Appendix

A CD-ROM has been included in this book to provide readers with supplementary reading material, computer programs, and selected digital audio and image data. The MATLAB programs used to demonstrate several examples have been included so that readers can run the programs themselves to process multimedia signals. The MATLAB code has been chosen since it is versatile tool for signal processing, and graphical plots. Two HTML codes (corresponding to Chapter 13) have also been included in the CD. In addition, two theses written by the author have been included for those interested to learn more about visual compression and retrieval, especially in the wavelet transform framework. The materials included in the CD are listed below:

A.1 MATLAB Functions

These are functions called by main MATLAB programs.

```
CD:\MATLAB\dwtorthogonal % Functions for orthog. DWT calculation CD:\MATLAB\motion estimation % Functions for biorth. DWT calculation % Functions for motion estimation CD:\MATLAB\misc % Miscellaneous MATLAB Functions
```

A.2 MATLAB Examples (CD:\programs)

These are the original MATLAB programs used in various examples.

```
Example 21.m
                 % audio noise masking
Example 22.m
                 % MIDI file
%
Example4 6.m
                 % SNR of quantized audio signal
%
Example 52.m
                 % DFT of 1-D signal
Example 54.m
                 % DCT of 1-D signal
Example 510.m
                 % 2-D DFT Spectrum
%
Example 73.m
                 % Companding of audio signal
Example 74.m
                 % Calculation of the LPC coefficients
```

Example7_6.m	% DPCM coding of audio signal
%	
Example8_2.m	% DPCM coding of image
Example8_3.m	% DPCM coding of image
Example8_6.m	% Energy compaction using DCT and wavelet
Example8_7.m	% Performance of block-DCT coding
%	
Example9_3.m	% Full search motion vector calculation
Example9_4.m	% Fast motion vector calculation
Example9_5.m	% Motion vector calculation for Claire sequence
%	
Example10_1.m	% Audio filtering
Example10_2.m	% Audio equalization
Example10_3.m	% Noise suppression by digital filtering
Example10_4.m	% Spectral subtraction method
Example10_5.m	% MIDI file
Example10_6.m	% MIDI file
%	
Example11_1.m	% Image interpolation
Example11_2.m	% Image cropping
Example11_3.m	% Image contrast stretching
Example11_4.m	% Histogram Equalization
Example11_5.m	% Image Sharpening
Example11_6.m	% Wipe operation
Example11_7.m	% Dissolve operation
Example11_8.m	% Fade in and out operations
%	
Example12_1.m	% Energy compaction in the YIQ/YUV color space

A.3 Hypertext Examples (CD:\programs)

These are the HTML/XML programs used in Chapter 13.

Example 13 1.htm % HTML code

Example 13 2.htm % XML code embedded in HTML

A.4 Supplementary Chapters (CD:\supplementary chapters)

Some color figures were originally intended to be included in the book. However, they were ultimately not included in order to reduce printing costs. These figures (Chapter 3 and 8) have been included in the CD.

Appendix 369

A.5 Theses (CD:\documents)

The following theses were written by the author, and included for interested readers who want to learn more about visual compression and retrieval, especially in the wavelet transform framework.

- 1. M. K. Mandal, *Wavelets for Image Compression*, M.A.Sc Thesis, University of Ottawa, 1995.
- 2. M. K. Mandal, *Wavelet Based Coding and Indexing of Images and Video*, Ph.D. Thesis, University of Ottawa, Fall 1998.

A.6 Input Data Files

Audio (CD:\data\audio)

bell.wav % An 8-bit, 22.05 KHz audio signal test44k.wav % An 8-bit, 44.1 KHz audio signal noisy_audio1.wav noisy_audio2.wav % Audio signal with narrowband noise % Audio signal with wideband noise

Images (CD:\data\images)

{airplane, baboon, Lena}.tif % standard 512x512 gray level images {banff1, banff2, lakelouise,niagra, geeta}.tif % Miscellaneous images

lenablur.tif % blurred Lena image airplane256.tif % 256x256 airplane image

Video (CD:\data\video)

{claire1,claire2}.tif % two frames from Claire sequence {football000,football002}.tif % two frames from football sequence {shot1,shot3}.tif % frames from two video shots

A.7 Output Data Files (CD:\data\)

Chapter 2

test{1,2,3,4,5}.wav % Output of Example 2.1 Examp2 2.mid % Output of Example 2.2

Chapter 10

bell1_lpf.wav % LPF output of Example 10.1 % HPF output of Example 10.1 bell1_bpf.wav % BPF output of Example 10.1 Examp10_2.wav % Output of Example 10.2

Examp10_3_128tap.wav % Output of Example 10.3 for 128 tap filter Examp10_3_200tap.wav % Output of Example 10.3 for 200 tap filter

Examp10_4.wav % Output of Example 10.4

Examp10_5.mid % Output MIDI file for Example 10.5 Examp10_6.mid % Output MIDI file for Example 10.6

Video

The disk (CD-ROM) is distributed by Kluwer Academic Publishers with absolutely no support and warranty from Kluwer Academic Publishers. Use or reproduction of the Information on the disk for commercial gain is strictly prohibited. Kluwer Academic Publishers shall not be liable for damage in connection with, or arising out of, the furnishing, performance or use of the disk (CD-ROM).

Copyright © 2003 Kluwer Academic Publishers All rights reserved.

MATLAB® is a registered trademark of the mathworks, Inc.