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Abstract This paper aims to tackle the practically very
challenging problem of efficient and accurate hand pose
estimation from single depth images. A dedicated two-step
regression forest pipeline is proposed: given an input hand
depth image, step one involves mainly estimation of 3D
location and in-plane rotation of the hand using a pixel-
wise regression forest. This is utilized in step two which
delivers final hand estimation by a similar regression forest
model based on the entire hand image patch. Moreover, our
estimation is guided by internally executing a 3D hand kine-
matic chain model. For an unseen test image, the kinematic
model parameters are estimated by a proposed dynamically
weighted scheme. As a combined effect of these proposed
building blocks, our approach is able to deliver more precise
estimation of hand poses. In practice, our approach works
at 15.6 frame-per-second (FPS) on an average laptop when
implemented in CPU, which is further sped-up to 67.2 FPS
when running on GPU. In addition, we introduce and make
publicly available a data-glove annotated depth image dataset
covering various hand shapes and gestures, which enables us
conducting quantitative analyses on real-world hand images.
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The effectiveness of our approach is verified empirically on
both synthetic and the annotated real-world datasets for hand
pose estimation, as well as related applications including
part-based labeling and gesture classification. In addition to
empirical studies, the consistency property of our approach
is also theoretically analyzed.
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1 Introduction

Vision-based hand interpretation plays important roles in
diverse applications including humanoid animation (Sueda
et al. 2008;Wang and Popović 2009), robotic control (Gustus
et al. 2012), and human-computer interaction (Hackenberg
et al. 2011; Melax et al. 2013), among others. In its core lies
the nevertheless challenging problem of 3D hand pose esti-
mation (Erol et al. 2007; Gorce et al. 2011), owing mostly to
the complex and dexterous nature of hand articulations (Gus-
tus et al. 2012). Facilitated by the emerging commodity-level
depth cameras (Kinect 2011; Softkinetic 2012), recent efforts
such as Keskin et al. (2012) ,Ye et al. (2013), Xu and Cheng
(2013), Tang et al. (2014) have led to noticeable progress in
the field. The problem is however still far frombeing satisfac-
torily solved: For example, notmuchquantitative analysis has
been conducted on annotated real-world 3D datasets, partly
due to the practical difficulty of setting up such testbeds. This
however imposes significant restrictions on the evaluation of
existing efforts, which are often either visually judged based
on a number of real depth images, or quantitatively verified
on synthetic images only as the ground-truths are naturally
known. As each work utilizes its own set of images, their

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-015-0826-9&domain=pdf


Int J Comput Vis

Fig. 1 Exemplar hand pose estimation results of our system under var-
ious scenarios includingw/ andw/o gloves, and different camera set-ups
(top-down view versus frontal view). Each image involves three rows:
the first row presents the input hand depth image, and the pose estima-
tion result is displayed in the second row; to facilitate the interpretation

of our results, the third row also provides its corresponding amplitude
image. Note the amplitude image is used as normal gray-scale image
here only for reference purpose. In the amplitude image, brighter pixels
denote higher confidence for closer objects and vice versa

results are not entirely comparable. These inevitably raise
the concerns of progress evaluation and reproducibility.

In this paper,1 we tackle the problem of efficient hand pose
estimation from single depth images. Themain contributions
of our work are fourfold:

– For an unseen test image, a dynamicallyweighted scheme
is proposed to regress our hand model parameters based
on a two-step pipeline, which is empirically shown to
lead to significantly reduced errors comparing to the
state-of-the-arts. As presented in Fig. 1 as well the sup-
plementary video, our system estimates hand poses from
single images andwith 3D orientations. This also enables
our system to work with a mobile depth camera.

– We provide an extensive, data-glove annotated bench-
mark of depth images for general hand pose estimation.
The benchmark dataset, together with the ground-truths
and the evaluation metric implementation, have been
made publicly available. This is the first benchmark of
such kind to our knowledge, and we wish it can provide
an option for researchers in the field to compare perfor-
mance on the same ground.

1 A project webpage can be found at http://web.bii.a-star.edu.sg/
~xuchi/handengine.htm, which contains supplementary information of
this paper such as the demo video.

– To maintain efficiency and to offset the CPU footprint,
the most time-consuming components of our approach
have also been identified and accelerated by GPU imple-
mentations, which gains us a further fivefold overall
speed-up. These enable us to deliver a practical hand
pose estimation system that works efficiently, at about
15.6 frame-per-second (FPS) on an average laptop, and
67.2 FPS when having access to a mid-range GPU.

– The reliance on synthetic training examples naturally
brings up the consistency question when infinitely many
examples are potentially available for training. Our paper
makes first such attempt to propose a regression forest-
based hand pose system that is theoretically motivated.
To this end we are able to provide consistency analysis
on a simple variant of our learning system. Although the
complete analysis is still open, we believe this is a nec-
essary and important step toward full comprehension of
the random forests theory that has been working so well
on a number of applications in practice.

Finally, the competitive performance is demonstrated during
empirical experiments on both synthetic and real datasets.
Several visual examples are demonstrated in Fig. 1, where
each image involves three rows: the first row presents the
input hand depth image and its pose estimate in the second
row, while the corresponding gray-scale amplitude image

123

http://web.bii.a-star.edu.sg/~xuchi/handengine.htm
http://web.bii.a-star.edu.sg/~xuchi/handengine.htm


Int J Comput Vis

Fig. 2 Flowchart of our two-step approach: given an input hand depth
image, step one involves mainly estimation of 3D location and in-plane
rotation of the hand using a pixel-wise regression forest. This is utilized
in step two which delivers final hand estimation by a similar regression
forest model based on the entire hand image patch. See text for details

(also referred to as the confidence map in literature) is shown
in the third row to facilitate the interpretation of our results.
For a time-of-flight (TOF) depth camera such as Softki-
netic Softkinetic (2012), each pixel of the amplitude stores
the returning infrared (IR) intensity from the modulated IR
light source, and can be regarded as the relative confidence in
its depthmeasurement (Hansard et al. 2013). In our approach,
it is only used for filtering away noisy depth pixel observa-
tions during preprocessing. Although our empirical results
in this paper are primarily based on Softkinetic TOF cam-
era, we would like to point out that our approach works with
generic depth cameras including TOF cameras as well as the
structured illumination depth cameras such as Kinect Kinect
(2011), where image denoising strategy of Xu and Cheng
(2013) is adopted during preprocessing. Figure 2 presents a
flowchart outlining our two-step approach.

1.1 Related Work

An earlier version of our work appears in Xu and Cheng
(2013) that dealswith the problemof depth image-basedhand
pose estimation. There are a number of differences of our
work here comparing to that of Xu and Cheng (2013): first, a
simple two-step pipeline is utilized in our approach, in con-
trast to amore complicated approach inXu andCheng (2013)
containing three steps. Second, in this work we attempt to
consider random forest models that can be analyzed theo-
retically, while the random forest models in Xu and Cheng
(2013) are not able to be studied theoretically. Third, there
are also many other differences: the kinematic model para-
meters are estimated by a dynamically weighted scheme that
leads to a significant error reduction in empirical evaluations.
The information gains and split criteria, the usage of whole

hand image patch rather than individual pixels, as well as
the DOT features to be detailed later are also quite different.
Meanwhile, various related regression forest models have
been investigated recently: in Fanelli et al. (2011), the head
pose has 6 degree-of-freedom (DoF), which is divided into 2
parts: 3D translation and 3D orientation. In each leaf node,
the distribution is approximated by a 3D Gaussian. In Gall
and Lempitsky (2013), the Hough forest model is instead uti-
lized to represent the underlining distributions as voting with
a set of 3D vectors. In Shotton et al. (2013), a fixed weight
is assigned to each of the 3D voting vectors during training,
and the experimental results suggest that the weight plays a
crucial role in body pose estimation. Our scheme of dynami-
calweights can be regarded as a further extension of this idea
to allow adaptive weight estimation at test-run that is dedi-
cated to the current test example. A binary latent tree model
is used in Tang et al. (2014) to guide the searching process of
3D locations of hand joints. For the related problem of video-
based 3D hand tracking, a user-specific modeling method is
proposed by Taylor et al. (2014), while (Oikonomidis et al.
2014) adopts an evolutionary optimizationmethod to capture
hand and object interactions.

