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ABSTRACT

Robotic manipulators are highly nonlinear and coupled dy-
namic systems, which may be subject to different types of un-
known disturbances such as joint frictions and end-effector ex-
ternal payloads. Such disturbances, when unaccounted for, cause
poor tracking performance of the robot and may even destabi-
lize the robot control system. In this paper we propose a novel
nonlinear control scheme for robotic manipualtors subject to
disturbances using the concept of disturbance observer-based
control by modifying the disturbance observers proposed in [1]
and [2]. The proposed control scheme and disturbance observer
guarantee global asymptotic position and disturbance tracking
and remove the previous restrictions on the number of degrees
of freedom (DOFs), joint types, or manipulator configuration.
Computer simulations are presented for a 4-DOF SCARA ma-
nipulator to show the effectiveness of the proposed disturbance
observer-based control scheme.

Keywords: Robotic manipulator, trajectory following, distur-
bance observer, SCARA.

INTRODUCTION

Robotic manipulators are often subject to different types of
unknown disturbances such as joint frictions and end-effector
external payloads. Such disturbances, when unaccounted for,
tend to degrade the tracking performance of the robot and may
even cause the instability of control system. An approach to
suppress these disturbances is to use disturbance observers. The
idea behind such an approach is to lump all the internal and ex-
ternal disturbances acting on the manipulator into a single dis-
turbance term, estimate the lumped term using a disturbance
observer, and then introduce feedforward compensation to can-
cel it. Because of the feedforward nature of this compensation,

disturbance observers can lead to fast, good trajectory track-
ing performance and smooth control actions without the use of
large feedback gains [3]. Because of their disturbance attenua-
tion capability, disturbance observers have found applications in
a variety of areas such as independent joint control [4], friction
estimation and compensation [5].

A considerable part of the existing literature on disturbance
observer design uses linearized models or linear system tech-
niques. In order to overcome the limitations and shortcom-
ings of the linear disturbance observers given the highly non-
linear and coupled dynamics of robotic manipulators, Chen et
al. proposed a nonlinear disturbance observer for a certain class
of nonlinear robotic manipulators and designed it such that no
acceleration measurement was needed [1]. The design prob-
lem was only solved for a 2-link planar manipulator with rev-
olute joints. Later, Nikoobin et al. solved the disturbance ob-
server design problem for n-link planar manipulators with rev-
olute joints [2]. Although these disturbance observers show
promising results in terms of disturbance estimation, their ap-
plication domain is limited to planar, serial manipulators with
revolute joints. Industrial robots including 6-DOF articulated
robotic arms such as EPSON C3 and PUMA 560 are, how-
ever, non-planar. Moreover, some of the industrial arms such as
SCARA manipulators have prismatic joints in addition to revo-
lute joints. Moreover, the disturbance observers proposed in [1]
and [2] need the knowledge of the maximum joint velocities of
the robot. In addition to these limitations in terms of the ma-
nipulator configuration, the closed-loop stability of the overall
system including the disturbance observer and the controller has
not been investigated yet. This serves as the motivation for this
paper to look for a general design method which also guarantees
disturbance and trajectory tracking of the closed-loop system.

In this paper, we propose a nonlinear disturbance observer-
based control scheme for general robotic manipulators by mod-
ifying the disturbance observers proposed in [1] and [2]. While
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our proposed control law and disturbance observer guarantee
asymptotic trajectory and disturbance tracking, the previous lim-
itations on the number of DOFs, joint types, or manipulator con-
figuration are removed. In order to illustrate the effectiveness of
the proposed disturbance observer-based control scheme, simu-
lations are done using a SCARA robotic manipulator subject to
disturbances.

PROBLEM FORMULATION

The following equation gives the dynamics of an n-DOF
rigid manipulator [6]:

M(q)q̈ + C(q, q̇)q̇ + G(q) = τττ + τττd (1)

where q,q̇ and q̈ are the n× 1 vectors of joint positions, veloc-
ities and accelerations, respectively. Here, M(q) is the n × n
inertia matrix, C(q, q̇) is the n× n Coriolis/centrifugal matrix,
G(q) is the n × 1 vector of gravitational forces, τττ is the n × 1
vector of input control torques, and τττd is the n × 1 vector of
lumped disturbances. The disturbance τττd lumps the effect of
friction torques, external disturbance torques such as unknown
end-effector payloads, unmodeled dynamics, etc. Note that the
inertia matrix M(q) of the robot is a symmetric and positive
definite matrix. Therefore, it is invertible and its inverse is also
a symmetric and positive definite matrix [7].

