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Abstract

Sudoku is a popular number puzzle. Here, we model the puzzle as a probabilis-
tic graphical model and drive a modification to the well-known sum-product and
max-product message passing to solve the puzzle. In addition, we propose a Su-
doku solver utilizing a combination of message passing and Sinkhorn balancing
and show that as Sudoku puzzles become larger, the impact of loopy propagation
does not increase.

1 Introduction

1.1 The Problem

Sudoku is a popular puzzle game. An N × N Sudoku puzzle is a grid of cells partitioned into N
smaller blocks of N elements. A solution to the puzzle involves filling in empty cells in the grid in
a way that the numbers 1 through N appear once on each row, each column, and each

√
N ×

√
N

subgrid (all-different constraints). Figure 1 shows an example of a 4 × 4 Sudoku puzzle and its
solution.

Figure 1: 4× 4 Sudoku

Many games similar to Sudoku exist such as Sudoku X, Nonomino Sudoku, Killer Sudoku, Hyper
Sudoku, Greater-Than Sudoku, Kakuro, Futoshiki, and KenKen. In Section 3 we will show that our
results for Sudoku can also be applied to these games because of the similarity in their constraints.

The interest in treating Sudoku as a probabilistic graphical model (PGM) was largely motivated by
an observation in the error-control coding community that, as a PGM, Sudoku takes the form of a
low-density parity-check (LDPC) code. LDPC codes have shown great error-control performance,
but they still suffer from issues arising from loopy belief propagation. Hence, it was thought that, by
observing performance on Sudoku puzzles because of the unique solution insight could be gained
on the LDPC decoding problem.
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1.2 Related Works

Sudoku puzzles provide an interesting playground for mathematics. It is typically treated as an
instance of the graph coloring problem [4], or the quasi-group with holes problem [2]. In a recent
work it was shown that Sudoku is NP-complete [14]. Also, Sudoku can be viewed as an LDPC
decoding problem over an erasure channel [9]. Other industrial applications that can be modeled by
Sudoku are shown in [5, 11].

There have been many reported algorithms for solving Sudoku. The seemingly most efficient is a
search based solver presented by [10]. Although the algorithm can easily solve puzzles up to size
16 × 16, it fails on larger puzzles. The main reason for this is an exponential growth in the search
space as the puzzle size increases.

Under the context of LDPC codes [3, 6, 9, 12] present several solvers. In [3, 6, 9] standard belief
propagation algorithms were utilized. [3, 6] show that there is no notable difference between sum-
product and max-product message passing.

Outside of PGM other probabilistic solvers are presented in [9, 12, 8, 7]. In [9] the Sinkhorn balanc-
ing technique for doubly stochastic matrices was used. A bit flipping algorithm similar to WALK-
SAT was shown in [12] under the context of LDPC. Standard genetic algorithms and simulated
annealing techniques were presented in [8, 7].

Other than search which is garaunteed to eventually solve any Sudoku puzzle given sufficient time,
no claims or gaurantees are made for these solvers on Sudoku puzzles larger than 9x9.

1.3 Sudoku as a Probabilistic Graphical Model

Sudoku can be viewed as a bipartite graph using the notations defined in [9]. A bipartite graph is
defined as a graph whose vertices can be divided into two disjoint sets S and C such that the graph’s
edges connect vertices in S only to vertices in C and vice versa. In this way, all the cells in an N×N
Sudoku puzzle can be mapped to Sn ∈ S by assigning them labels from 1 through N2 in a row-scan
order.

We map all row, column, and subgrid constraints to another set of vertices in the graph, Cm ∈ C, m ∈
1 · · · 3N . Edges Enm are added whenever cell n takes part in the m’s constraint. In the rest of this
paper, we refer to two sets S and C as variable nodes and constraint nodes respectively. In an N×N
Sudoku, variable nodes take values Sn = {1 · · ·N} while constraint nodes take Cm = {0, 1} if the
connected variable nodes satisfy the all-different constraint.

Figure 2: Constraints for a 4× 4 Sudoku

Figure 2 illustrates how constraints are defined for a 4 × 4 Sudoku puzzle. Figure 3 shows the
corresponded factor graph. Circles and squares represent variable nodes and constraint nodes re-
spectively.

Each variable node stores a factor of the form

pn = [P (Sn = 1) P (Sn = 2) · · ·P (Sn = N)],
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Figure 3: Factor graph associated with a 4× 4 Sudoku

which is the probability vector associated with variable node Sn. The vector of a given cell filled
with value k, k ∈ {1, · · · , N} is initialized to have a 1 in the kth place and N − 1 zeros in the other
places. For other cells, we initialize the vector uniformly after eliminating the values violating the
three constraints associated with that cell. For example, if we know that the first cell can not take
value 1 in a 4× 4 puzzle, we will initialize its vector as p1 = [0 1

3
1
3

1
3 ].