Leapmotion (2013) is a commercial system designed for
close-range (within about 50 cm in depth) hand pose estima-
tion. As a closed system based proprietary hardware, its inner
workingmechanism remains undisclosed. Our observation is
that it is not well tolerant to self-occlusions of finger tips. In
contrast, our system works beyond half a meter in depth, and
works well when some of the finger-tips are occluded as it
does not rely on detecting finger tips.

Additionally, instead of directly estimating 3D locations
of finger joints from the depth image as e.g. that of Girshick
et al. (2011), our model predicts the parameters of a prede-
fined hand kinematic chain, which is further utilized to build
the 3D hand. This is mainly due to the fact that compared
to 3D location of joints, kinematic chain is a global repre-
sentation and is more tolerant to self-occlusion, a scenario
often encountered in our hand pose estimation context. Sec-
ond, for human pose estimation, once the body location is
known (i.e., the torso is fixed), the limbs and the head can be
roughly considered as independent sub-chains: e.g. a change
from left hand will not affect the other parts significantly. In
contrast, motions of the five fingers and the palm are tightly
correlated.

For the related problem of optical motion capture, depth
cameras have been utilized either on their own (Ballan et al.
2012), or together with existing marker-based system (Zhao
et al. 2012; Sridhar et al. 2013) for markerless optical motion
capture. While being able to produce more precise results,
they typically rely on more than one cameras, and oper-
ate in an off-line fashion. In term of annotated datasets of
hand images, existing efforts are typically annotated manu-
ally with either part-based labels (e.g. Tang et al. 2014) or
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finger tips (Sridhar et al. 2013). However these annotations
do not explicitly offer 3D information of the skeletal joints.
Tzionas and Gall (2013) instead engages a human annota-
tor to annotate 2D locations of joints, and aggregates them
to infer the 3D hand joint locations. This dataset unfortu-
nately does not provide depth image input, also one possible
concern is its annotation might not be fully objective.

In what follows, we start by giving an overall account of
the regression forest models that are the core modules in our
proposed learning system.

2 Our Theoretically Motivated Regression Forest
Models

As will become clear in later sections, the training of our
regression forests relies on large quantity of synthetic exam-
ples. It is thus of central interest to provide consistency
analysis to characterize their asymptotic behaviors, which
concerns the convergence of the estimate to an optimal
estimate as the sample size goes to infinity. Most existing
papers (Breiman 2004; Biau et al. 2008; Biau 2012; Denil
et al. 2014) on the consistency of regression forests focus on
stylized and simplified algorithms. The unpublished man-
uscript of Breiman (2004) suggests a simplified version of
random forests and provides a heuristic analysis of its consis-
tency. This model is further analyzed in Biau (2012) where,
besides consistency, the author also shows that the rate of
convergence depends only on the number of strong features.
An important work on the consistency of random forests for
classification is Biau et al. (2008) which provides consis-
tency theorems for various versions of random forests and
other randomized ensemble classifiers. Despite these efforts,
there is still a noticeable gap between theory and practice of
regression forests learning systems. This is particularly true
for the pose estimation systems that have make tremendous
progresses during the past few years in looking at human full-
body, head, and hand, where random forests have been very
successful. On the other hand, little theoretical analysis has
been provided for the learning systems underpinning these
empirical successes.

Different frommost existing practical random forest mod-
els, the random forest model considered in our approach is
theoretically motivated, which is inspired by existing theo-
retical works (Breiman 2004; Biau et al. 2008; Biau 2012)
and in particular (Denil et al. 2014). The theoretical analy-
sis of the resulting random forest model closely follows that
ofDenil et al. (2014).Meanwhile our proposed random forest
model is sufficiently sophisticated to be practically capable
of addressing real world problems. Our models and its vari-
ants are specifically applied to the real problem of hand pose
estimation with competitive empirical performance. Mean-

while, it is worth noting that the proposed models are generic
and can work with problems beyond hand pose estimation.

Inwhat follows,we introduce our generic regression forest
model in term of training data partition, split criteria dur-
ing tree constructions, prediction, as well as its variants. Its
asymptotic consistency analysis is also offered.

2.1 Training Data: A Partition into Structure Data
and Estimation Data

Formally, let X denote a [0, 1]d -valued random variable and
Y denote a Rq -valued vector of random variables, where d
is the dimension of normalized feature space, and q is the
dimension of the label space. Denote x (or y) a realization
of the random variable X (or Y ). A training example can be
defined as an (instance, label) pair, (x, y). Therefore, the set
of n training examples is represented as Dn = {

(xi , yi )
}n
i=1.

Inspired by Denil et al. (2014), during tree constructions, we
partition Dn randomly into two parts: structure data Un and
estimation data En by randomly selecting � n

2 � examples as
structure data and the rest as estimation data. Examples in
structure data are used to determine the tests used in split
nodes (i.e. internal nodes of the trees), and examples in esti-
mation data are retained in each leaf node of the tree for
making prediction at test phase. This way, once the parti-
tion of the training sample is provided, the randomness in
the construction of the tree remains independent of the esti-
mation data, which is necessary to ensure consistency in the
follow-up theoretical analysis.

2.2 The Split Criteria

The performance of the regression forest models is known
to be crucially determined by decision tree constructions and
particularly the split criteria, which are the focuses here.

In the regression forests, each decision tree is indepen-
dently constructed. The tree construction process can be
equivalently interpreted as a successive partition of the fea-
ture space, [0, 1]d , with axis-aligned split functions. That is,
starting from the root node of a decision tree which encloses
the entire feature space, each tree node corresponds to a
specific rectangular hypercube with monotone decreasing
volumes as we visit node deeper into the tree. Finally, the
union of the hypercubes associated with the set of leaf nodes
forms a complete partition of the feature space.

Similar to existing regression forests in literature includ-
ing (Fanelli et al. 2011; Shotton et al. 2011;Denil et al. 2014),
at a split node, we randomly select a relatively small set of s
distinct featuresΦ := {φi }si=1 from the d-dimensional space
as candidate features (i.e. entries of the feature vector). s is
obtained via s ∼ 1 + Binomial(d − 1, p), where Binomial
denotes the binomial distribution, and p > 0 a predefined
probability. Denote t ∈ R a threshold. At every candidate
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feature dimension, we first randomly select M structure data
in this node, where M is the smaller value between the num-
ber of structure data in this node and a user-specified integer
m0 (m0 is independent of the training size), then project them
onto the candidate feature dimension and uniformly select a
set of candidate thresholds T over the projections of the M
chosen examples. The best test (φ∗, t∗) is chosen from these
s features and accompanying thresholds by maximizing the
information gain that is to be defined next. This procedure is
then repeated until there are �log2 Ln� levels in the tree or
if further splitting of a node would result in fewer than kn
estimation examples.

The above-mentioned split test is obtained by

(φ∗, t∗) = arg max
φ∈Φ,t∈T

I(φ, t).

Here the information gain I(φ, t) is defined as:

I(φ, t) = H(S) −
( |Sl |

|S| H(Sl) + |Sr |
|S| H(Sr )

)
, (1)

where | · | counts the set size, S denotes the set of structure
examples arriving at current node, which is further split into
two subsets Sl and Sr according to the test (φ, t). Now, con-
sider to model the parameter vector of current internal node
as following a q-variate Gaussian distribution. The entropy
of a q-variate Gaussian is defined as

H(S) = 1

2
ln

(
det

(
Σ(S)

)) + c, (2)

with the constant c := q
2

(
1 + ln(2π)

)
,Σ(·) the associated

q × q covariance matrix, and det(·) the matrix determinant.
For a point set S in the q-dimensional space, the determi-
nant of its covariance matrix characterizes the volume of the
Gaussian ellipsoid. So a smaller entropy H(S) suggests a
more compact cluster. The first term of (1) is fixed, so maxi-
mizing the information gain amounts to minimizing the sum
of the entropies from its children branches—which can be
interpreted as the pursuit of more compact clusters in the
course of tree constructions.

