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ABSTRACT  
 

Histopathological images are widely used to diagnose diseases including skin cancer. As digital 

histopathological images are typically of very large size, in the order of several billion pixels, automated 

identification of all abnormal cell nuclei and their distribution within multiple tissue sections would assist 

rapid comprehensive diagnostic assessment. In this paper, we propose a technique, using deep learning 

algorithms, to segment the cell nuclei in Hematoxylin and Eosin (H&E) stained images and detect the 

abnormal melanocytes within histopathological images. The Nuclear segmentation is done by using a 

Convolutional Neural Network (CNN) and hand-crafted features are extracted for each nucleus. The 

segmented nuclei are then classified into normal and abnormal nuclei using a Support Vector Machine 

classifier. Experimental results show that the CNN can segment the nuclei with more than 90% accuracy. 

The proposed technique has a low computational complexity. 
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1. INTRODUCTION 
 

Primary cutaneous melanomas include a range of potentially lethal melanocytic neoplasms which 

most often present in skin as an archetypical macular growth phase lesion comprised of an in-situ 
component plus a papillary dermal component of similar cytomorphology. The diagnosis depends 

upon the histomorphological identification of abnormal melanocytes forming radial and vertical 

growth phase neoplastic cellular infiltrates which by invasion and widespread metastasis can 
secondarily involve regional lymph nodes and ultimately any other part of the body. As per 

recent statistics, it is estimated that about 100,350 new cases of melanoma cancer will be 

diagnosed in United States alone in 2020, which will result in about 6,850 deaths [1]. The early 
diagnosis of melanoma is very important as it helps to increase the chances of successful 

treatment and the survival rate. The Computer-aided diagnosis (CAD) techniques can effectively 

help doctors to diagnose and detect the melanoma in early stages [2]. The digitized 

histopathological slides, which are typically obtained by staining and scanning the biopsy slides 
of the skin tissue, can provide the cell morphological features with a high resolution. The 

digitized slides are known as Whole Slide Images (WSIs) and with help of CAD techniques that 

will permit the pathologist for precise diagnosis [3]. Pathologists usually use H&E stained 
images, because the morphological features of the melanocytes and other cells become vividly 

clear. In H&E stained image, the cell nuclei contain chromatin and that can be observed in blue 

shade while the cytoplasm and other connective tissues are observed with varying shades of pink. 
 

Fig. 1 shows an H&E stained histopathological image of metastatic melanoma within regional 

lymph nodes (amidst adjacent salivary gland). The Lymph node cross-sections in the image are 
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contoured with black color, and melanoma metastases are contoured in green color. Note that in 
this image the metastases are contoured manually by morphology. In the zoomed patch, it is 

observed that the abnormal melanocytes appear with irregularity in shape and color intensity 

[4,5]. 

 
Several techniques have been proposed to segment the cell nuclei in histopathological images [6-

11]. Xu et al. [6] proposed an automated technique (henceforth referred to as the 

Watershed+Voting technique) to segment the cell nuclei in H&E stained images. The technique 
detects the nuclei seeds by using voting areas and segments the nuclei cells using marked 

watershed algorithm. The technique provides a good performance with high computational 

complexity due the seed detection algorithm. Xu et al. [11] also proposed cell nuclei 
segmentation technique (henceforth referred to as the gLoG+mRLS technique) using generalized 

Laplacian of Gaussian (gLoG) filters to detect the seeds nuclei and multiple Radial Lines 

Scanning (mRLS) algorithm to segment the cells. The mRLS uses high gradient pixel locations 

and shape information to accurately segment the cell nuclei.  
 

 
 

Figure 1. Example of an H&E stained lymph node tissue image. Lymph nodal tissue is contoured in black, 

and metastatic melanoma deposits are contoured in green. 

