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Abstract
1
. This paper presents a criterion for passivity of n-

port networks, which can be used to model multilateral 

systems involving haptic information sharing between a 

number of users. Such systems have recently found 

interesting applications in both cooperative haptic 

teleoperation and haptics-assisted training. The criterion 

presented in Theorem 1, which is necessary and sufficient for 
passivity of the n-port network, imposes 2n conditions on the 

immitance parameters of the network and on the residues of 

the immitance parameters at their imaginary-axis poles. It is 

shown that when n = 2, the proposed conditions reduce to the 

well-known Raisbeck’s passivity criterion for two-port 

networks. Another special case for which the proposed 

criterion has been simplified corresponds to three-port 

networks.  Finally, the passivity of a dual-user haptic system 

for control of a single teleoperated robot is investigated. 

I. INTRODUCTION 

Two-port networks are overwhelmingly the method of 
choice for modeling a bilateral teleoperation system, which 

consists of a slave robot and a master user interface. The 

human operator controls the slave and is provided with haptic 

feedback concerning slave/environment contact forces 

through the master. Fig.1 shows the equivalent circuit 

representation of a teleoperation system. Usually, only the 

linear dynamics of the master and slave are considered: 

ssesmmhm xMffxMff &&&& =−=+ ,                                        (1) 

where the hand/master interaction is denoted by fh and the 

slave/environment interaction is denoted by fe. Mm, Ms, xm, xs, 

fm, and fs are the master and slave inertias, positions, and 

control signals, respectively. Impedances Zh and Ze denote the 

dynamics characteristics of the human operator’s hand and 

the remote environment, respectively. Fh* and Fe* are the 

operator’s and environment’s exogenous input forces, which 

are independent of the teleoperation system behavior [1].  

 
Fig. 1: Two-port model of a bilateral teleoperation system 

Fig. 2 shows a general 2-port network. Depending on which 

combination of these four quantities (I1, I2, V1, V2) are chosen 

as independent and dependent variable pairs, six different 

ways for modeling the 2-port network exist. For instance, 
using the impedance parameters, the 2-port network can be 

modeled as 
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Fig. 2: A general 2-port network 

















=









2

1

2221

1211

2

1

I

I

zz

zz

V

V
                                                         (2) 

Accordingly, the impedance model of the bilateral 

teleoperation system in Fig. 1 is given by 
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The main goals of teleoperation control are transparency 

and stability. Transparency is the ability of a teleoperation 

system to present the undistorted dynamics of the remote 

environment to the human operator [2], and requires the 

master and the slave positions and interactions to match 

regardless of the operator and environment dynamics  

smeh xxff ==     ,
                              

(4) 

Taking precedence to transparency is closed-loop 

stability, which is crucial for safe teleoperation. For the 

analysis of closed-loop stability of a teleoperation system, 

according to Fig. 1, the knowledge of the human operator and 

the environment dynamics are needed in addition to the 

teleoperation system immitance parameters (z, y, h, or g). In 

practice, however, the model for the human operator and 
environment are usually unknown, uncertain, and/or time-

varying. In fact, the dynamic parameters of the human 

operator change in response to the specific requirements of 

the task at hand [3], [4], and the dynamic parameters of an 

environment may also change over time. This makes it 

impossible to use conventional techniques to investigate the 

closed-loop stability of a teleoperation system. However, 

assuming that Zh(s) and Ze(s) in Fig. 1 are passive, we might 

be able to draw stability conditions that are independent of 

the human operator and the environment (see Section II).  

On the other hand, some tasks can be performed more 
effectively using two hands rather than one or through 

collaboration rather than individual operation. Also, by using 

multiple master interfaces each with a corresponding slave 

robot, multilateral tele-cooperation systems enable haptic 

information sharing and collaboration in performing a task in 

a remote environment by multiple users [5], [6], [7], [8], [9]. 