2.3 Prediction

During the training stage, regression trees in the forests have
been constructed following the above mentioned procedure.
At the prediction stage, one concerns how to deliver a pre-
diction for a new query instance x. We start with a few more
notations. We use random variable Ψ = (J,G) to denote
the randomness presented in a regression forest, which con-
sists of random variable J denoting the randomness in the
partition of training data Dn , and random variable G denot-
ing the randomness in the construction of trees. Let ns and

ne denote the number of structure examples and estimation
examples in each tree, respectively. From the construction
of trees, we have ns = � n

2 � ≤ n
2 and ne = n − ns ≥ n

2 .
Besides, An(x, Ψ ) stands for the leaf node containing x
and Nns (x, Ψ ), Nne (x, Ψ ) represent the number of structure
examples and estimation examples in An(x, Ψ ), respectively.
Each tree thus makes prediction by

rn(x, Ψ ) = 1

Nne(x, Ψ )

n∑

i=1

yi 1{
yi∈An(x,Ψ ),yi∈En

} (3)

for a query instance x, where 1 is the indicator function.
Suppose the regression forest is a collection of Z trees{
rn(x, Ψ j )

}Z
j=1, with {Ψ j }Zj=1 being identically and inde-

pendently distributed (i.i.d.) random variables of Ψ . The
prediction of the forest is simply given by

r (Z)
n (x) = 1

Z

Z∑

j=1

rn(x, Ψ j ). (4)

Up to now we have introduced our random forest model
using empirical mean, which is also referred to as Baseline-
M. Before proceeding to its asymptotic analysis in Sect. 2.4,
we would like to further discuss twomore sophisticated vari-
ants that possess the same training stage as illustrated above
and differ only at the prediction stage: one is the forest model
using static weights, and is called Baseline-S; The second
variant is a regression forest model using dynamical weights
at the leaf nodes, and is termed DHand.

2.3.1 Baseline-S versus DHand: Static Versus Dynamical
Weights at the Leaf Nodes

Instead of making prediction with the empirical average as in
Baseline-M, we consider to deliver final prediction by mode-
seeking of the votes as in the typical Hough forests of Gall
and Lempitsky (2013). More specifically, let l denote the
current leaf node, and let i ∈ {1, . . . , kl} indexes over the
training examples of leaf node l. These examples are subse-
quently included as vote vectors in the voting space. Now,
consider a more general scenario where each of the training
examples has its own weight. Let zli represent the parame-
ter vector of a particular training example i of leaf node l,
together withwli > 0 as its corresponding weight. The set of
weighted training examples at leaf node l can thus be defined
as Vl = {

(zli , wli )
}kl
i=1. Note this empirical vote set defines

a point set or equivalently, an empirical distribution. In exist-
ing literature such as Gall and Lempitsky (2013),wli = 1 for
any training example i and any leaf node l. In other words,
the empirical distribution Vl is determined during tree con-
structions in training stage, and remains unchanged during
prediction stage. This is referred to as the statically weighted
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scheme or Baseline-S. Rather, we consider a dynamically
weighted scheme (i.e. DHand) where each of the weights,
wli , can be decided at runtime. This is inspired by the obser-
vation that the typical distribution of Vl tends to be highly
multi-modal. It is therefore crucial to assign each instance
zli a weight wli that properly reflects its influence on the test
instance.

More specifically, for a specific test hand image patch It ,
the distributionVl is allowed to be adapted byweights to cap-
ture its similarity w.r.t. each training patch in the leaf node
l, Ili , aswli = Sl

(
It , Ili

)
, whereSl denotes a similarity func-

tion between the pair of test and training instances. Ideally,
the similarity function Sl should be inversely proportional to
the distance of the two kinematic models, ‖zt − zli‖, which
is unfortunately impractical to compute as zt is exactly the
quantity we would like to estimate and is thus unknown.
On the other side, it can be approximated by measuring the
similarity between the two corresponding hand patches, It
and Ili . Here the DOT feature matching (Hinterstoisser et al.
2010) is adopted to provide such a measure between the two
patches known as C

(
It , Ili

)
, as to be discussed next. Sl is

thus computed as

Sl
(
It , Ili

) = cs

cs +
(
C∗ − C

(
It , Ili

)
) ,

where cs = 5 is a constant, and C∗ denotes the maximum
similarity score over all leaf nodes. From the empirical dis-
tribution Vl , the final output is obtained by applying the
weighted mean-shift method (Comaniciu and Meer 2002)
to find the local modes in the density in a manner similar
to Shotton et al. (2013). Briefly, themean-shift iteration starts
with an initial estimate z. A kernel function K (‖zli − z‖) is
used to calculate the weighted mean of the points around z.
Define

m(z) =
∑

l
∑

i wli K
(‖zli − z‖)zli

∑
l
∑

i wli K
(‖zli − z‖) (5)

as the mean-shift function. The mean-shift algorithm works
by setting z ← m(z) and repeat the estimation until m(z)
converges.

DOT Hinterstoisser et al. (2010): As illustrated in Fig. 3,
theDOT feature is used in our context to compute a similarity
score C(I, IT ) between an input (I ) and a reference (IT )
hand patches. DOT works by dividing the image patch into
a series of blocks of size 8 × 8 pixels, where each block
is encoded using the pixel gradient information as follows:
denote as η the orientation of the gradient on a pixel, with its
range [0, 2π) quantized into nη bins, {0, 1, . . . , nη − 1}. We
empirically set nη = 8, the span of each bin is thus 45◦. This
way, η can be encoded as a vector o of length nη, by assigning

Fig. 3 An illustration of the DOT feature matching (Hinterstoisser
et al. 2010)

1 to the bin it resides and 0 otherwise. We set o to zero
vector if there is no dominant orientation at the pixel. Now,
consider each block of the input patch, its local dominant
orientation η∗ is simply defined as the maximum gradient
within this block, which gives the corresponding vector o∗.
Meanwhile for each block in a template patch, to improve
the robustness of DOT matching, we utilize a list of local
dominant orientations {η∗

1, η
∗
2, . . . , η

∗
r }, each corresponds to

the template under a slight translation. Each entry of the list
is mapped to the aforementioned orientation vector, and by
applying bitwiseORoperations successively to these vectors,
they are merged into the vector o∗

T .
The similarity C(I, IT ) is then measured block-wise as

the number of matched blocks between I and IT : for each
block, if the local dominant orientation o∗ of I belongs to
the orientation list of IT , i.e. o∗ & o∗

T �= 0 or o∗ = o∗
T = 0,

this block is deemed as a matched. Here & means bitwise
AND operation. Note DOT features are computed from raw
input image data and are used as sufficient statistics to fully
represent the input hand image patch, and are thus stored in
the leaf nodes. At test run, when a new hand image patch
goes through the tree from root to certain leaf node, the
similarity score is obtained by executing the very simple
bitwise OR operation for DOT matching. This is compu-
tationally very efficient (bitwise OR operations) and also
saves huge storage memory as there is no need to store raw
images.

2.4 Theoretical Analysis

Here we present the theoretical analysis for our basic regres-
sion forest model (Baseline-M). Denote (X ,Y ) a pair of
random variables following certain joint distribution, and μ

the marginal distribution of X ∈ [0, 1]d . In regression analy-
sis, one is interested in estimating the regression function
r(x) := E{Y |X = x} for fixed x based on the training sam-
ple. A sequence of regression estimates rn(x) is calledweakly
consistent for a certain distribution of (X ,Y ) if

lim
n→∞E

{
‖rn(X) − r(X)‖2

}
= 0, (6)

123



Int J Comput Vis

where ‖·‖ is the standard Euclidean norm inRq . The follow-
ing consistency analysis is obtained for our aforementioned
regression forest model, Baseline-M.

Theorem 1 Assume that X is uniformly distributed on

[0, 1]d and E

{∥
∥Y

∥
∥2

}
< ∞, and suppose the regression

function r(x) is bounded. Then the regression forest estimates{
r (Z)
n

}
of our Baseline-Mmodel in (4) is consistent whenever

�log2 Ln� → ∞, Ln
n → 0 and kn

n → 0 as n → ∞.