 

The techniques [6-11] mentioned above are generally based on extracted hand-crafted features 

that require significant time to calculate. The deep learning algorithms using CNN have been 
recently been used successfully in medical image analysis. The CNN models can train the feature 

extraction process to provide high performance with low computational complexity in many 

different tasks (e.g.  classification, detection or segmentation [12-13]). Basrinarayanan et al. [14] 
proposed the SegNet architecture for object segmentation. The architecture uses a number of 

sampling and upsampling layers for extracting the features in hierarchical levels. Ronneberger et 

al. [15] proposed the U-Net architecture for biomedical image segmentation. The U-Net 

architecture has encoder and decoder sides with number of sampling and upsampling layers, 
respectively. The upsampling layer outputs are enhanced by concatenating them with features 

from the encoder side. 

 
In this paper, we propose an automated technique to segment the cell nuclei and differentiate 

melanoma from non-melanoma cells using a Support Vector Machine (SVM) classifier. The 

technique uses a CNN architecture to segment the cell nuclei on H&E stained images. The 

proposed CNN used several convolutional layers with different size of filters. Experimental 
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results demonstrate high accuracy and low computational complexity of the proposed technique 
compared to the state-of-the-art techniques. 

The organization of the paper is as follows. Section 2 describes the dataset used to train and 

evaluate the proposed technique. Section 3 describes the proposed technique in detail. Section 4 

presents the performance evaluation, followed by the conclusion in Section 5. 

 

2. DATA DESCRIPTION 
 

In this section, we present the details of the training and testing dataset to evaluate the 
performance of the proposed nuclei segmentation and cell classification technique. The digitized 

biopsies were collected at the Cross Cancer Institute, University of Alberta, Edmonton, Canada in 

accordance with the protocol for the examination of specimens with skin melanoma. Standard 

Neutral Buffered formalin-fixed paraffin-embedded tissue blocks of these biopsies were cut into 
thin slices (e.g., 4μm for light microscope). These slices were then mounted to glass slides and 

stained using H&E stain [5]. The WSIs were obtained by scanning the H&E slides using aperio 

scanscope scanning system under 40X magnification. The size of a WSI is typically around 
40,000×60,000 pixels (in color) and each WSI contains thousands of cell nuclei. The image 

dataset consists of 9 WSIs of lymph node tissue. 

 

3. PROPOSED TECHNIQUE 
 
The schematic of proposed technique is shown in Fig. 2 which consists of two modules: CNN-

based nuclei segmentation and nuclei classification. The details of each module are presented in the 

following. 
 

 
 

Figure 2. Schematic of the proposed melanoma detection technique. 

 

3.1. CNN-based Nuclei Segmentation 
 
In this module, the input H&E stained images are segmented into cell nuclei and background. 

The nuclei segmentation is done by using the proposed CNN architecture, henceforth referred to 

as the NS-Net architecture (Nuclei Segmentation Net). The NS-Net architecture, shown in Fig. 3, 
consists of five convolutional layers (shown in gray color) and one softmax (shown in pink) 

followed by the pixel classification layer (shown in blue). The convolutional layer in the NS- 

architecture consists of three operations: convolution, batch normalization [16], and activation 
[17]. A brief description of each operation is presented in the following: 

 

(i) Convolution: Let 1lf   denote the (3D) feature map generated in the convolutional layer l-1. 

In the convolution layer l, the feature map 1lf   is convolved with a (3D) filter jF : 

, 1 , 1, 2,.., (1)l j l jR f F j N    

where N is the number of filters (which is also known as the depth of the layer l), ,l jR  is the 

(2D) output corresponding to the jth convolution filter. Note that for the first convolution 

layer (l=1), the input image is considered as 0f . 
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(ii) Batch normalization: During the CNN training, the convolution outputs ,l jR  corresponding 

to all images in a mini-batch (of S images) are considered. In this work, we have used S=8. 

The ,l jR  is made zero mean with unit variance as follows: 

,

,ˆ (2)l j

R
l j

R






  

where   and   are the mean and standard deviation of all  ,l jR  in a mini-batch. 

The normalized 
,

ˆ
l jR  is scaled with  , and a bias   is added as follows: 

, ,
ˆ (3)l j l jy R    

Note that Eqs. 2 and 3 are applied in both training and testing modes. Eq. (2) is applied with 

S=8 (the mini-batch size) and S=1, in training and testing mode, respectively. The   and   

are trainable parameters, and are updated iteratively during the backpropagation. 