The key difference between a multilateral tele-cooperation 

system and a bilateral teleoperation (i.e., single-master/single-

slave) system is that the former cannot be modeled as a 2-port 

network. Therefore, conventional theories for absolute 

stability or passivity analysis of 2-port networks will not be 

adequate for multilateral haptic systems. Therefore, there is a 
need for tools that can analyze the passivity of multi-user 

haptic systems modeled as n-port networks. The only tool 

available to date for checking the passivity of an n-port is 
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based on the singular value of the scattering matrix of the 

network [10]: 

))()(( ωωσ jSjSS T=
∞              

(5) 

The above condition is difficult to verify in the general 

case and without knowledge of the model parameter values 

for the robots and the controllers (making it not suitable for 

control synthesis). The criterion we propose in Section III is 

necessary and sufficient for passivity of the n-port network 

and is easy to check as it imposes 2n conditions directly on 

the immitance parameters of the network and on the residues 

of the immitance parameters at their imaginary-axis poles. 

II. ABSOLUTE STABILITY AND PASSIVITY FOR 2-PORT 

NETWORKS 

Two well-known methods have been developed to 

investigate the stability of a 2-port network connected to 

unknown terminations. These methods are known as 

Llewellyn’s absolute stability criterion and Raisbeck’s 

passivity criterion. Both criteria work under the assumption 

that the operator and the environment are passive. By 

definition, a 2-port network is absolutely stable if it remains 

stable under all possible uncoupled passive terminations. 

Also by definition, a 2-port network is passive if the total 

energy delivered to the network at its input and output ports is 

non-negative [11]. 

A. Llewellyn’s absolute stability criterion:  
If p represents any of the four immitance parameters (z, y, h, 

g) of a 2-port network, the criterion establishes that the 

network is absolutely stable if and only if  [11] 

• p11 and p22 have no poles in the right-half plane (RHP) 

• Any poles of p11 and p22 on the imaginary axis are simple 

with real and positive residues 

• For all real values of frequencies �, we have 
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where Re  denotes the real part. 

B.  Raisbeck’s passivity criterion:  

The necessary and sufficient conditions for passivity of a 2-

port network with the immitance parameter p are [11] 

• The p-parameters have no RHP poles. 

• Any poles of the p-parameters on the imaginary axis are 

simple, and the residues of the p-parameters at these poles 
satisfy the following conditions: 

o  If  ijk  denotes the residue of ijp  and ∗

ijk  is the complex 

conjugate of jik , then 
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• The real and imaginary part of the p-parameters satisfy 

the following conditions for all real frequencies � 
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      where Im  denotes the imaginary part. 

So far, these criteria have not been extended to n-port 

networks where � > 2. Our objective is to give necessary and 
sufficient conditions for passivity of a general n-port network, 
which can represent a system where multiple haptic 
teleoperators are used to perform a physical or virtual task 
collaboratively. Nonetheless, the proposed criterion can be 
applied for passivity analysis of any n-port network including 
microwave circuits [12], [13]. 

 

 
Fig. 3: A general n-port network 

III. MAIN RESULT: PASSIVITY CONDITIONS FOR N-PORT 

NETWORKS 

An n-port network can be defined as a network containing 
n pairs of terminals for external connections. Each pair of 
terminals represents a port to which an external network can 
be connected (Fig. 3). The external behavior of the n-port 
network can be determined if all the Ii currents and Vi 

voltages are known. In this section, we present the necessary 
and sufficient conditions for passivity of an n-port network. 
By analogy with 2-port networks, an n-port network is  
passive if, for all excitations, the total energy delivered to the 
network at its input and output ports is non-negative. 
Mathematically, this passivity definition is expressed as 

( ) 0 )()()()()()()( 2211 ≥+++= ∫
∞−

τττττττ divivivtE

t

nnK    (9) 

where )(tE  is the total energy delivered to the n-port 

network. We know that the passivity of a 1-port network is a 
necessary and sufficient condition for positive-realness of its 
impedance, which is equivalent to 

( ) 0)()(Re ≥
∗

sIsV    for   0Re ≥s
                              

(10) 

By analogy, (9) is equivalent to the following condition  

( ) 0)()()()(Re 11 ≥++ ∗∗
sIsVsIsV nnK    for   0Re ≥s         (11) 

where )(sI i

∗ is the complex conjugate of )(sI i
.  