Proof details of our consistency theorem is relegated to
the appendix. Recall the optimal estimator is the regression
function r(x) which is usually unknown. The theorem guar-
antees that as the amount of data increases, the probability
that the estimate rn(x) of our regression forests is within a
small neighbourhood of the optimal estimator will approach
arbitrarily close to one. In our context when infinitely many
synthetic examples are potentially available for training, it
suggests that our estimate, constructed by learning from a
large amount of examples, is optimal with high probability.

We would like to point out in passing that our proposed
random forest model and the theorem bear noticeable differ-
ences from existing ones and especially (Denil et al. 2014)
that have been theoretically analyzed in literature. The work
of Denil et al. (2014) considers only univariate problems
while our regression forests deal with more general multi-
variate problems. Besides, the split criteria of our regression
forest model possess two major differences: the first is how
we select the split dimension and split threshold. In our
model, the number of candidate split dimensions follows
a binomial distribution, while in Denil et al. (2014) it fol-
lows aPoissondistribution.More importantly,whendeciding
the best test (φ∗, t∗), we consider multi-variate Gaussian
entropieswhile the squared error is used inDenil et al. (2014);
The second is the forest depth control: there is no depth con-
trol in Denil et al. (2014) during tree constructions, as the
split will continue as long as there are sufficient examples in
current split node.Meanwhile, most practical random forests
require a tree depth control mechanism, which is also con-
sidered in our approach. We will stop splitting if one of the
following two situations happens:

(1) The maximum tree depth �log2 Ln� is reached.
(2) The splitting of the node using the selected split point

results in any child with fewer than kn estimation points.

These criteria ensure that each tree has no more than
�log2 Ln� levels and each leaf node in the tree contains at
least kn estimation points. In the theoretical analysis, we
require Ln → ∞ and Ln

n → 0 as n → ∞, while (Denil

et al. 2014) requires kn → ∞ and kn
n → 0 as n → ∞. We

would also like to point out that so far we are able to provide
analysis of the basic model (Baseline-M), while the analy-

sis of Baseline-S and DHand remains open for future study.
Meanwhile empirically DHand is shown to outperform the
rest two models by a large margin.

3 The Pipeline of Our Learning System

3.1 Preprocessing

Our approach relies on synthetic hand examples for training,
where each training example contains a synthetic hand depth
image and its corresponding 3D pose. The learned system is
then applied to real depth images at test stage for pose esti-
mation. Particularly, depth noises are commonly produced
by existing commodity-level depth cameras, which renders
noticeable differences from the synthetic images. For TOF
cameras, this is overcome by applying median filter to clear
away the outliers, which is followed by Gaussian filter to
smooth out randomnoises. The amplitude image, also known
as the confidence map, is used to filter out the so called “fly-
ing pixel” noise (Hansard et al. 2013). The pixel with low
confidence value is treated as the background. For structured
illumination cameras, the preprocessing strategy of Xu and
Cheng (2013) can be applied. To obtain a hand image patch, a
simple background removal technique similar to that of Shot-
ton et al. (2011) is adopted, followed by image cropping to
obtain a hand-centered bounding box. Moreover, to accom-
modate hand size variations, a simple calibration process is
applied to properly scale a new hand size to match with that
of the training ones, by acquiring an initial image with hand
fully stretched and flat, and all fingers spread wide. Empir-
ically these preprocessing ingredients are shown to work
sufficiently well.

3.2 Our Two-Step Pipeline

After preprocessing, our approach consists of twomajor steps
as in Fig. 2: step one involves mainly estimation of 3D loca-
tion and in-plane rotation of the hand base (i.e. wrist) using
a regression forest. This is utilized in step two which subse-
quently establishes its coordinate based on the estimated 3D
location and in-plane rotation. In step two, a similar regres-
sion forest model estimates the rest parameters of our hand
kinematic model by a dynamically weighted scheme, which
produces the final pose estimation. Note that different from
existing methods such as Keskin et al. (2012) where by intro-
ducing the conditional model, a lot of forest models (each
catering one particular condition) have to be prepared and
kept in memory, our pipeline design requires only one forest
model after the translation and in-plane rotation of step one
to establish the canonical coordinate.

In both steps of our pipeline, two almost identical regres-
sion forests are adopted. In what follows, separate descrip-
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(a) (b) (c)

Fig. 4 Our 3D hand kinematic model Θ contains 21 + 6 degree-
of-freedom (DoF), including the hand base (i.e. wrist) position and
orientation (6 DoF), and the relative angles of individual joints (21
DoF). From a to c: the hand anatomy, the underlying skeleton kine-
matic model, and the skinned mesh model

tions are provided that underline their differences. This
allows us to present three variants of our learning systemwith
a slight abuse of notations: the Baseline-M system employs
the basic Baseline-M regression model on both steps; Sim-
ilarly, the Baseline-S system utilizes instead the Baseline-S
models in both steps; Finally, the DHand system applies the
DHand regression forest model only at step two, while the
Baseline-S model is still engaged in step one. It is worth
mentioning that for the Baseline-M system, our theoretical
analysis applies to both regression forests models used in the
two steps of our pipeline.

Before proceeding to our main steps, we would like to
introduce the 3D hand poses, the related depth features and
tests utilized in our approach, which are based on existing
techniques as follows:

Our Kinematic Chain Model: As displayed in Fig. 4, the
representation of our 3D hand poses follows that of Xu
and Cheng (2013): 4 DoF are used for each of the five
fingers, and 1 DoF is explicitly for palm bending, as well
as 6 DoF reserved for the global hand location (x1, x2, x3)
and orientation (α, β, γ ), where α stands for the in-plane
rotation. This amounts to a 27-dimensional vector Θ :=(
x1, x2, x3, α, β, γ, . . .

)
as the hand kinematic chain model,

used in our system to represent each of the 3D hand
poses. Sometimes it is more convenient to denote as Θ =(
x1, x2, x3, α, z

)
, with z being a 23-dimensional sub-vector.

Depth Features and Binary Tests: Let I denote the hand
image patch obtained from raw depth image. Without loss
of generality, one depth image is assumed to contain only
one right hand. The depth features as mentioned in Shot-
ton et al. (2011) are adapted to our context here. That is,
at a given pixel location x = (x̂1, x̂2) of a hand patch I ,
denote its depth value as a mapping dI (x), and construct a
feature φ(x) by considering two 2D offsets positions u, v
from x:

φ(x) = dI

(
x + u

dI (x)

)
− dI

(
x + v

dI (x)

)
. (7)

Following Breiman (2001), a binary test is defined as a pair
of elements, (φ, t), with φ being the feature function, and t
being a real-valued threshold. When an instance with pixel
location x passes through a split node of our binary trees, it
will be sent to the left branch if φ(x) > t , and to the right
side otherwise.

3.2.1 Step One: Estimation of Coordinate Origin
and In-Plane Rotation

This step is to estimate the 3D location and in-plane rotation
of the hand base, namely (x1, x2, x3, α), which forms the ori-
gin of our to-be-used coordinate in step two. The (instance,
label) pair of an example in step one is specified as follows:
the instance (aka feature vector) x is obtained from an image
patch centered at current pixel location, x = (x̂1, x̂2). Each
element of x is realized by feeding particular u, v offset val-
ues in (7). Correspondingly the label of each example y is
the first four elements of the full pose label vectorΘ , namely
(x1, x2, x3, α). A regression forest is used to predict these
parameters as follows: every pixel location in the hand image
patch determines a training example, which is parsed by each
of the T1 trees, resulting in a path from the root to certain leaf
node that stores a collection of training examples. Empiri-
cally we observe that this 3D origin location and in-plane
rotation are usually estimated fairly accurately.

Split Criterion of the First Step For the regression forest of
the first step, its input is an image patch centered at current
pixel, from which it produces the 4-dimensional parameters
(x1, x2, x3, α). The entropy term of (2) is naturally computed
in this 4-dimensional space (i.e. q = 4).

