beams fastened to
the ceiling. These beams also serve to suspend the cart
made of acrylic plates in the air, in order to reduce the
friction as much as possible. Due to the setup rigidity,
the cart motion is merely confined to one direction, and
roll, yaw and pitch movements are suppressed as well. A
DC motor and a tachometer are centered on the lower
and upper plates of the cart, with their shafts secured
together through a coupling to avoid eccentricity. The
same coupling also serves to hold the eccentric arm.

The control torque is provided by the DC motor. A
PWM current drive controls, through a PI feedback loop,
the torque applied by the motor on the eccentric arm. The
angular position of the arm is determined by integrating

Fig. 2. The RTAC setup

the angular velocity readings from the tachometer. In
order to determine the cart translational position, a linear
variable differential transformer (LVDT) is utilized. It
consists of a body which is mounted on the basis, and
a core which is attached to the cart and travels within
the body. Therefore, the cart travels are translated to a
proportional voltage at the output terminals of the LVDT.

IV. Parametric Identification

For any model-based control such as [1], [2], [4], [5] and
[6], it is necessary to have the values of system parameters.
While rigorous determination of the parameters of the
actual system is quite difficult, it is possible to estimate
them using the least-squares method. To do so, the system
equations of motion are viewed as a set of equations
which are unknown in system parameters and in which
certain functions of measurements serve as regressors.
Next, a consistency measure may be defined as the ratio of
standard deviation of the estimates to their mean value.
If this measure is less than 30%, then the model based
on the mean values should be in well agreement with the
actual system. More consistent parameter estimates will
be found if one or more of the parameters can be estimated
separately, rather than all of them being estimated at one
attempt.

The first equation of motion of the RTAC system can
be written as
M + m

k
q̈ +

v

k
q̇ +

d

k
sgn(q̇) +

me

k
(θ̈ cos θ − θ̇2 sin θ) = −q,

where v is due to the air friction and spring damping, and
d is the Coulomb friction coefficient. In a free-oscillation
experiment in which the motor is idle and the cart is
subject to free oscillations due to its initial position, the
term θ̈ cos θ − θ̇2 sin θ will be negligible. Therefore, at the
i-th sampling time during an identification experiment:

ΦiΘ = −qi,

Φi = ( q̈i q̇i sgn(q̇i) ) ,

Θ = ( M+m
k

v
k

d
k )T .
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Here, the vector of regressed variables Θ can be esti-
mated in the sense of least squares if we have mea-
surements leading to the values of the regressor matrix
Φ = ( Φ1 · · · Φn )T and the observation vector Q =
(−q1 · · · −qn )T:

Θ = (ΦTΦ)−1ΦTQ.

To find Φ and Q, the cart position data are logged and
then filtered by a 9th-order Chebychev filter implemented
using a zero-phase-distortion routine (Matlab function
filtfilt) to remove the measurement noise. The filtered cart
position data are then differentiated to find q̇ and q̈. The
least-squares results obtained using ten free-oscillation
experiments for different cart initial positions are listed in
Table 1a. Weighing the acrylic plates, motor, tachometer
and arm results in M + m = 1.230 Kg, and therefore
k = 132.6 N/m, v = 0.5543 and d = 24 × 10−3.

The same scheme is used to find the rest of system
parameters through a set of forced-oscillation experiments.
Taking into account the rotational viscous friction in the
second equation of motion, the two equations can be
rewritten as

me(θ̈ cos θ − θ̇2 sin θ) = −kq − (M + m)q̈ − vq̇ − dsgn(q̇),
meq̈ cos θ − Kmi +

Kv1uθ̇ θ̇ + Kv2u−θ̇ θ̇ = −(I + me2)θ̈.

where i is the motor current, Km is the motor torque
constant, and Kv1 and Kv2 represent the coefficients of
asymmetric viscous friction in the arm rotational mo-
tion. For the setup built in the laboratory, I + me2 is
mathematically determined to be 4.78 × 10−5. Having
obtained the estimates of M + m, k, v and d previously,
this set of equations can simultaneously be solved with
respect to the parameters me, Km, Kv1 and Kv2. Twenty
forced-oscillation experiments with different cart initial
positions and arm initial angles are performed while the
input amplitudes are swept from 50% to 100% of their
maximum value. The estimates are listed in Table 1b.
Small consistency measures for the parameters estimated
through free- and force-oscillation experiments promise a
good match between the estimated mathematical model
and the actual system. Estimated values of important
system parameters are summarized in Table 1c.