(iii) Activation: In this step, an activation function is applied on the batch normalized output jy . 

In this work, the Rectified Linear Unit (ReLU) activation is used. The output of the ReLU 

activation function ,l jf  can be expressed as follows. 

, ,
max(0, ) (4)

l j l j
f y  

The overall output of convolutional layer l, which will be passed on to the next layer is as 
follows: 

 ,
,

0,1,...
l l j

f f j N   

 

In this architecture, the features are extracted in hierarchical levels by using convolutional filters 

of different sizes. The change on the convolutional filters can precisely locate the object 

boundaries that need to be segmented. Most existing CNN architectures include pooling layers. In 
our experiment, it has been found that the pooling leads to loss of the spatial information that 

carries important texture and shape features of the nuclei. Therefore, the pooling layer has been 

omitted in the proposed architecture. Table 1 shows the number and the size of filters in each 
layer of the NS-Net architecture. The NS-Net architecture is trained and evaluated using a dataset 

of 24 high resolution H&E stained image patches (each with 1920×2500 color pixels) obtained 

from the WSI dataset described in Section 2. Each image patch is divided into overlapping blocks 
of 64×64 color pixels to obtain 458 block-images. The total number of block-images will be 

10,992 (i.e. 24×458) and it is divided into 70% for training, 15% for validation and 15% for 

testing. The entropy loss function with the stochastic gradient descent with momentum (SGDM) 

optimizer is used to train the NS-Net architecture [18]. Fig. 4 (a) shows an input H&E stained 
image and (b) shows the masked nuclei image obtained using the NS-Net architecture. 

 

 
 

Figure 3. The proposed NS-Net architecture for nuclei segmentation. 
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Table 1. Details of the NS-Net architecture with 5 convolutional layers. 

Input image size: M×N pixels (color). Number of classes: C. 

 

 Number of 

Filters  

Number of 

Channels 

Output Image 

size 

Filter 

size 

Layer-1  64 3 M×N×64 3×3 

Layer-2  64 64 M×N×64 5×5 

Layer-3  64 64 M×N×64 7×7 

Layer-4  64 64 M×N×64 9×9 

Layer-5  C 64 M×N× C 11×11 

Softmax layer - C M×N×C  

 

 
(a)                                                        (b) 

 

Figure 4. Segmentation results. (a) An input image patch (b) the segmented image patch obtained using the 

NS-Net architecture. 

 

3.2. Nuclei Classification 
 

In this module, the segmented nuclei obtained using the NS-Net architecture is classified into two 
classes based on hand-crafted features. The feature vector consists of 18 first-order features, 9 

Histogram of Oriented Gradient features, 24 Haralick texture features and 3 Morphological 

features. The features are extracted for each pre-segmented cell nuclei and described briefly as 
follows: 

 

(i) First-order features: it includes six histogram-based features: mean, standard deviation, 

third moment, smoothness, entropy, and uniformity for 3-channels (R, G and B) to 

obtain 18 features (6*3). 

(ii) Histogram of Oriented Gradient (HOG) features: it measures the gradient of 9 

orientations in localized portions of the segmented nuclei image. A 1x9 HOG Feature 

Vector (HOGFVb) is computed for each non-overlapping block of 8x8 pixels (from the 

64 gradient values). Each segmented cell, depending on the cell size, may contain 
several HOGFVs. The HOGFVb’s from different blocks corresponding to a cell are 

summed and an overall 1x9 HOGFVn is obtained for a cell nucleus. Fig. 5 shows an 

example of HOG feature extraction of a cell nucleus. Note that melanoma cells having 
larger size (compared to other cells) typically contain more HOGFVb’s than other cells, 

and this can result in a large magnitude of HOGFVn’s. Also, the HOGFVn’s 

corresponding to the melanoma cells tend to have non-uniform distribution compared to 
other cells which typically have uniform distribution. 

(iii) Haralick texture features: it calculated from a Gray Level Co-occurrence Matrix, 

(GLCM). It includes GLCM features such as the correlation, energy, homogeneity, 
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contrast, entropy, and dissimilarity in 4 directions (i.e., 0°, 45°, 90° and 135°) to obtain 
24 features (6*4).  