3.2.2 Step Two: Pose Estimation

The depth pixel values of a hand image patch naturally form
a 3D point cloud.With the output of step one, the point cloud
is translated to (x1, x2, x3) as coordinate origin, which is fol-
lowed by a reverse-rotation to the canonical hand pose by the
estimated in-plane rotation α. An almost identical regression
forest is then constructed to deliver the hand pose estimation:
with the location output of step one, (x1, x2, x3), as the coor-
dinate origin, each entire hand patch from training is parsed
by each of the T2 trees, leading down the tree path to a cer-
tain leaf node. The regression forest model of this step then
delivers a 23-dimensional parameter vector z, by aggregating
the votes of the training example of the leaf nodes. The final
27-dimensional parameter estimation Θ is then obtained by
direct composition of results from both steps. Meanwhile for
step two, x stands for a feature vector of the entire hand image
patch, while y := z represents the remaining 23 elements of
Θ .
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(a) (b)

Fig. 5 a Three rotation parameters of a hand. Rotation around Z is
termed the in-plane rotation, rotations around X and Y are called pitch
and roll, respectively. b Two views of the same gesture (Chinese num-
ber counting “1”) by rotating the hand around the Y-axis (i.e. roll).
As suggested in (b), the appearances of the hand in depth maps are
nevertheless very similar. In practice, precise estimation of the rotation
aroundY-axis turns out to be among the leading challenges in hand pose
estimation

SplitCriterionof the SecondStep The second step focuses on
estimating the remaining 23-dimensional parameters, which
resides in a much larger space than what we have considered
during the first step. As a result, by straightforwardly follow-
ing the same procedure as in step one, we will inevitably
work with a very sparsely distributed empirical point set
in a relatively high dimensional space. As a result, it con-
sumes considerably amount of time, while the results might
be unstable. Instead we consider an alternative strategy.

To start with, empirically we observe that a precise esti-
mation of the rotation around Y-axis (i.e. roll) is among the
most challenging factors in hand pose estimation. Figure 5
displays an exemplar scenario, where the appearances of the
same gesture in depth maps will be visually very similar
in spite of significant rotations around Y-axis. This inspires
us to concentrate on rotations around Y-axis when measur-
ing the differential entropy (2), which is only 1-dimensional.
Moreover, to avoid the unbalance phenomenon during tree
constructions, a balance term is also introduced and incorpo-
rated into an augmented information gain objective function:

(
φ∗t∗

) = arg max
φ∈Φ,t∈T

IB(φ, t), (8)

with IB(φ, t) := B(φ, t) I(φ, t) and B(φ, t) being the bal-
ance term:

B(φ, t) = min(|Sl | , |Sr |)
max(|Sl | , |Sr |) .

To sum up, in term of split criteria, regression forests of the
two steps follows almost the same scheme, except for the
main differences below: (1) Step one is based on single pixel,
while step 2workswith the entire hand patch. (2) Differences
in computing entropy and information gain: as shown in (2),
the entropy is computed in 4-dimensional space in step one,
and in 1-dimensional space (i.e q = 1) for the second step.

Moreover, the augmented information gain of (8) is used in
step two. Note our theoretical consistency analysis in Theo-
rem 1 also applies to this augmented information gain of (8).

4 GPU Acceleration

4.1 Motivation

Typically a leaf node is expected to contain similar poses.
The vast set of feasible poses however implies a conflicting
aim: on one hand, this can be achieved by making ready as
many training examples as possible; On the other hand, prac-
tically we prefer a small memory print for our system, thus
limiting the amount of data. A good compromise is obtained
via imposing a set of small random perturbations including
2D translations, rotations, and hand size scaling for each of
existing training instances, It . This way, a leaf node usually
has a better chance to work with an enriched set of similar
poses. For this purpose, small transformation such as in-plane
translations, rotations and scaling are additionally applied on
the training image patches. We remap It using mt transfor-
mation maps. Every transformation map is generated using a
set of small random perturbations including 2D translations,
rotations, and hand size scaling of the same hand gesture,
and is of the same dimensions (i.e. w × h) as of It . After
remapping the values of It using a transformation map, its
DOT features are generated and compared with each of the
features of the kl instances of Ili to obtain a similarity score.
These DOT-related executions turns out to be the computa-
tion bottleneck in our CPU implementation, which can be
substantially accelerated using GPU by exploiting the mas-
sive parallelism inherent in these steps. It is worth noting
that the purpose here is to duplicate our CPU system with
GPU-native implementation, in order to obtain the same per-
formance with much reduced time.

4.2 Using Texture Units for Remapping

The mt random transformation maps used for remapping It
have translational, rotational and scaling components. We
generate these maps in advance to save on the cost of com-
puting them for every depth image at runtime. By applying
a map Mt , every pixel location x = (x̂1, x̂2) in It is mapped
to a floating point coordinate x f = (

x̂ ( f )
1 , x̂ ( f )

2

)
in It . The

translation parameters
(
x̂ (t)
1 , x̂ (t)

2

)
, the rotation parameter ξ

and scaling parameters
(
x̂ (s)
1 , x̂ (s)

2

)
are sampled uniformly for

every transformation map. The transformed coordinates x f

are computed as:

x̂ ( f )
1 = x̂ (t)

1 + w

2
+ x̂ (s)

1

(
cos ξ

(
x̂1− w

2

)
− sin ξ

(
x̂2 − h

2

))
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x̂ ( f )
2 = x̂ (t)

2 + h

2
+ x̂ (s)

2

(
cos ξ

(
x̂1− w

2

)
+ sin ξ

(
x̂2 − h

2

))

Each of these maps, Mt , has the same size as It and
is stored as two maps in GPU global memory for efficient
access, for the X and Y coordinate values respectively. Since
x f may not be exactly located at a pixel position, the pix-
els around x f are interpolated to obtain the resulting depth
values.

To perform this remapping on GPU, we first launch one
thread for every x to read its x f fromMt . Since all the threads
in a thread block read from adjacent locations in GPU mem-
ory in a sequence, the memory reads are perfectly coalesced.
To obtain a depth value at x f , we use the four pixels whose
locations are the closest to it in It . The resulting depth value
is computed by performing a bi-linear interpolation of the
depth values at these four pixels (Andrews and Patterson
1976; Hamming 1998). Reading the four pixels around x f is
inefficient since the image is stored in memory in row order
and memory accesses by adjacent threads can span across
multiple rows and columns of It and thus cannot be coa-
lesced. This type of memory access is not a problem in CPU
computation due to its deep hierarchy of caches with large
cache memories at each level. However, the data caches in
GPUarchitecture are tiny in comparison and are not very use-
ful for this computation. The row order memory layout that
is commonly used has poor locality of reference. Instead an
isotropic memory layout is needed, with no preferred access
direction. Instead this operation can be performed in GPU by
utilizing its two-dimensional texture memory, which ensures
that pixels that are local in image space are almost always
local in the memory layout (Peachey 1990).

4.3 Computing DOT Features

Computing the DOT features for each of the mt remapped
images takes two steps: computing the gradient at every pixel
and then the dominant orientation of every block in the image.
One thread is launched onGPU for every pixel to compute its
X andY gradient values.We apply a 3×3 Sobel filter to com-
pute the gradient and the memory reads are coalesed across a
warp of threads for efficiency. Using the gradient values, the
magnitude and angle of the gradient vector is computed and
stored in GPU memory. We use the fast intrinsic functions
available on GPU to compute these quickly.

To pick the orientation of the pixel whose magnitude is
largest in a block, the common strategy of launching one
thread per pixel is not practical. The cost of synchroniza-
tion between threads of a DOT block is not worthwhile since
the dimensions of the block (8 × 8) are quite small in prac-
tice. Instead, we launch one thread for every DOT block to
compare the magnitude values across its pixels and note the
orientation of the largest magnitude vector.

TOF depth camera

the depth image

an exemplar hand pose  
with data-glove

the ground-truth annota�on  
of joint posi�ons

Fig. 6 An illustrative flowchart of our annotated dataset. The depth
images are acquired through a time-of-flight (TOF) camera. The cor-
responding annotated finger joint locations of each depth image are
obtained from the state-of-the-art data-glove, ShapeHand. See text for
details

4.4 Computing DOT Feature Matching

The DOT feature comparison is essentially composed of two
steps: bitwise comparison and accumulation of the compar-
ison result. The bitwise comparisons can be conveniently
performed by using one thread per orientation in the DOT
feature. A straightforwardmethod to accumulate the compar-
ison result is to use parallel segmented reduction. However,
this can be wasteful because the size of DOT feature is typi-
cally small and the number of training examples is typically
large. To accumulate efficiently, we use the special atomic
addition operations that have been recently implemented in
GPU hardware.