Assuming that robot joint acceleration measurements are avail-
able, the following nonlinear disturbance observer for the robot
(1) was proposed in [1]:

˙̂τττd = −Lτ̂ττd + L{M(q)q̈ + C(q, q̇)q̇ + G(q)− τττ} (2)

where L is the observer gain matrix. Defining ∆τττd = τττd − τ̂ττd
as the disturbance tracking error and using (1), we have

˙̂τττd = L∆τττd (3)

Here, we assume that the rate of change of the lumped distur-
bance is neglibgible in comparsion with the estimation error dy-
namics, i.e. τ̇ττd ≈ 0. This assumption is not overly restrictive
and is commonly made in the robotics literature (see for exam-
ple [1]). Under this assumption, (3) becomes

∆τ̇ττd = −L∆τττd (4)

Note that despite the above assumption, the simulations will
show that the proposed nonlinear disturbance observer is also
able to track fairly fast time-varying disturbances.

A shortcoming of the disturbance observer (2) is the need
for acceleration measurement. Accurate accelerometers are not
available in many robotic applications. It is possible to modify
the disturbance observer, as in [1], in a way that no accelera-
tion measurement is needed. For this purpose, let us define the
auxiliary variable

z = τ̂ττd − p(q, q̇) (5)

where the vector p(q, q̇) can be determined from the observer
gain matrix L(q, q̇):

d

dt
p(q, q̇) = L(q, q̇)M(q)q̈ (6)

Therefore, the modified disturbance observer, which does not
need acceleration measurement, takes the following form [1]:

ż = −L(q, q̇)z +

L(q, q̇){C(q, q̇)q̇ + G(q)− τττ − p(q, q̇)}
τ̂ττd = z + p(q, q̇) (7)

Again, assuming slow-varying disturbances with respect to the
observer’s dynamics, the error dynamics becomes similar to (4):

∆τ̇ττd = −L(q, q̇)∆τττd (8)

NONLINEAR DISTURBANCE OBSERVER-BASED
CONTROL LAW

We propose the following nonlinear control law for the robotic
manipualtor described by (1):

τττ = M(q)[q̈d + Kv∆q̇ + Kp∆q] +

C(q, q̇)q̇ + G(q)− τ̂ττd (9)

where qd, q̇d, and q̈d are the desired position, velocity and ac-
celeration of the joints of the robot, ∆q = qd − q and ∆q̇ =
q̇d− q̇ are the position and velocity tracking errors, and Kv and
Kp are constant, symmetric and positive definite matrices. Note
the use of disturbance estimate τ̂ττd in the proposed control law
(9). Applying the nonlinear disturbance observer-based control
law (9) to the robot described by (1) results in the following
closed-loop equation:

∆q̈ + Kv∆q̇ + Kp∆q = M−1(q)∆τττd (10)

where ∆τττd = τττd − τ̂ττd.
Now, we modify the disturbance observer in the previous

section such that global asymptotic trajectory and disturbance
tracking of the closed-loop system encompassing the robot, the
controller, and the observer are achieved. We modify the dis-
turbance observer in (7) by incorporating the following term in
it:

M−1(q)(∆q̇ + γ∆q), γ > 0

We will have

ż = −L(q, q̇)z +

L(q, q̇){C(q, q̇)q̇ + G(q)− τττ − p(q, q̇)}
+M−1(q)(∆q̇ + γ∆q)

τ̂ττd = z + p(q, q̇) (11)

Assuming slow-varying disturbances with respect to the observer’s
dynamics, the error dynamics of the modified disturbance ob-
server in (11) becomes

∆τ̇ττd = −L(q, q̇)∆τττd −M−1(q)(∆q̇ + γ∆q) (12)

780



Now, we propose the following disturbance observer gain
matrix:

L(q) = αM−1(q) (13)

where α is an arbitrary positive constant. According to (6), we
have

p(q̇) = αq̇ (14)

The following theorem gives the sufficient conditions for
global asymptotic trajectory and disturbance tracking of the robot
(1) using the control law (9) and the disturbance observer (11).

Theorem 1. Consider the robotic manipulator subject to distur-
bances described by the dynamic equation (1). The disturbance
observer has the dynamics given in (11), where the disturbance
observer gain matrix L(q) is given in (13) and the disturbance
observer auxiliary vector p(q̇) is given in (14). The control
law (9) guarantees global asymptotic disturbance and trajec-
tory tracking in the overall closed-loop system if the following
conditions hold:

1. Kv is a constant symmetric and positive definite matrix
satisfying Kv > γI,

2. Kp is a constant symmetric and positive definite matrix,

3. τ̇d ∼= 0, i.e., the rate of change of the disturbance acting
on the manipulator is negligible in comparison with the
estimation error dynamics (12).

