EE462: Fundamental of Control Systems Engineering

Instructor	Name, Mahdi Tayakali
Instructor information	Name: Mahdi Tavakoli Office: ECERF W2-004
Illiormation	
	Telephone: 492-8935 E. mail. tavaledi@aga.valborta.gg (plagga include "EF462" in the subject line)
	E-mail: tavakoli@ece.ualberta.ca (please include "EE462" in the subject line)
TA J l-l-	Office hours: Tuesday and Thursday from 11:00 am to noon
TA and lab	Teaching Assistant: Jiadong Wang (jiadong@ece.ualberta.ca)
instructor	Lab Instructor: Ali Jazayeri (ali.jazayeri@ualberta.ca)
Schedule	Lecture times: 9:30 am - 10:50 am on Tuesday and Thursday (January-April 2009)
information	Lecture location: ETLE 1-007
	Midterm exam: Tuesday February 24, 9:30 am - 10:50 am in the lecture room
	Final exam: Will be scheduled by the Office of the Registrar and Student Awards
Course	http://moodle.ece.ualberta.ca/
webpage	For access to the course, first create a new account for yourself on this web site. Then,
	type in the "enrolment key" provided to you during the lecture (required only the first
	time you log in).
Course	The overall objective of this course is to introduce the students to the study of control
content	systems. As future engineers, the students will study the tools needed to evaluate the
	performance of a given system, and to design a feedback controller to achieve a set of
	desired performance goals. To this end, the course will introduce:
	 The basic concepts of dynamic systems and how to describe them via
	mathematical models.
	 Analysis of the fundamental characteristics of feedback control systems.
	 The classical control techniques for designing feedback controllers.
	 The modern control techniques for designing feedback controllers.
	Digital implementation of feedback controllers.
	The course and its lab will repeatedly use the knowledge of and skills in mathematics,
	signals and systems theory, and Matlab programming.
Marking	Assignments: 15%
scheme	• Laboratories: 15%
	Midterm exam: 20%
	• Final exam: 50%
Textbook and	Required Textbook:
references	 Norman S. Nise. Control Systems Engineering, 5th edition, 2008, Wiley.
references	The Student Companion Site
	http://bcs.wiley.com/he-bcs/Books?action=index&itemId=0471794759&bcsId=4135
	for this textbook contains useful resources including computer programs for use with
	MATLAB, additional appendices, and complete solutions to skill-assessment exercises.
	 A copy of Nise is available in the U of A (Cameron) Library Reserve
	Room (http://www.library.ualberta.ca/reserveroom/index.cfm)
	100m (http://www.norary.uanberta.ca/reserveroom/muex.cmi)
	Other references for more information:
	Karl J. Åström and Richard M. Murray. Feedback Systems: An Introduction for
	Scientists and Engineers, 2008, Princeton University Press. This book is available
	online for free: http://www.cds.caltech.edu/~murray/amwiki.
	 Richard C. Dorf and Robert H Bishop. Modern Control Systems, 11th edition, 2008,
	Prentice Hall.
	 Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini. Feedback Control of
	Dynamic Systems. 4th edition, 2002, Prentice-Hall.
	Dynamic Systems. Fur cultion, 2002, 1 refluction.

MATLAB / MATLAB/Simulink is extensively used throughout the course. We will be using the Simulink Control Systems Toolbox and the Symbolic Math Toolbox. You should already be familiar with MATLAB basics. Basic reviews of MATLAB/Simulink are contained in Appendices B and C of Nise. You can become more familiar with MATLAB by running the control demonstrations (In Matlab prompt, type demo and follow Toolboxes >> Control Systems). Nise's Student Companion Site has additional appendices regarding Matlab, too. **Assignments** There are seven sets of assignments to be posted on the course website on Thursdays and will be due the following Thursday by 4:00 pm at the EE 462 assignment box (located outside the ECERF reception area on the 2nd floor). The solution to each assignment will later be posted on the course website. Assignments put in the box after 4:00 pm on the due date and before they are picked up will receive a 50% penalty. No late assignments will be accepted once the box has been emptied. Consultation with other students is permitted; however, the solutions handed in must be your own work. Your assignments will be marked by the Teaching Assistant. Lab Section H1 (Wednesday) Section H2 (Thursday) February 5 Lab1 February 4 Lab2 March 4 March 5 March 19 Lab3 March 18 **Lab4** April 1 April 2 You must attend all of the four lab sessions in your Section. A lab report is due by 4:00 pm, one week after you perform the lab, and should be put into the EE 462 laboratory box outside the ECERF reception area. Lab reports put in the box after 4:00 pm on the due date and before they are picked up will receive a 50% penalty. No late reports will be accepted once the box is emptied. Lab reports should be clear, clean and stapled. The Lab Instructor will mark your lab reports. **Important** Policy about course outlines can be found in Section 23.4(2) of the University policies Calendar. The University of Alberta is committed to the highest standards of academic integrity and honesty. Students are expected to be familiar with these standards regarding academic honesty and to uphold the policies of the University in this respect. Students are particularly urged to familiarize themselves with the provisions of the Code of Student Behaviour (online at http://www.uofaweb.ualberta.ca/secretariat/studentappeals.cfm) and avoid any behaviour which could potentially result in suspicions of cheating, plagiarism, misrepresentation of facts and/or participation in an offence. Academic dishonesty is a serious offence and can result in suspension or expulsion from the University. Missed midterm exam and missed final exam can only be justified by documented medical evidence. You may use *approved non-programmable* calculators (with a gold sticker) in the midterm and final exams as long as in compliance with the Faculty of Engineering's Calculator Policy: http://www.engineering.ualberta.ca/calculator.cfm. Obviously, calculators must not be used for any kind of cheating or communication with other students during exams. In the midterm and final exams, you can bring one formula sheet (letter size, two sided), but no books, notes, or other materials.