We define the set of all variable nodes connected to the mth constraint node as Nm, and the con-
straint nodes connected to the nth variable node asMn. For example, for the puzzle of Figure 2 we
have

M1 = {1, 5, 9} N1 = {1, 2, 3, 4}.

Double script notation are used to indicate sets with removed elements. In this way,Nm,n =Mn\m
denotes the cells involved in the mth constraint except for cell n. For example,

N1,1 = {2, 3, 4}.

In the next two sections, we talk about message passing for Sudoku and difficulties of belief prop-
agation in the loopy structure of Sudoku. The idea of incorporating belief propagation with some
other algorithm is presented in Section 4. Section 5 discusses our idea of solution checking. We talk
about our experimental results in Section 6. Finally, conclusions are presented in Section 7.

2 Message Passing for Sudoku

In the previous works utilizing PGMs for Sudoku [3, 6, 9], traditional sum-product message passing
was used [1]. The following is the sum-product equations in the context of Sudoku with the notation
conventions of [9].

rmn(x) =
∑

{n′∈Nm,n}
n=x,n′=xn′ all unique

∏
l∈Nm,n

qlm(xl) (1)

qn(x) = P(n = x)
∏

m∈Mn

rmn(x) (2)

qn,m(x) = P(n = x)
∏

m′∈Mn,m

rmn(x) (3)

In the above equations, rmn are the constraint-to-variable messages, qn,m are the variable-to-
constraint messages, P(n = x) are the a priori probabilities, and qn(x) are the a posteriori beliefs.
Also, in [3, 6], the max-product algorithm was applied. Max-product simply involves replacing
the summation over the product terms in (1) by the maximum term. In other literature it has been
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shown that for cyclic graphs, in which sum-product suffers from loopy propagation, max-product
is optimal over neighbourhoods1 within the graph [13]. However, results presented in [6] show no
discernible difference between sum-product and max-product which is most likely due to the small
world topology of the PGM2.

By examining (1) we can see that computation of both sum-product and max-product mes-
sage vectors requires a lot of work. For each message value, we must try N ! assignments to
the variable nodes in the constraint. Thus, to compute a message vector, it takes O(N !N2) time
and there are 3N2 message vectors to compute. This means an iteration of constraint-to-variable
messaging takes O(N !N4) time.

Here we show a simple alternative that drops the cost back to polynomial time. This is
achieved by relaxing the all-different constraint. Consider the equation

P(n = x|constraint m) ≈ P(n = x)
∏

n′∈Nm,n

(1− P(n′ = x)) (4)

which is clearly an approximation as it allows for invalid assignments to the other nodes in the
constraint while computing the probability. Based on this approximation we modified our belief
propagation algorithm to replace (1) with

rmn(x) =
∏

n′∈Nm,n

(1− qn′m(x)) (5)

While we do not show that message passing in this form will actually compute our proposed pos-
terior (4), in Section 6, we will show that we still obtain results comparable to traditional message
passing. Note that after our modification, the time cost of a message passing iteration is reduced to
O(N4), which is a huge savings.

3 Loopy Belief Propagation

Loopy belief propagation occurs when message passing is applied in cyclic graphs. The problem
is largely due to a double counting of information as we will show specifically in the context of
Sudoku. Consider three nodes, A, B, and C that are related under one of the all-different constraints
imposed by Sudoku. Node A will send a message to node B about the beliefs it has in taking different
values. Node B then uses this information to update its beliefs about its own probabilities and sends
a similar message to C. Similarly, C will use the message from B to send a message to A. When A
receives this message it will consider it as new information and update itself. However, the message
is not entirely new as it contains information that A previously has passed to B. By treating it as new
information, A creates a bias in its beliefs. It is these bias terms and their propagation which cause
the problems in loopy propagation.
Theorem 3.1. Whenever a variable node is known a priori from the puzzle, there will be no loopy
propagation on its associated loops.
Proof. All belief propagation algorithms presented here share the same variable-to-constraint mes-
sages defined in (3). Upon inspection, it is clear that in the case of a node which is known a priori,
the prior term P(n = x) will be a Kronecker delta function. Since we normalize the message vec-
tors for numerical stability, this will force all outgoing messages from the node to also be Kronecker
delta functions, regardless of the inputs the node receives. Therefore, it is impossible for information
sent by another node in the cycle to loop back to itself from within that cycle.

From this theorem, we can make a second theorem about scaling to larger puzzles, which we then
generalize to a larger class of CSP problems. First, we present some lemmas about scaling that will
be required for the proof.