5 Our Annotated Real-World Dataset
and Performance Evaluation

5.1 The Annotated Real-World Dataset

To facilitate the analysis of hand pose estimation systems,
we also make available our data-glove annotated real-world
dataset as well as online performance evaluation.2 We wish
this can provide an option for researchers in the field to
compare performance on the same ground. As presented in

2 Our annotated dataset of depth images and the online performance
evaluation system for 3D hand pose estimation are publicly available at
http://hpes.bii.a-star.edu.sg/.
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Fig. 7 A photo of our data capture set-up

Fig. 6, in our dataset the depth images are acquired through
a TOF camera (SoftKinetic DS325 Softkinetic 2012). The
corresponding annotated depth images is obtained from the
state-of-the-art data-glove, (ShapeHand 2009). Our data cap-
ture setup is depicted in Fig. 7, where a data-gloved hand
is performing in a desktop setting with the depth camera
positioned overhead. Each depth image contains only one
hand, and without loss of generality we consider only the
right hand, and fix the camera to hand distance to around
50 cm. Our dataset contains images collected from 30 vol-
unteers varying in age (18–60 years), gender (15 male and
15 female), race and hand shape. 29 images are obtained for
each volunteer during the capture sessions, where 8 of these
images are from the Chinese Number Counting system (from
1 to 10, excluding 3 and 7), and the remaining ones are from
the American Sign Language (ASL) alphabet (from A to Z,
excluding J, R, T,W and Z), as illustrated in Fig. 9. Together,
these amount to 870 annotated examples, with each example
consisting of a hand depth image and its label (the data-glove
annotation).

In addition to our kinematic chainmodel of Fig. 4, an alter-
native characterization (Girshick et al. 2011) of a 3D hand
pose consists of a sequence of joint locations v = {

vi ∈ R
3 :

i = 1, . . . ,m
}
, where m refers to the number of joints, and

v specifies the 3D location of a joint. In term of performance
evaluation, this characterization by joint locations (as illus-
trated in Fig. 8) is usually easily interpreted when comes to
comparing pose estimation results. As this hand pose charac-
terization is obtained from the ShapeHand data-glove, there

Fig. 8 An illustration of a ground-truth annotation used in our anno-
tated dataset for performance evaluation. For an hand image, its
annotation v contains 20 joints. It can also be considered as a vec-
tor of length 60 = 20 × 3, consisting of the 3D locations of the joints
following a prescribed order. Note the joint locations here are exactly
all the finger joints of our skeletal model as of Fig. 4 plus the tips of
the five fingers and the hand base, except for one thumb joint that is
not included here due to the specific data-glove apparatus used during
empirical experiments. In practice, the three thumb-related joints are
not considered, which gives m = 20 − 3 = 17

exists some slight differences in joints when comparing with
the kinematic model: first, all five finger tips are additionally
considered in Fig. 8; Second, there are three thumb joints
in Fig. 4 while only two of them are retained in Fig. 8, as
ShapeHand does not measure the thumb base joint directly.
Nevertheless there exists a unique mapping between the two
characterizations.

Finally, of all the subjects (15M&15F), half (i.e. 8M&7F)
are used for training while the other half (7M&8F) are
retained as test data for performance evaluation. For a train-
ing example, both the depth image and its label are presented.
For a test example, only the depth image are present (Figs.
9, 10).

5.2 Performance Evaluation Metric and Its
Computation

Ourperformance evaluationmetric is based on the joint error,
which is defined as the averaged Euclidean distance in 3D
space over all the joints. Note the joints in this context refer
to the 20 joints defined in Fig. 8, which are exactly all the
joints of our skeletal model as of Fig. 4 plus the tips of the
five fingers and the hand base, except for one thumb joint
that is not included here due to the compatibility issue with
ShapeHand data-glove used during empirical experiments.
Formally, denote vg and ve as the ground truth and estimated
joint locations. The joint error of the hand pose estimate ve is
defined as e = 1

m

∑m
i=1 ‖vgi −vei‖, where ‖·‖ is the Euclid-

ean norm in 3D space. Moreover, as we are dealing with a
number of test hand images, let j = 1, . . . , nt run over the
test images, the corresponding joint errors are {e1, . . . , ent },
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Fig. 9 An illustrative list of 29 gestures used in our real-world dataset,
which are from a the American sign language (ASL) and b the Chi-
nese number counting. In particular, images of the ASL letters used in
this figure are credited to http://schoolbox.wordpress.com/2012/10/30/
3315/, while images of Chinese number counting are to http://www.
movingmandarin.com/wordpress/?p=151. We note that gestures of let-
ters J and Z are not considered here as they involve motions thus require
an image sequence to characterize one such letter. Moreover, gestures
of numbers 3 and 7 as well as letters R, T, W, although displayed here,
are also not used in our dataset. It is mainly due to the measurement
limitation of ShapeHand data-glove, which restricts from considera-
tion gestures that are substantially involved with either thumb finger
articulations, or palm arching. See text for more details

Fig. 10 The color code of our
3D hand (Color figure online)

then the mean joint error is defined as 1
nt

∑
j e j , and the

median joint error is simply the median of the set of errors.
When working with annotated real depth images, there

are a number of practical issues to be addressed. Below we
present the major ones: To avoid the interference of the tapes
fixed at the back of the ShapeHand data-glove, our depth
images focus around the frontal views. Empirically, we have
evaluated the reliability of the data-glove annotations. This
is achieved via a number of simple but informative tests
wherewe have observed that the ShapeHand device produces
reasonable and consistent measurements (i.e. within mm
accuracy) on all the finger joints except for the thumb, where
significant errors are observed. We believe that the source
of this error lies in the design of the instrument. As a result,
even though we have included the thumb-related joints in our
dataset, they are presently ignored during performance eval-
uation. In other words, the three thumb-related joints are not
considered while evaluating the hand-pose estimation algo-

Fig. 11 Exemplar synthetic hand gestures used during training. The
training examples cover generic gestures from American sign language
andChinese number counting, their out-of-plane pitch and roll rotations,
as well as in-plane rotational perturbations. The first row illustrates
various gestures in frontal view, while the rest rows display different
gestures observed from diverse viewpoints

rithms. As displayed in Fig. 8, this givesm = 20−3 = 17 in
practice. The data-glove also gives inaccurate measurements
when the palm arches (bends) deeply. Therefore we have to
withdraw from consideration several gestures including 3,
7, R, T and W. Note on synthetic data all finger joints are
considered as discussed previously.

The last which is nevertheless the most significant issue
is an alignment problem as follows: due to the physical prin-
ciple of ShapeHand data acquisition, its coordinate frame
is originated at the hand base, which is different from the
coordinate used by the estimated hand pose from depth cam-
era. They are related by a linear coordinate transformation.
In other words, the estimated joint positions need to be
transformed from the camera coordinate to the ShapeHand
coordinate frame. More specifically, denote the 3D location
of a joint by vS

i and vCi , the 3D vectors corresponding to
the ShapeHand (S) and the camera (C) coordinate frames,
respectively, where i indexes over the m joints. The trans-
formation matrix T S

C is the 3D transformation matrix from
(C) to (S), which can be uniquely obtained following the
least-square 3D alignment method of Umeyama (1991).