Using impedance parameters of the n-port network, the 

relations between voltages and currents are  
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which can be compactly described as ZIV = . The following 

Theorem holds for any of the four immittance parameters, yet 

for brevity we write it only in terms of impedance parameters. 

Theorem 1: The necessary and sufficient conditions for 

passivity (defined by (11)) of an n-port network are: 

• The p-parameters have no RHP poles. 
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• Any poles of the p-parameters on the imaginary axis are 

simple, and the residues of the p-parameters at these poles 

satisfy the following conditions: 
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where 
ij

k
 

denotes the residue of 
ij

p
 

and ∗

ijk  is the 

complex conjugate of jik . The terms 
ij

u  are the elements 

of an upper triangular matrix U  used to diagonalize the 

matrix K  according to KUKU* =′ . The coefficients '

iik

are the elements of the diagonal matrix K ′ . 

• The real and imaginary parts of the z-parameters satisfy 

the following conditions for all real frequencies � 
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where )(
*'
jiijij zzz +=

2

1
. The terms 

ij
w are the elements 

of an upper triangular matrix W used to diagonalize the 

matrix Z′  according to WZWZ * ′′=′ . The elements ''

iiz  

are the entries of the diagonal matrix Z ′′ .                   ■ 
Proof: Eliminating the voltages in (11) by using (12), we find 
that the n-port network passivity is equivalent to 
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Also, the rational function )(sF  is positive real (i.e., (15) 

holds) if and only if, in addition to being real for real s , 

)(sF  meets the following conditions: 

A. )(sF
 
has no RHP poles 

B. Any poles of )(sF  on the imaginary axis are simple 

with real and non-negative residues 

C. [ ] ωω ∀≥     ,0)(Re jF  

For condition A, we require that none of the z-parameters 
of the n-port network have any poles in the RHP. For 

condition B, assume that F(s) has a simple pole at 0ωjs =  

with a residue 0k . Let nnkkkk LL ,, 211211  denote the residues 

of nnzzzz LL 211211, , respectively, at this pole. Expanding 

F(s) in a Laurent series about 0ωjs =  and keeping only the 

dominant terms in the neighborhood of the pole, we get 
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which is equivalent to
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In (18), 0k
 
must be a real and non-negative number to satisfy 

condition B. All the iik
 
for  are real and positive 

since the impedances )(szii  
are positive real functions. Also, 

)()( 00 ωω jIjI ii

∗  is real and positive. Note that in the pairs

)()()( 000 ωωω jIjIjk ijij

∗ )()()( 000 ωωω jIjIjk jiji

∗+ , since 

)()( 00 ωω jIjI ij

∗ and )()( 00 ωω jIjI ji

∗ are complex conjugates, 

ijk and 
jik  are also complex conjugates. 

Since the right side of (18) is a Hermitian form, it can be 
diagonalized. To do so, (18) can be written in matrix form as  
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The 
-matrix is diagonalizable and we want to find a 

linear transformation such as KUKU* =′
 
where K′  is a 

diagonal matrix, U  is an upper triangular matrix, and *U  
(the transpose complex conjugate of U ) is a lower triangular 

matrix. By representing the U  matrix in the reduced row-

echelon form, we arrive to the following system 
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Solving for K ′  and U  will lead us to expressions for each 
'

iik  
as a function of ijk  elements. The left side of (20) is 

ni ,,1 L=
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The solution to (20) is 
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Now, (19) can be rewritten as 
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implying that 0k
 