1Where a neighbourhood is defined as a connected component within the graph with at most one cycle.
2After 2 iterations of message passing every node will have received information about every other node in

the graph.
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Lemma 3.2. The number of k-cycles in the graph grows proportional to O(Nk).
Proof. The proof proceeds by providing upper and lower bounds with the same growth rate. Clearly
if we select an arbitrary constraint, we can create k-cycles by selecting k − 1 nodes from within it.
There are 3N constraints and

(
N

k−1

)
ways to select nodes combining to give O(Nk). This is a lower

bound as we have only considered cycles within the same constraint. To get an upper bound, we use
the following method to create a path of k−1 nodes. Pick a random node and then proceed to select
k − 2 nodes such that each node is connected to the previous node. The first choice can be made in
N2 ways. Assuming that we use a unique constraint each time we select the following node, there
is N − 1 ways to select each of the subsequent nodes. Thus, there are a total of O(Nk) such paths.
Clearly, this mechanism will generate all the k-cycles we are interested in, plus many paths which
we are not, and thus it is an upper bound. Since both upper and lower bounds have the same growth
rate, the proof is complete.

Lemma 3.3. The number of k-cycles that contain a given node grows at least as fast as O(Nk−2).
Proof. Similar to the last proof, we can get a quick lower bound by considering only k-cycles that
occur within a constraint. After fixing the given nodes as a member of the cycle, there are then(
N−1
k−2

)
ways to complete it. Thus, there are at least O(Nk−2) k-cycles on a given node.

Lemma 3.4. A lower bound on the growth rate for the minimal number of given cells required to
force a unique solution is O(N2).
Proof. The number of variable nodes in Sudoku scales by N2, but the constraints scale by 3N .
Thus, to enforce a unique solution as the dimension increases, a larger percent of the variable
nodes will need to be given. We can then say that the number of givens is equal to the product
of some percentage function p(N) and the number of variable nodes N2 and thus the growth rate is
O(p(N)N2) > O(N2). Where we get strict inequality from the fact that p(N) must be monotoni-
cally increasing.

Conjecture 3.5. The growth rate of the number of k-cycles that contain a given is loosely lower
bounded by O(Nk).

Support. In order to force a unique solution, the given cells in a minimal Sudoku are sparsely
distributed. Thus, it is likely there will be little overlap in the loops associated with the given cells
so that we can multiply the cycles per node from Lemma 3.3 by the number of given cells from
Lemma 3.4 to get the total. We claim this as a loose bound due to the strict inequality in Lemma
3.4. �

Theorem 3.6. Scaling the dimension of Sudoku does not increase the impact of loopy belief propa-
gation.
Proof. Since the growth rate from Conjecture 3.5 is the same as the rate from Lemma 3.2, it is clear
that the number of cycles without a given cell must not be increasing. Which in turn reduces the
percentage of nodes impacted by loopy propagation.

Based on Theorem 3.6 it is clear that on large enough puzzles that belief propagation will solve
Sudoku puzzles. This leads us to a more generalized version of the theorem.

Corollary 3.7. Belief propagation can be used to solve CSP problems on asymptotically large
graphs given that:

1. There is a unique solution.

2. The variables are discrete.

3. The constraints applied are of a combinatorial nature. i.e. “all-different” , “exactly k
of ...”, and “no more than k ... ” etc.

4. The number of variables grows faster than the number of constraints.
Proof. The proof of Theorem 3.6 utilized the regular structure of the graph and the growth rates
to force a given variable into all problematic loops such that Theorem 3.1 could be applied. It is
possible to visualize the general graphs allowed here as induced subgraphs of a larger regular graph.
By conditions 2 and 3, we ensure that Theorem 3.1 holds. Condition 4 is used to force a given
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variable into the problematic cycles as before. As it is unclear how to properly interpret beliefs if
there are multiple solutions condition 1 is required.

Theorem 3.8. Belief propagation will detect most, but not all, problems in which based on the given
cells no satisfiable solution exists.

Proof. From examining equations (1,2,3), it is clear that sum/max-product message passing will
force the a posteriori probabilities of assignments to be zero if they are inconsistent within a con-
straint. Thus, if all beliefs are forced to zero, then the algorithm can detect that there must have been
a contradiction in the given variables. This becomes easier to detect as the problems becomes more
constrained.

4 Sinkhorn Balancing

Sinkhorn balancing is the idea of converting an arbitrary matrix to the space of a doubly stochastic
matrix. A doubly stochastic matrix is a matrix with nonnegative elements in which the sum of each
row and column is equal to 1.

Sinkhorn balancing first normalizes each column in a way that it sums to one. Then, it applies the
same normalization to rows. Finally, it repeats this procedure until either the norm of the matrix did
not change more than some predefined threshold in two consecutive steps or it reaches maximum
number of iterations. Figure 4 shows one iteration of Sinkhorn balancing on a 3× 3 matrix.