Proof. Under the control law (9) and according to condition 3
of the Theorem, the position tracking error dynamics and the
disturbance tracking error dynamics are given by (10) and (12),
respectively. Let us consider the following candidate Lyapunov
function:

V (∆q̇,∆q,∆τττd) =
1

2
(∆q̇ + γ∆q)T (∆q̇ + γ∆q)

+
1

2
∆qT (Kp + γKv − γ2I)∆q +

1

2
∆τττTd ∆τττd

Taking the time derivative of the above function and using (10)
and (12) we get

V̇ = −∆q̇T (Kv − γI)∆q̇− γ∆qTKp∆q−
α∆τττTd M

−1(q)∆τττd (15)

Note that M−1(q) is positive definite according to the Prop-
erty 1 in the previous section. According to (15) and condi-
tion 2 of the theorem, the Lyapunov function V is positive defi-
nite in the entire state space [∆q̇T ,∆qT ,∆τττT ]T and is radially
unbounded. Conditions 1–3 of the theorem and positive defi-
niteness of M−1(q) guarantee that V̇ is negative definite in the
entire state space. Therefore, the velocity, position and distur-
bance tracking errors converge to zero.

SIMULATION STUDY

SCARA (Selective Compliance Assembly Robot Arm) is
an industrial 4-DOF robotic arm, which is widely used in the
assembly of electronic circuits and devices. Figure 1 depicts
a schematic digram of this manipulator. The dynamics of the
SCARA manipulator is given by (1) where [7]:

Fig.1: Schematic diagram of the SCARA robotic arm.

M(q) =

 p1 + p2c2 p3 + 0.5p2c2 0 −p5
p3 + 0.5p2c2 p3 0 −p5

0 0 p4 0
−p5 −p5 0 p5



C(q, q̇) =

 −p2s2q̇2 −0.5p2s2q̇2 0 0
0.5p2s2q̇1 0 0 0

0 0 0 0
0 0 0 0


G(q) =

[
0 0 −p4g 0

]T
(16)

where Pi, i = 1, . . . , 5 are constant terms. The Jacobian of the
SCARA manipulator, with respect to the robot base frame, is
[7]:

J(q) =

 −a1s1 − a2s12 −a2s12 0 0
a1c1 + a2c12 a2c12 0 0

0 0 −1 0
1 1 0 1

 (17)

In the above, s2 = sin(q2), c2 = cos(q2), s12 = sin(q1 + q2),
c12 = cos(q1 + q2)

In the simulations, two types of disturbances are exerted to
the robot, namely joint-level friction and external task-level pay-
load. The external end-effector payload is modeled by a force
exerted to the robot end-effector in the z direction (vertical di-
rection). This payload is equal to 10N from t = 0sec to t = 7sec

and is then reduced to 5N at t = 7sec. The friction torques act-
ing on the joints of the robots are generated based on the model
in [8]. For the i− th joint of the robot, i = 1, 2, 3, 4, we have
the frictions

τifriction
= Fcisgn(q̇i)[1− exp(

−q̇2i
v2si

)]

+Fsisgn(q̇i) exp(
−q̇2i
v2si

) + Fviq̇i (18)
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where Fci, Fsi, Fvi are the Coulomb, static, and viscous fric-
tion coefficients, respectively. The parameter vsi is the Stribeck
parameter. The SCARA parameters are chosen as in [7]. Other
simulation parameters are

Fc2 = 2.8, Fc3 = 0.7, Fc4 = 0.7, Fv1 = 0.15

Fv2 = 0.12, Fv3 = 0.03, Fv4 = 0.03, vs1 = 0.19

vs2 = 0.15, vs3 = 0.03, vs4 = 0.03 (19)

Square-wave reference position trajectories are supplied for all
joints of the robot. In the first case, no disturbance observer
is used with the control law (9), i.e., τ̂ττd = 0. Note that when
τ̂ττd = 0, the control scheme (9) is a regular computed-torque
control law. In the second case, the proposed disturbance ob-
server is used (to estimate the joint frictions and the external
payload) together with the control law (9) with Kv = 6I and
Kp = 16I where I is the identity matrix. The disturbance ob-
server is given by (11), (13) and (14) with α = 10 and γ = 10.
Figure 2 illustrates the time profiles of the positions of the joints
of the robot. As it can be observed, the computed-torque con-
trol law fails to track the position commands accurately when
no disturbance observer is used. Note that the third joint, i.e.,
q3, is worst affected since a weight was attached to the vertical
link. On the other hand, when the disturbance observer is used,
the robot performs the position commands accurately. Figure 3
depicts the actual and estimated disturbances. Despite the rel-
atively fast time-varying disturbance, the estimated disturbance
is able to track it.

Fig.2: Position of the joints of the SCARA robot.

Fig.3: Disturbance tracking of the proposed disturbance
observer.

CONCLUSIONS

A nonlinear disturbance observer-based control scheme for
general robotic manipulators has been proposed in this paper.
While past methods merely dealt with planar serial manipula-
tors with revolute joints, the proposed disturbance observer re-
moves the previous restrictions on the number of degrees-of-
freedom, the types of joints, and the manipulator configuration.
Moreover, the asymptotic position and disturbance tracking of
the closed-loop system including the robotic manipulator, the
controller and the observer are guaranteed. Simulations using
an industrial manipulator were presented to verify the effective-
ness of the proposed approach.
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