Instructor	Name: Mahdi Tavakoli
Instructor information	Office: ECERF W6-037
mormation	Telephone: 780-492-8935
	E-mail: mahdi.tavakoli@ualberta.ca
	Office hours: Mondays, Wednesdays and Fridays 10:30-11:30 am
TA and lab	Lab Instructor: Meaghan Bowthorpe (<u>meaghan.bowthorpe@ualberta.ca</u>)
instructor	TA: Ran Tao (<u>ran1@ualberta.ca</u>)
Schedule	Lecture times: Mon Wed Fri, 12:00- 12:50 pm
information	Lecture location: ETLE 1 008
	Midterm exam: Monday October 28, 12:00 -12:50 pm in the lecture room
Courses	Final exam: Will be scheduled by the Office of the Registrar and Student Awards
Course	https://eclass.srv.ualberta.ca/
webpage	A number of PowerPoint presentations have been posted on this website already. They
	are incomplete now, will be completed in class, and re-posted to the website. I
	recommend that you print and bring your copy of the incomplete notes to the class, and
	add your notes on them as I am writing on the slides.
Course	The course provides training in areas pertaining to the analysis and design of
content	robotic systems for medical applications. To this end, the course will introduce:
	Basics and paradigms of computer-integrated intervention
	Main topics in robotics: Kinematics, dynamics, control
	Applications of the above principles of robotics in medical systems
	Control for haptic teleoperation of medical robots
	 Existing medical robotic systems and applications
	This is a more detailed chapter-by-chapter breakdown of the course coverage:
	Basics of medical robotics
	Paradigms of medical robotics
	Spatial descriptions and transformations
	Forward kinematics
	Inverse kinematics
	• Jacobians
	Remote Center of motion creation in minimally invasive surgery (MIS) robots
	Port placement in MIS
	Collision detection and untangling for MIS robots
	• Dynamics
	Trajectory generation
	Linear control of manipulators
	Image-based visual servoing
	Nonlinear control of manipulators
	Force control of manipulators
	Haptic teleoperation: Two port networks
	Haptic teleoperation: Stability & transparency
	 Haptic teleoperation: Control architectures
	 Haptic teleoperation: Delay compensation
	The course and its lab will use the knowledge of and skills in mathematics, systems
	control, and some programming in both Matlab and C/C++ languages.
	control, and some programming in both mataballa of 0.1 mangaages.

Marking	Assignments: 5%
scheme	 Laboratories: 20%
	• Midterm exam: 25%
	• Final exam: 50%
Textbooks and selected references	• J. J. Craig, <u>Introduction to Robotics: Mechanics and Control</u> , Prentice Hall, 3rd edition, 2004, ISBN 0201543613.
	• M. Tavakoli, R.V. Patel, M. Moallem, A. Aziminejad, <u>Haptics for Teleoperated Surgical</u> <u>Robotic Systems</u> , World Scientific, 2008, ISBN 978-981-281-315-2. <i>Electronically Available through U of A Libraries.</i>
	• B. Siciliano, O. Khatib (Eds.), <u>Springer Handbook of Robotics</u> , Springer, 2008, ISBN 978-3-540-23957-4.
	 <i>Electronically Available through U of A Libraries (via Springerlink).</i> M. Grunwald (Ed.), <u>Human Haptic Perception: Basics and Applications</u>, 2008, ISBN 978-3-7643-7611-6.
	Electronically Available through U of A Libraries (via Springerlink).
	• M. Lin and M. Otaduy (Eds.), Haptic Rendering: Foundations, Algorithms and
	Applications, A K Peters, 2008, ISBN 978-156-881-332-5.
	• R. H. Taylor, S. Lavallee, G. Burdea, R. Mosges (Eds.), Computer-Integrated Surgery,
	 MIT Press, 1996, ISBN 978-0-262-20097-4. G. C. Burdea and P. Coiffet, Virtual reality technology (2nd Edition), Wiley, 2003, ISBN
	• G. C. Burdea and P. Connet, virtual reality technology (2^{na} Edition), whey, 2003, ISBN 0-471-36089-9.
MATLAB / Simulink and C/C++	 MATLAB/Simulink will be needed in this course for doing the assignments and the labs. Moreover, at least a basic understanding of the C/C++ language will be required in the labs for programming the Phantom Omni robots.
Assignments	• Four assignments will be posted on the course website. Each assignment will be due one week after it is posted by 4:00 pm at the EE464 assignment box (located outside the ECERF reception area on the 2 nd floor).
	• Assignments put in the box after 4:00 pm on the due date and before they are picked up will receive a 25% penalty. No late assignments will be accepted once the box has been emptied.
	• Consultation with other students is permitted; however, the solutions handed in must
	be your own work.
Lab	
	Date
	Lab 1 Oct. 4 Lab 2 Oct. 25
	Lab 2 Oct. 23 Lab 3 Nov. 8 & Nov. 15 (your group will pick one)
	Lab 4 Nov. 22 & Nov. 29 (your group will pick one)
	Lub 1 Hov. 22 & Hov. 25 (Jour group win piek one)
	• You must attend all of the four lab sessions.
	 Lab reports will be due by 4:00 pm, one week after you perform the lab. All reports
	should be put into the EE464 laboratory box outside the ECERF reception area.
	• Lab reports put in the box after 4:00 pm on the due date and before they are picked up
	will receive a 25% penalty. No late reports will be accepted once the box is emptied.
Important	Lab reports should be clear, clean and stapled.
Important policies	• Policy about course outlines can be found in Section 23.4(2) of the University Calendar.
policies	 The University of Alberta is committed to the highest standards of academic integrity and honesty. Students are expected to be familiar with these standards regarding

	 academic honesty and to uphold the policies of the University in this respect. Students are particularly urged to familiarize themselves with the provisions of the Code of Student Behaviour (online at http://www.uofaweb.ualberta.ca/secretariat/studentappeals.cfm) and <i>avoid any behaviour which could potentially result in suspicions of cheating, plagiarism, misrepresentation of facts and/or participation in an offence.</i> Academic dishonesty is a serious offence and can result in suspension or expulsion from the University. Recording is permitted only with the prior written consent of the professor or if recording is part of an approved accommodation plan. Missed midterm exam and missed final exam can only be justified by documented used to be be accommodation.
Calculator and formula sheet	 medical evidence. You may use <i>approved non-programmable</i> calculators (with a gold sticker) in the midterm and final exams as long as in compliance with the Faculty of Engineering's Calculator Policy: <u>http://www.engineering.ualberta.ca/calculator.cfm</u>. Obviously, calculators must not be used for any kind of cheating or communication with other students during exams. In the midterm exam, you can bring one formula sheet (letter size, two sided). You can bring two such formula sheets in the final exam. No books, notes, or other materials will be allowed in either exam.