6 Experiments

All experiments are carried out on a laptop with an Intel
Core-i7 CPU and 4Gbmemory. The Softkinetic DS325 TOF
camera (Softkinetic 2012) is used as the primary apparatus to
acquire real-world depth images, with image size 320× 240,
and field of view (H × V) is 74◦ ×58◦. It can be derived that
the resolution along X and Y direction is 1.73mm at 500mm
distance. The resolution along Z direction is reported (Soft-
kinetic 2012) to be within 14mm at 1m. TOF cameras are
also known to contain noticeable noises including e.g. the
so-called flying pixels (Hansard et al. 2013).
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Throughout experiments we set T1 = 7 and T2 = 12. The
depth of the trees is 20. Altogether 460K synthetic training
examples are used, as illustrated in Fig. 11. These train-
ing examples cover generic gestures from American sign
language and Chinese number counting, together with their
out-of-plane pitch and roll rotations, as well as in-plane rota-
tional perturbations. The minimum number of estimation
examples stored at leaf nodes is set to kn = 30. m0 is set
to a large constant of 1e7, that practically allows the consid-
eration of all training examples when choosing a threshold
t at a split node. The evaluation of depth features requires
the access to local image window centered at current pixel
during the first step, and of the whole hand patches during
the second step, which are of size (w, h) = (50, 50) and
(w, h) = (120, 160) respectively. The size of feature space
d is fixed to 3000, and the related probability p = 0.2. Dis-
tance is defined as the Euclidean distance between hand and
camera.Bydefaultwewill focus on ourDHandmodel during
experiments.

In what follows, empirical simulations are carried out on
the synthetic dataset to investigate myriad aspects of our sys-
tem under controlled setting. This is followed by extensive
experiments with real-world data. In addition to hand pose
estimation, our system is also shown to work with related
tasks such as part-based labeling and gesture classification.

6.1 Experiments on Synthetic Data

To conduct quantitatively analysis, we first work with an in-
house dataset of 1.6K synthesized hand depth images that
covers a range of distances (from 350 to 700mm). Similar to
real data, the resolution of the depth camera is set to 320 ×
240.When the distance from the hand to the camera is dist =
350mm, the bounding box of the hand in image plane is
typically of size 70 × 100; when dist = 500mm, the size is
reduced to 49 × 70; When dist = 700mm, the size further
decreases to 35 × 50. White noise is added to the synthetic
depth images with standard deviation 15mm.

6.1.1 Estimation Error of Step One

As being a two-step pipeline in our system, it is of inter-
est to analyze the errors introduced by step one, namely the
hand position and in-plane rotation errors. Figure 12 displays
in box-plots the empirical error distributions on synthetic
dataset. On average, the errors are relatively small: 3D hand
position error is around 10mm, while the in-plane rotation
error is around 2 degrees. It is also observed that there are
no significant error changes as the distances vary from 350
to 700mm.

We further investigate the effects of perturbing the esti-
mates of step one toward the final estimates of our system on
the same synthetic dataset. A systematic study is presented
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Fig. 12 Box-plot of the hand position errors and the in-plane rotation
errors of the first regression forest in our system as a function of the
distance from hand to camera, obtained on the synthetic dataset

Fig. 13 Effect of perturbations in hand position and in-plane rotation
errors of step one toward the our final system outputs

in the three-dimensional bar plot of Fig. 13, where the hand
position and in-plane rotation errors of step one form the two-
dimensional input, which produces as output the mean joint
error: assume the inputs from step one are perfect (i.e. with
zero errors in both dimensions), final error of our system is
around 15mm. As both input errors increase, the final mean
joint error will go up to over 40mm. So it is fair to say that our

123



Int J Comput Vis

Fig. 14 Mean and median joint errors of our system when the number
of trees in step two varies

system is reasonably robust against perturbation of the results
from step one. Interestingly, our pipeline seems particularly
insensitive to the in-plane rotation error of step one, which
changes only 5mm when the in-plane rotation error varies
between 0 to 30 degrees. Finally, as shown in Fig. 13 where
the errors of our first step (the green bar) is relatively small,
our final estimation error is around 22mm (mean joint error).

6.1.2 Number of Trees

Experiments are conducted to evaluate on how much the
number of trees influences on the performance of our regres-
sion forest model. As the forests of both steps are fairly
similar, we focus on step two and present in Fig. 14 the
mean/median joint errors as a function of the number of
trees. As expected, the errors decreases as the number of
trees increases. The rate of decreases primes at 4 trees, and at
around 12 trees or larger numbers, the decreases become neg-
ligible. Thismotivate us to set T2 = 12 in our system.Wenote
in the passing that empirically the median errors are slightly
smaller than the mean errors, which is to be expected as
median error metric is known to be less insensitive to outliers
(i.e. the few test instances in the test set with largest errors).

6.1.3 Split Criteria

Two different split criteria are used for tree training in the
second forest. When all 23 parameters are used to compute
the entropy, the mean and median joint errors are 21.7 and
19.1mm respectively. The hand rotation around Y-axis plays
an important role in training the forest. In each node consid-
ering only the distribution of Y-axis rotation and the balance
of the split (8), the mean and median joint errors are 21.5
and 19.2mm respectively. The performance of considering
only Y-axis rotation is as good as that of considering all 23
parameters.

Fig. 15 Performance evaluation of the proposed and the comparison
methods

6.1.4 Performance Evaluation of the Proposed Versus
Existing Methods

Figure 15 provides a performance evaluation (in term of
mean/median joint error) among several competingmethods.
They include the proposed two baseline methods (Baseline-
M and Baseline-S), the proposed main method (DHand), as
well as a comparison method (Xu and Cheng 2013) denoted
as ICCV’13. Overall our method DHand deliver the best
results across all distances, which is followed by Baseline-
M and Baseline-S. This matches well with our expectation.
Meanwhile ICCV’13 achieves the worst performance. In
addition, our proposed methods are shown to be rather
insensitive to distance changes (anywhere between 350 and
700mm), while ICCV’13 performs the best around 450mm,
then performance declines when working with larger dis-
tance.

We further analyze the empirical error distributions of the
comparison methods, as plotted in Fig. 16. Here it becomes
clear that the inferior behavior of ICCV’13 can be attributed
to its relatively flat error distributions, which suggests some
joints deviate seriously from their true locations. This is in
sharp contrast to the error distribution of DHand shown at
the top-left corner, where majority of the errors reside at
the small error zone. Finally, Baseline-M and Baseline-S lie
somewhere in-between,with their peaks lie on the small error
side.

Comparison over Different Matching Methods: There
are a few state-of-the-art object template matching meth-
ods that are commonly used for related tasks, including
DOT (Hinterstoisser et al. 2010), HOG (Dalal and Triggs
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Fig. 16 Empirical error distributions of the comparison methods

Fig. 17 Performance comparison over different matching methods:
DOT (Hinterstoisser et al. 2010), HOG (Dalal and Triggs 2005), and
NCC (Lewis 1995)

2005), and NCC (Lewis 1995). Figure 17 presents a per-
formance comparison of our approach when adopting these
matchingmethods. It is clear that DOT consistently performs
the best, which is followed by HOG, while NCC always
delivers the worst results. In term of memory usage, DOT
consumes 100MB, HOG takes 4GB, while and NCC needs
2GB. Clearly DOT is the most cost-effective option. Note
that in addition to the 100MBDOTconsumption, the 288MB
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Fig. 18 Empirical error distribution of DHand on the aforementioned
annotated real-world dataset

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

5

10

15

20

25

30

Subject ID

Jo
in

t E
rr

or
 (m

m
)

1 2 4 5 6 8 9 10 A B C D E F G H I K L M N O P Q S U V X Y
0

5

10

15

20

25

30

35

Gestures

Jo
in

t E
rr

or
 (m

m
)

Mean
Median

Fig. 19 Mean/median joint errors of DHand over different sub-
jects/gestures on the annotated real-world dataset

memory footprint of our system also includes other over-
heads such as third-party libraries.

6.2 Experiments on Real Data

Experiments of this section focus on our in-house real-world
depth images that are introduced in Sect. 5. By default, the
distance from the hand to the camera is fixed to 500mm.
Throughout experiments three sets of depth images are used
as presented in Fig. 1: (1) bare hand imaged by top-mounted
camera; (2) bare hand imaged by front-mounted camera; (3)
hand with data-glove imaged by top-mounted camera.