will be non-negative and equivalently 

condition B holds iff '

iik  in (22) are all non-negative (this also 

implies 0000 443322 ≥≥≥≥ nnkkkk L,,, ). Therefore, it is 

established that condition B holds iff (13) holds. 
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The z-parameters have complex values, i.e., ��
 = ��
 +���
  where ��
  is the real part and ��
  is the imaginary part 

of ��
  .It is easy to see that (24) is a Hermitian form. Using a 

procedure similar to (19)-(23), which was for the residue 

matrix, Z′  can be expressed as WZWZ * ′′=′  where Z ′′  is a 

diagonal matrix and W  is an upper triangular matrix.  
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The solution to (27) is 
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Now, (25) can be rewritten as 

[ ] I)(WZI)(WIWZWIIZI **** ′′=′′=′=)(Re ωjF                 (29)                 

Therefore, [ ] ωω ∀≥     ,0)(Re jF  (condition C holds) iff the z''-parameters in (28) are non-negative (this also implies 

0,0,0,0
''

44

'

33

'

22 ≥≥≥≥ nnzzzz L ). Therefore, condition C 

holds iff (14) holds.  

In summary, conditions A, B and C are necessary and 

sufficient for (15) or equivalently (11), which defines the n-

port network passivity. This concludes the proof. 

IV. CASE STUDY: 2-PORT AND 3-PORT NETWORKS 

In this section, we consider the special cases resulting 

from substituting n = 2 and n = 3 in Theorem 1. 

A. Two-port networks 

It is easy to see that solving (20) for n = 2 results in ��� =���/���, ���∗ = ���/���, and ���� = ��� ,        ���� = ������ − ������ ���                                (30) 

It is straightforward that condition (13) in Theorem 1 is same 

as condition (7) in the Raisbeck’s criterion.  

Writing ��
  as  ��
 + ���
  where ��
  is the real part and ��
  
is the imaginary part of  ��
 , we have  

#���� (��) ���� (��)���� (��) ���� (��)$ =
% ��� �� (��� + ���) + 
� (��� − ���)

�� (��� + ���) − 
� (��� − ���) ��� &
which can be diagonalized as  

277



# 1 0(��∗ 1$ #����� 00 ����� $ )1 (��0 1 * 
where 

''

11z = '

11z         '

11

'

21

'

12

'

22

'

11''

22
z

zzzz
z

−
=

     

(31) 

with (�� = ���� ����⁄  and (��∗ = ���� ����⁄ . Using 

)(
2

1 *'

jiijij zzz += , the second condition in (31) becomes  

4������ − (��� + ���)� − (��� − ���)� ≥ 0       (32) 
which is same as condition (8) in the Raisbeck’s criterion. 

Therefore, Theorem 1 is in agreement with the Raisbeck’s 

criterion for the case where n = 2. 

B. Three-port networks 

For n = 3, (20) is 

. 1 0 0���∗ 1 0��/∗ ��/∗ 10 %����� 0 00 ����� 00 0 �//�� & .1 ��� ��/0 1 ��/0 0 1 0 =

.��� ��� ��/��� ��� ��/�/� �/� �//
0                    (33) 

which can be solved to get ���� = ���               (34) ���� = ������ − ������ ���  
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Also, for n = 3, (27) is 

. 1 0 0(��∗ 1 0(�/∗ (�/∗ 10 %����� 0 00 ����� 00 0 �//�� & .1 (�� (�/0 1 (�/0 0 1 0 =
%���� ���� ��/����� ���� ��/��/�� �/�� �//� &             (35) 

which renders the following solution
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As a result, a 3-port network is passive if and only if  

• The �-parameters have no poles in the RHP 

• The following residues conditions must be satisfied by the 
residues of the z-parameters at their imaginary-axis poles 
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(37) 