(iv) Morphological features: it includes the eccentricity, solidity, and the ratio of major and 

minor axes of the cell nuclei to obtain (3) features. 

 

 
(a)                                        (b)                                      (c) 

 

Figure 5. Example of HOG feature extraction for a cell nucleus. (a) An image patch with segmented cell 

nuclei and overlapped gradient orientation. (b) Blown-up of image of two nuclei (melanoma and other 

cells). (c) The 1x9 HOGFVn’s of the cell nuclei. 
 

The extracted feature vectors (with dimension 1×54) of each cell nuclei are then classified into 

normal and melanoma using an SVM classifier [19-20]. The SVM is very efficient supervised 

classifier that can handle even a non-linearly separable features and create hyperplane to separate 
abnormal features from the normal ones. In the proposed technique, the SVM model is trained 

and tested on 1,388 cell nuclei (70% for training and 30% for testing) obtained from 9 H&E 

stained WSI of lymph nodes.  
 

4. RESULTS AND DISCUSSIONS 
 

In this section, we present the performance of the proposed nuclei segmentation and classification 

technique. The performance of the segmentation technique is presented first followed by the 
performance of the classification technique. 

 

4.1. Segmentation performance 
 

The details of the NS-Net training were presented in Section 3.1. The segmentation performance 

is evaluated using 1,649 H&E stained lymph node block images (each with 64×64 color pixels). 
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The segmentation performance of the proposed technique is evaluated and compared with 
handcrafted feature-based algorithms: gLoG+mRLS and Voting+Watershed techniques as well as 

CNN-based techniques using SegNet and U-Net architectures. The segmentation performance is 

evaluated using Precision, Accuracy and BF-score [21] measures defined as follows: 

 

100%
TP

TP
Precisi

FP
on  


 

100%
TP TN

Accuracy
TP FP FN TN


 
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100%
2

2

TP TN

TP TN
B c

TN FP TN FN
F S ore

   





  

 

where TP, TN, FN and FP denote the number of true positives, true negatives, false negatives and 
false positives, respectively. Table 2 shows the segmentation performance of different 

techniques. It is observed that the deep learning algorithms provide excellent performance 

compared to the classical feature-based algorithms. This is because the classical features are less 
sensitive to the diversity of the cell nuclei in the skin tissue. For example, the melanoma cells 

tend to have light and inhomogeneous color (see Fig. 1) and that causes miss detection of the 

melanoma cells in the gLoG+mRLS and Voting+Watershed techniques. 

 
Table 2. Segmentation Performance of the deep learning algorithms and the classical feature-based 

algorithms. 

 

In this work, the NS-Net, SegNet and U-Net architectures are trained with the same number of 
training images. The NS-Net architecture is also evaluated with CNN architecture in terms of the 

required parameters need to be train as shown in Table 3. 

 

Figs. 6 (b)-(f) show the subjective segmentation performance of Voting+Watershed [6], 
gLoG+mRLS [11], SegNet [14], U-Net [15] and the proposed NS-Net architecture, respectively. 

It is observed that the NS-Net architecture provides excellent nuclei segmentation, whereas 

gLoG+mRLS, Voting+Watershed techniques miss a few cell nuclei due to the inhomogeneity in 
the cell nuclei color. It is also observed that the U-Net architecture does not perform well 

compared to the other techniques because the overfitting due the large number of the filters that 

are used in the cell nuclei segmentation. 

 
Table 3. Properties of CNN architectures used in performance evaluation. 

 

CNN 

Architecture 

Convolutional 

layers 

No. of Trained 

parameters 

Filter size No. of Filters 

SegNet [14] 8 225,542 3×3 64 

U-Net [15] 11 905,472 3×3 (64, 128, 256) 

NS-Net 5 150,336 (3×3)- (11×11) 64 

Technique: Precision Accuracy BF-Score Execution  
time (in s) 

Voting+Watershed [6] 78.24 83.64 81.31 143.71 

gLoG+mRLS [11] 79.27 76.67 68.46 128.57 

SegNet [14] 84.16 87.84 85.81 15.37 

U-Net [15] 87.41 78.79 69.63 20.82 

NS-Net 87.20 90.21 88.52 14.27 
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Figure 6.  Subjective comparison of cell nuclei segmentation results (contoured in blue color) (a) original 

test image, (b)-(f) Segmentation results for Voting+Watershed [6], gLoG+mRLS [11], SegNet [14], U-Net 

[15] and NS-Net techniques, respectively. 