Table 1. From top to bottom: Least square results of (a)

free-oscillation experiments, (b) forced-oscillation experiments

and (c) RTAC system parameter estimates

M+m
k

v
k

d
k

Mean 9.27×10−3 4.18×10−3 1.81×10−4

Std.dev.
Mean

0.64 % 9.68 % 14.74 %

me Km Kv1 Kv2

Mean 1.06×10−3 4.02×10−2 1.39×10−4 1.49×10−4

Std.dev.
Mean

15.5 % 6.2 % 34 % 33 %

Total mass M + m 1.23 kg
Arm inertia moment I + me2 950 gcm2

Spring stiffness k 132.6 N/m
Coupling parameter ε 0.1
Torque constant Km 0.08 N.m./A

V. Nonparametric Identification and Robust

Control

The RTAC problem was originally posed as a nonlinear
benchmark problem, and consequently all the previous
researches have relied on the ideal non-dissipative model
of the nonlinear system given by Equations (1) and (2).
However, this approach cannot take into account, e.g. un-
modelled dynamics and/or deviations from this nonlinear
model which do exist in practice. On the other hand, the
control objectives such as internal stability, fast settling,
and good disturbance rejection in spite of limited control
effort are well suited to linear robust control synthesis. We
design a linear H∞ controller while the nonlinear system
is estimated as a nominal linear system in addition to
uncertainty.

A nonlinear system can be modelled as an unstructured
set P of linear plants. In other words, a nominal model
P0(s), a weight W (s), and a stable perturbation ∆ sat-
isfying ‖∆‖∞ ≤ 1 may be found in such a way that the
frequency response of the nonlinear system is represented
as2 P (s) = (1+∆(s)W (s))P0(s). Since ‖∆‖∞ ≤ 1, W (jω)
provides the uncertainty profile at each frequency:

∣∣∣∣
P (jω)
P0(jω)

− 1
∣∣∣∣≤ W (jω), ∀ω.

If a set of identification experiments is performed on
the nonlinear system under different operating conditions,
the resulting linear frequency response estimates P (jω)
will form the set P. By finding a nominal fit P0(jω)
through these frequency response estimates which reduces
the variations among them to a minimum, the whole
nonlinearities, disturbances and uncertainties of the sys-
tem will be condensed into the perturbation ∆W . This
provides enough information for an H∞ synthesis.

To produce a series of linear frequency response esti-
mates of the nonlinear system under different operating
regimes, system identification based on prediction-error
method is performed. In the prediction-error method [7], a
least-squares minimization is used to determine the model
parameter vector θ in such a way that the sum square of
the prediction errors

ε(t, θ) = y(t) − ŷ(t|t − 1; θ), t = 1, 2, . . . , N,

is minimized. The details of each step of this method as
applied to RTAC is reported next.

A. Prediction-Error System Identification

First a simulation study is conducted on how to handle
the varying DC gain of the transfer function in Equation
(3). The DC gain which varies with the arm angle θ0

can reduce the accuracy of the frequency response esti-
mates, because for different operating conditions of the
pendulum, the optimization will converge to different local
minima. A well-conditioned solution to this problem is
shown in Figure 3 where a hypothetical transfer function

2Perturbations other than multiplicative are also allowed.

VDEX
767



ε cos θ
(ε2 cos2 θ0−1) s2− v√

k(M+m)
s−1

� �
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Fig. 3. Compensation of the varying DC gain

is found which only includes the time-invariant portion of
transfer function (3):

y(t)
x̃(t)

=
ε

(ε2 cos2 θ0 − 1) s2 − v√
k(M+m)

s − 1
.

For identification tests, a concatenation of positive and
negative multisines is used as the excitation input3. The
reason is that a multisine signal demonstrates an almost
flat spectrum over the frequency range of interest. It is
also highly persistent excitation as the sum of n sinusoids
is persisting of an order not less than 2n − 2 [7]. Since
the RTAC system is uncontrollable at θ0 = ±90◦, the
excitation input is taken to be zero when cos θ0 nears zero,
e.g. when | cos θ0| ≤ 0.05. Within this uncontrollable span
and in the absence of input, the arm momentum of inertia
passes the arm through this region.

Identification tests are done for different initial arm
angles such that the estimated transfer functions are
valid representatives of the nonlinear system all over its
operating range. The amplitudes of the multisine range
from 50% to 100% of their maximum value. We initialize
the prediction-error minimization with a parameter vector
θ specifying the model structure of the linearized model
(3).

The resultant frequency response estimates as well as
the frequency response of the following selected nominal
system are shown in Figure 4a:

P0(s) = 3.7×10−3× (s − 175.7)(s + 32.7)(s + 14.5 ± j26.6)
(s + 2.7 ± j12.9)(s + 4.1 ± j37.4)

.