• The real and imaginary parts of the �-parameters satisfy 
the following inequalities    ��� ≥ 0,     1 = 1, 2, 3   4�������// − �//2(��� + ���)� + (��� − ���)�3    −���2(��/ + �/�)� + (��/ − �/�)�3 −���2(��/ + �/�)� + (��/ − �/�)�3 +(��/ + �/�)(�/� + ��/)(��� + ���)                                (38) +(��� + ���)(��/ − �/�)(��/ − �/�) −(�/� + ��/)(��� − ���)(��/ − �/�) +(��/ + �/�)(��/ − �/�)(��� − ���) ≥ 0  
V. APPLICATION OF THE PROPOSED CRITERION TO A 

DUAL-USER HAPTIC TELEOPERATION SYSTEM 

The goal is to train the trainee to do a task under haptic 
guidance from the mentor. In such a shared-control haptic 
environment, a parameter 4 can be adjusted such that the 
trainee and the mentor collaborate and each contributes to the 
position command while receiving some force feedback. This 
provides “hand-over-hand” training using haptic assistance. 
 Consider the “four-channel multilateral shared control 
architecture” given in [14] and depicted in Figure 4. In this 3-
robot cooperative manipulation system, the desired velocity 
and force of each robot is a function of the velocities and 
forces of the other two robots. The two human operators are in 
contact with the two master devices and the slave is in contact 
with an environment. In frequency domain, this robot models are 
represented as 56�78� = 98� + 9:6� 56�78� = 98� + 9:6�              (39) 5;7< = −9< + 9:;  

where  56� = =6�>,  56� = =6�>  and 5; = =;>  are the 

mass models of the two masters and the single slave, 

respectively. Also, 98�, 98� and 9< are the contact forces 
between each master and its human operator, and between the 
slave and its environment.  

The controller outputs in the 4-channel architecture are 9:6� = −B6�78� − BC6�78�D + BE6�98� − B�6�98�D 9:6� = −B6�78� − BC6�78�D + BE6�98� − B�6�98�D    (40) 9:; = −B;7< + B�7<D − BF9< + B/9<D 

where B6� = G6� + HIJ;  and B; = G; + HK;   denote local PD 

position controllers, and BE6� , BF  are local force feedback 

terms for the two masters (1 = 1, 2) and the slave, 

respectively. Controllers B�,   BC�  are position compensators 

similar to B; and B6�, respectively. Lastly,  B�6� , B/ are 
feedforward force terms for the two masters and the slave.  

In (40), 78�D , 78�D , 7<D   are the desired positions and 98�D , 98�D , 9<D   are the desired forces for the two masters and 
the slave, respectively. The desired velocity and force of one 
robot depends on the actual velocities and forces of the other 
two robots as the following expressions and Fig. 4 show it 78�D = 47< + (1 − 4) 78�     78�D = (1 − 4)7< + 4 78� 7<D = 478� + (1 − 4) 78�   98�D = 49< + (1 − 4)98�     (41) 98�D = (1 − 4)9< + 4 98�   9<D = 498� + (1 − 4) 98� 
where 4 L 20, 13 is the weight or authority parameter specifying 
the relative authority that each operator has over the slave. 

For perfect transparency (assuming no time delay), the 

choices B� = 5; + B;, B�6� = 1 + BE6� , B/ = 1 + BF,BC6� = −(56� + B6�) are normally made in the 4-channel 

architecture. For simplicity, however, let us choose B/ =
278



BF = B�6� = B�6� = BE6� = BE6� = 0,   B� = B;  ,  BC6� =−B6�  and BC6� = −B6�. Such choices correspond to the 
position-error based (PEB) control architecture, which does 
not need any force sensor measurements.  
   By using (39) to (41) for the PEB controller, the impedance 
model of the closed-loop multilateral system is found as 