 

4.2. Classification performance 
 

The classification performance is evaluated using 240 H&E stained lymph node nuclei. As 
explained in Section 3.2, a 1×54 size feature vector is obtained for each nucleus. The obtained 

1×54 feature vectors include 18 first-order features, 9 Histogram of Oriented Gradient features, 

24 Haralick texture features and 3 Morphological features. A nucleus is classified based on its 

feature vector using the SVM model. 
 

 
 

Figure 7. Three principal components (PC-1, PC-2, and PC-3) of the 1×54 features. 

 
To demonstrate the discrimination ability of the features, the obtained features are analysed using 

Principal Component Analysis (PCA) to capture the data and features variations. The PCA 

technique is applied on the training cells nuclei (972 cell nuclei: 486 Melanoma and 486 other 
nuclei). Fig. 7 visualizes the feature variance of melanoma and other cells with respect to three 

principal components that are extracted from the nuclei features. Analyzing the feature vectors 

and the principal components, it has been found that the first principal component (PC1) has high 

positive association with some of the first order and Haralick features, whereas the second and 
third principal components have positive association with some of the histogram and 

morphological features. In this experiment, the first, second and third principal components 

capture 82% of feature variance. The remaining (51) dimensions add 18% of feature variance. In 
this work, all 54 features are used for the SVM classification. 
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The classification performance is evaluated in terms of the Precision, Recall and Accuracy 
defined in Section 4.1. The results are shown in Table 4. The SVM classifier has been evaluated 

with linear, polynomial and Gaussian kernels [18]. It is observed that the SVM classifier with 

Gaussian kernel provides a superior performance over the other two kernels. Fig. 8 shows the 

nuclei classification results obtained using the Gaussian kernel, where the melanoma and non-
melanoma nuclei are contoured in red and blue colors, respectively. 

 
Table 4. Performance of the nuclei classification using different SVM kernels. 

 

Evaluation  
Measures 

SVM Kernel 

Linear Polynomial Gaussian 

Precision 77.43 57.28  80.04   

Recall 93.14 96.65 97.42 

Accuracy 80.52 57.28 85.72 

 

 
 

Figure 8. Example of classification results. (a) NS-Net input image (b) NS-Net segmented output image (c) 
Classified image obtained using SVM, where melanocytes and other cell nuclei are contoured with red and 

blue color, respectively. 

 

 
 

Figure 9. Visual example of nuclei segmentation and classification obtained by the proposed technique). 

The classified melanoma cells are shown in red color, whereas the non-melanoma  

cells are shown in blue color. 

 
Fig. 9 shows the segmentation and classification results of the proposed technique for the lymph 

nodes in Fig.1. It is observed that the melanoma cells (in red color) are dense on the melanoma 

metastasises, whereas the other cells are dense on the normal tissue of the lymph nodes. The 
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dense areas of the melanoma cells can be used to mask the melanoma regions on the lymph node 
tissue. It is also noticed that there are some areas out of the lymph node tissue contains melanoma 

cells and that can be processed by applying an initial lymph node segmentation technique [23]. 

  

5. CONCLUSIONS 
 
This paper proposes an automated technique to detect melanoma nuclei in lymph node 

histopathological images. The technique segments the cell nuclei in H&E stained image using a 

deep learning NS-Net architecture. The NS-Net architecture segments the image into background 
and cell nuclei regions. The segmented nuclei are then classified into melanoma and other cell 

nuclei using an SVM classifier with Gaussian kernel. The proposed CNN architecture provides 

an excellent segmentation performance with a low computational complexity. The future work 

includes identifying the region of interest (ROI) with clusters of melanoma nuclei and derive 
prognostic information such as proliferation index. 
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