Figure 4: One iteration of Sinkhorn balancing

Sinkhorn balancing can be considered as grouping belief vectors within a constraint. As we stated
before, there are N variable nodes in the factor graph connected to each constraint node, each of
them having a probability vector of size N that must sum to 1. Considering all such vectors for a
constraint as a matrix, the columns correspond to the probabilities of assigning values to a specific
node that must also sum to 1.

Moon et al. tried to solve Sudoku by only using Sinkhorn balancing [9]. They proved that the
KL-distance of the result generated by Sinkhorn balancing to the solution is a monotonically non-
increasing function [9]. However, this convergence may be reached in a very large number of itera-
tions.

5 Solution Check

Doing message passing for more iterations is not always helpful in solving Sudoku because we may
overfit the problem3 or lose information due to the biases introduced by the large number of loops.
Also, each round of message passing takes O(N4) time. Based on this intuition, we decide to stop
message passing after a certain number of iterations and see whether we can guess the values of
cells for which we do not have a deterministic value yet.

One naive way of doing this is to assign the value with the highest probability in the probability
vector to each unassigned cell. The main problem with this approach is that there may be more than
one cell in a constraint that have the largest probability in their probability vector for a special value.
This causes conflict in the puzzle.

3By overfit we mean that we have sufficient information to solve the puzzle but spend more time iterating
until message passing and Sinkhorn converge.
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In our algorithm, which is called solution check, first for each value of every unassigned cell a
relative probability is calculated. The relative probability is the probability that a cell takes a certain
value, divided by the sum of the probabilities that all the cells in the same constraint take that
value. The relative probability is a measure of entropy. The algorithm selects the cell having the
the maximum relative probability of a value to take that value. After this assignment, the algorithm
deletes that value from all the other cells in the constraint. Then, the algorithm redistributes the
deleted probability in those cells. It divides the deleted probability equally into other non-zero
probability values. The algorithm repeats the above steps until it assigns a value to all cells.

The output of solution-check is checked. If it is a valid Sudoku solution, the program has success-
fully solved the puzzle. Otherwise, the function terminates with failure for that puzzle.

6 Experimental Results

In order to verify our theories, we implemented our work in Matlab. We developed an algorithm
doing message passing based on (5) in every iteration. Furthermore, we incorporated Sinkhorn
balancing every two iterations and checked the generated result with the proposed solution-check
method. Our motivation for using Sinkhorn balancing was the idea of simulated annealing. We
applied it, with small number of iterations, after every two iterations, because every node will have
received information about every other node in the graph after this these iterations. Furthermore: 1)
it is an entire different method of dispersing the probability mass, 2) it does not suffer from loops. In
this way, it is unlikely that both Sinkhorn balancing and belief propagation get trapped by the same
incorrect answer.

Figure 5 shows the results of our experiments on 2356 9 × 9 puzzle and 44 16 × 16 puzzles. The
puzzles are provided by the Magic Tour website 4. Note that the performance is examined only
in the region that Sudoku puzzles with unique solutions exist 5. Furthermore, Table 1 shows the
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Figure 5: Experimental Results for 9× 9 and 16× 16 using 250 and 1000 iterations respectively.

comparison of our approach with other approaches presented in related works. As you can see in
Figure 5 and also Table 1 the performance of our solver for 16 × 16 puzzles is nearly the same as
the performance for 9× 9 puzzles6, which supports Theorem 3.6.

7 Conclusion

This paper presented Sudoku as a probabilistic graphical model. We drove modifications in the
well-known sum-product and max-product message passing that scale well for Sudoku puzzles.

4http://magictour.free.fr/Sudoku.htm
5There is no known unique-solution puzzle with less number of given cells.
6The slight difference between the performances is due to the fact that we only have 44 minimal 16 × 16

puzzles!
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Approach Accuracy for Accuracy for
9× 9 16× 16

Sum-Product 53.2% NA
Max-Product [3] 70.6% NA

Sum-Product 71.3% NA
Max-Product 70.7 - 85.6% NA

Combination [6] 76.8 - 89.5% NA
Our Approach
40 Iterations 70% 5%

Many Iterations 95% 90.9%

Table 1: Summary of results for discussed works applied to minimal Sudokus. As it was unclear how to
properly scale we capped 9x9 at 200 iterations and 16x16 at 1000 iterations and report the results as Many
Iterations.

The modification did not impact the ability of the solver to solve the problem, but it provided a
large saving in time to solve the puzzle. While it was known that the main deficiency of message
passing when applied to Sudoku is due to loopy propagation, we showed that as Sudoku puzzles
become larger, the impact of loopy propagation does not increase. Empirical results were provided
to support this theory. The results were based on a heuristic algorithm combined of message passing
and Sinkhorn balancing.
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