.98�98�9<
0 = .��� ��� ��/��� ��� ��/�/� �/� �//0 .78�78�7<

0                                           (42) 

where ��� = (=6�>� + G6�> + N6�) >⁄   ��� = (−G6�> + N6�4 + G6�>4 − N6�) >⁄   ��/ = (−G6�>4 − N6�4) >⁄   ��� = (−G6�>4 − N6�4) >⁄  ��� = (=6�>� + G6�> + N6�) >⁄                                      (43) ��/ = (−G6�> + N6�4 + G6�>4 − N6�) >⁄  �/� = − (−G;>4 − N;4) >⁄   �/� = − (−G;> + N;4 + G;>4 − N;) >⁄   �// = − (=;>� + G;> + N;) >⁄       

 
Fig. 4: A dual-user haptic teleoperation system 

Evidently, (43) means that all the ��
  have only a simple 

pole on the imaginary axis. Analysis of the residues ��
  

according to (13) leads to the following conditions ��� = N6� ≥ 0               (44)   ��� = N6� ≥ 0                (45) �// = −N; ≥ 0                (46) ������ − ������ = G6�G6�(1 − 4 + 4�) ≥ 0        (47) 
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(48) 

The inequality (47) always holds as 1 − 4 + 4� > 0 for all 4 L 20, 13. It turns out that the left side of (48) is equal to zero, 
thus the inequality (48) also holds. 

Analysis of parameters �′�
 according to (14) leads to  ���� = G6� ≥ 0             (49) ���� = G6� ≥ 0             (50) �//� = −G; ≥ 0             (51) 

The condition ���� ���� − ���� ���� ≥ 0 simplifies to ��(=�� +P) where = is a function of N6�, N6�, G6�, G6� and 4, and P 

is a function of N6�, N6�, and 4. Therefore, both = and P 
must be non-negative such that the condition holds for all � ∈ 20, ∞3. We have P = −((N6� + N6�)4 − N6�)�                                           (52)    
which will be non-negative only when 4 = N6� (N6� + N6�)   ⁄                                         (53) 

With 4 given in (53), the condition P ≥ 0 leads to the 

following for a quadratic equation in G6� (or G6�): SN6��TG6� 2 + S−6G6�N6�N6� − 4G6�N6�2 −4N6�2G6�)G6� + (G6�2N6�2) ≤ 0                                    (54) 

If the equality in (54) has real solutions for G6�, they will 

be negative and the value for G6� would need to be between 
these negative values such that the inequality in (54) holds – 

this is in conflict with (49). If, however, the equality in (54) has 

complex solutions for G6�, then the  inequality in (54) cannot 
hold either. We conclude that (54) will never hold. There is 
no reason to check the last condition of (36).  

As a result, the above PEB-controlled multilateral system 
is not passive. A similar fact for a PEB-controlled bilateral 
teleoperation system (2-port network case) is well known 
(such a system is neither passive nor absolutely stable). 

VI. CONCLUSIONS 

A new criterion for passivity analysis of multi-user haptic 
systems was proposed. The proposed criterion is based on the 
analysis of immittance parameters of the n-port network of 
the multilateral haptic system. Theorem 1 gives the necessary 
and sufficient conditions that the immitance parameters and 
their residues must satisfy for the n-port network to be 
passive. It was shown that for n-port networks, n conditions 
for the residues plus n conditions for the immitance 
parameters must be satisfied. The theorem was applied to the 
case n = 2, resulting in the same conditions as in the 
Raisbeck’s criterion for passivity of two-port networks. Then, 
the theorem was used to draw the necessary and sufficient 
conditions for passivity of three-port networks.   Finally, the 
theorem was applied to a dual-user haptic teleoperation 
system. Although passivity is a good tool for investigating the 
stability of multilateral haptic systems where the operators 
and/or environments are unknown, its results are conservative 
compared to those from absolute stability. Future work will 
be directed towards finding the necessary and sufficient 
conditions for absolute stability of an n-port network. 
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