While the magnitudes of the frequency response estimates
experience two peaks at 12.9 rad/s and 37.4 rad/s, our
simulation study had previously shown the first peak only.
The reason is that the flexible beams used to realize the
springs in the experimental setup form a spring-mass-
spring-mass system which has one rigid and one flexible
modes. The peak at 12.9 rad/s corresponds to the rigid
mode of the mechanical structure, while the other har-
monic represents the fundamental frequency of the flexible
structure.

The uncertainty profile
∣∣∣ P (jω)
P0(jω) − 1

∣∣∣ and the uncertainty
weighting function

W (jω) = 0.55
( jω

2 + 1)( jω
80 + 1)

( jω
5 + 1)( jω

1000 + 1)
(4)

3Functions msinclip and msinprep in the Frequency Domain Iden-
tification Toolbox (FDIDENT) [8].
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Fig. 4. From top to bottom: (a) Frequency responses of the
estimated and nominal systems (top) and (b) the uncertainty profile
and the uncertainty weighting function (b)

are depicted in Figure 4b. For best fulfillment of perfor-
mance requirements which are mainly influenced by the
low-frequency characteristics and to avoid conservatism
in the control design, the selected uncertainty weighting
function falls a little lower than the uncertainty level over
low frequencies.

B. Robust H∞ Control
The H∞ controller must internally stabilize the closed-

loop system, reject the disturbances and increase the
damping of the system dominant oscillatory mode as
much as possible while the control effort is limited. The
block diagram shown in Figure 5 formulates the above-
mentioned problem as a standard H∞ problem. The gen-
eralized regulator problem is defined as finding a controller
C(s) such that:

a) Ty1u1 is internally stable
b) ||Ty1u1 ||∞ is small

This problem is equivalent to the so-called mixed-
sensitivity problem:

min
C

∥∥∥∥∥




W1WdCS
W2WdT
W3WdS




∥∥∥∥∥
∞

(5)

The weighting functions in Equation (5) have to be
appropriately shaped for best fulfillment of the control
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Fig. 5. Closed-loop system as a generalized regulator problem

objectives. To satisfy the primary closed-loop requirement,
namely fast settling of the cart, the controller must in-
crease the damping of the system oscillatory modes. The
following weight Wd replaces the dominant oscillatory
modes of the nominal system at −2.7 ± j12.9 with more
stable ones at −10 ± j12.9:

Wd(s) =
(s − (−10 + j12.9))(s − (−10 − j12.9))
(s − (−2.7 + j12.9))(s − (−2.7 − j12.9))

.

Choosing W2 = W/Wd, where W is the uncertainty
weighting of Equation (4), ensures closed-loop robust
stability as ‖WT‖∞ < 1. To avoid actuator saturation,
weight W1 should be used to penalize the control effort.
Furthermore, W1Wd should form a band-stop filter to
allow maximum control effort around the system dominant
oscillatory mode:

W1(s) = 0.15
(s2 + 2.4s + 82)(s2 + 4.2s + 142)

( s
1.4 + 8)2( s

0.7 + 14)2
× 1

Wd(s)

For simplicity, W3 which reflects the disturbance rejection
properties of the closed-loop system is chosen to be a
constant, W3 = 0.17.

Satisfaction of the performance requirements by the
consequent H∞ controller is limited in practice. To explore
the reason, closed-loop simulations based on the estimated
system (Table 1c) and the designed H∞ controller are
set up. It becomes evident that what limits the degree
of performance satisfaction is the motor deadzone due to
stiction. The stiction is actually blocking the arm motions
for motor currents up to half of its maximum value.
Indeed, as shown in Figure 6, the robust H∞ controller
manages to enforce the fast settling of the cart in the
absence of motor deadzone, while is not entirely successful
in the presence of deadzone. According to this simulation
study, the robust control design is entirely successful in
satisfying the required control objectives with a limited
control effort.

VI. Conclusions

The RTAC benchmark problem investigates the utility
of a rotational proof mass actuator for stabilizing trans-
lational motion. In this paper, system parameters were
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Fig. 6. Free responses of open-loop system (dash-dotted), closed-
loop system with deadzone (solid) and closed-loop system wthout
deadzone (dotted)

estimated in a least-squares framework based on free-
and forced-oscillation identification experiments. On the
other hand, the control requirements fit the robust con-
trol synthesis framework. A time-domain nonparametric
identification method was used by which the nonlinear
system was modelled as a nominal system plus uncer-
tainty. It was confirmed in practice that the deviations
of the disturbed nonlinear system from a linear system
can successfully be condensed into a small perturbation
block. Next, an effective mixed-sensitivity problem was
developed to satisfy all performance requirements as well
as robust stability despite actuator saturation. Simulation
results exhibit the success and effectiveness of the designed
robust H∞ controller.
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