Figure 18 presents the empirical error distributionwith our
proposed DHand on this test set. Empirically only a small
fraction of the errors occurswith very large errors (e.g. 40mm
and above), while most resides in the relatively small error
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Fig. 20 Pose estimation results ofDHand on real-world depth images
of diverse gestures, orientations, and hand sizes. The first three rows
present the results of hands from different subjects with roughly the
same gesture. The next six rows showcase various gestures under var-

ied orientations. The following three rows are captured instead from
a frontal camera and with changing distance (instead of the default
500mm distance). The last three rows display our results on gloved
hands
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Fig. 21 Failure cases

(e.g. 10–25mm) area. This suggests that the pose estimation
ofDHand usually does not incur large errors such as mistak-
ing a palm by a hand dorsum (i.e. the back of hand) or vice
versa. As a summary of this empirical error distribution, its
median/mean joint errors are 21.1/22.7mm, which are com-
parable with what we have on the synthetic dataset where the
median/mean joint errors are 19.2/21.5mm. We further look
into its spread over different subjects and gestures, which are
displayed in Fig. 19: in the top plot, we can see the errors
over subjects are quite similar. The differences over subjects
may due to the hand sizes, as smaller hand tends to incur
smaller errors. In the bottom plot, it is clear that simple ges-
tures such as “5” receive relatively small errors, while some
gestures such as “6”, “10”, and “F” tend to have larger errors,
as many finger joints are not directly observable.

Furthermore, Fig. 20 presents a list of hand pose estima-
tion results ofDHand on real-world depth images of various
gestures, orientations, hand sizes, w/ versus w/o gloves, as
well as different camera set-ups. Throughout our system is
shown to consistently deliver visually plausible results. Some
failure cases are also shown inFig. 21,whichwill be analyzed
later.

6.2.1 Comparisons with State-of-the-Art Methods

Experiments are also conducted to qualitatively evaluate
DHand and the state-of-the-art methods (Tang et al. 2014;
Oikonomidis and Argyros 2011; Leapmotion 2013) on pose
estimation and tracking tasks, as manifested in Figs. 22 and
23. Note (Tang et al. 2014) is re-implemented by ourselves
while original implementations of the rest two methods are
employed.

Recently the latent regression forest (LRF) method has
been developed in Tang et al. (2014) to estimate finger
joints from single depth images. As presented in Fig. 22,
for the eight distinct hand images from left to right, LRF
gives relatively reasonable results on the first four and makes
noticeable mistakes on the rest four scenarios, while our
method consistently offers visually plausible estimates. Note
in this experiment all hand images are acquired in frontal
facing view only, as LRF has been observed to deteriorate
significantly when the hands rotate around the Y-axis, as is
also revealed in Fig. 5 in our paper, an issue we have consid-
ered as the leading challenges for hand pose estimation.

We further compare DHand with two state-of-the-art
hand tracking methods, which are the well-known tracker
of Oikonomidis and Argyros (2011), and a commercial soft-
ware, (Leapmotion 2013), where the stable version 1.2.2 is
used. Unfortunately each of the trackers operates on a differ-
ent hardware: Oikonomidis and Argyros (2011) works with
Kinect (2011) to take as input a streaming pairs of color and
depth images, while LeapMotion runs on proprietary camera
hardware (Leapmotion 2013). Also its results in Fig. 23 are
screencopy images from its visualizer as being a closed sys-
tem.To accommodate the differences,we engage the cameras
at the same time during data acquisition, where the Kinect

Fig. 22 Comparison ofDHand with LRF of Tang et al. (2014) for hand
pose estimation. Presented as input depth images in the first row, the
second row displays the results of DHand, while the third row shows
the corresponding results of Tang et al. (2014), visualized by the finger

joints (red for thumb, green for index finger, blue for middle finger,
yellow for ring finger, and purple for little finger). The corresponding
amplitude images are also provided in the fourth row as a reference
(Color figure online)
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Fig. 23 Comparison of DHand with two state-of-the-art tracking
methods: Oikonomidis and Argyros (2011), and Leapmotion (2013).
First and second rows present the input depth images and results of

DHand, while the third and fourth rows displays the corresponding
results of Oikonomidis and Argyros (2011) and Leapmotion (2013).
See text for details

and the Softkinetic cameras are closely placed to ensure their
inputs are from similar side views, and the hands are hovered
on top of Leap motion with about 17 cm distance. we also
allow both trackers with sufficient lead time to facilitate both
functioning well before exposing to each of the hand scenes
as displayed at the first row of Fig. 23. Taking each of these
ten images as input, DHand consistently delivers plausible
results, while the performance of both tracking methods are
rather mixed: Oikonomidis and Argyros (2011) seems not
entirely fits well with our hand size, and in particular, we
have observed that its performance degrades when the palm
arches as e.g. in the seventh case. LeapMotion produces rea-
sonable results for the first five cases and performs less well
on the rest five.

6.2.2 Part-Based Labeling

Our proposed approach can also be used to label hand parts,
where the objective is to assign each pixel to one of the list
of prescribed hand parts. Here we adopt the color-coded part
labels of Fig. 10. Moreover, a simple scheme is adopted to
convert our hand pose estimation to part-based labels: From
input depth image, the hand area is first segmented from
background. Our predicted hand pose is then applied to a
synthetic 3D hand and projected onto the input image. This is
followed by assigning each overlapping pixel a proper color
label. For pixels not covered by the synthetic handmodel, we

allocate each of themwith a label from the nearest overlapped
regions.

Figure 24 presents exemplar labeling results on real-world
depth images where the data-glove is put on. To illustrate the
variety of images we present horizontally a series of unique
gestures and vertically instances of the same gesture but
from different subjects. Visually the results are quite satisfac-
tory, where the color labels are mostly correct and consistent
across different gestures and subjects. It is also observed that
our annotation results are remarkably insensitive to back-
ground changes including the wires of the data-glove.

6.2.3 Gesture Classification

Instead of emphasizing on connecting and comparing with
existing ASL-focused research efforts, the aim here is to
showcase the capacity of applying our pose estimation sys-
tem to address related task of gesture recognition. Therefore,
we take the liberty of considering a combined set of ges-
tures, which are exactly the 29 gestures discussed previously
in the dataset and evaluation section—instead of pose esti-
mation, here we consider the problem of assigning each test
hand image to its corresponding gesture category. Notice that
some gestures are very similar to each other: They include
e.g. {“t”, “s”, “m”, “n”, “a”, “e”, “10”}, {“p”, “v”, “h”, “r”,
“2”}, {“b”, “4”}, and {“x”, “9”}, as illustrated also in Fig. 9.
Overall the average accuracy is 0.53.
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Fig. 24 Part-based labeling of hands. Each fingers and different parts of the palm are labeled by distinct colors, following the color code of Fig. 10.
See text for details
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Fig. 25 Confusion matrix of the hand gesture recognition experiment using DHand

The overall low score is mainly due to the similarity of
several gesture types under consideration. For example, X
in ASL is very similar to number counting gesture 9, and is
also very close to number 1. This explains why for letter X ,
it is correctly predicted with only 0.27, and with 0.27 it is
wrongly classified as number 9 and with 0.13 as number 1,
as displayed in the confusion matrix at Fig. 25.

6.2.4 Execution Time

Efficient CPU enables our system to run near realtime at 15.6
FPS, while our GPU implementation further boosts the speed
to 67.2 FPS.

6.2.5 Limitations

Some failure cases of our hand pose estimation are presented
in Fig. 21. A closed hand is usually difficult to deal with
since no finger joints or tips are visible: As demonstrated
in the first column, it might be confused with some similar
gestures. Even when few fingers are in sight, different hand
gestures might still be confused as they look very similar
when projecting to the image plane from certain viewing
angles, as presented in the 2rd to 4th columns. The last two
columns display scenarios of overlapped fingerswhichmight
also be wrongly estimated.

As our approach is based on single depth images, the
resultsmay appear jitteredwhenworkingwith video streams.
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We also remark that our method is fundamentally differ-
ent from tracking-based methods, where gradient based or
stochastic optimizationmethodwould be used to exploit tem-
poral information available. As a result, the accuracy of our
methodmight slightly lagbehind a tracking enabled approach
with good initializations.

7 Conclusion and Outlook

This paper presents an efficient and effective two-step
pipeline for hand pose estimation. GPU-acceleration of the
computational bottleneck component is also presented that
significantly speeds up the runtime execution. A data-glove
annotated hand depth image dataset is also described as an
option for performance comparison of different approaches.
Extensive empirical evaluations demonstrate the competitive
performance of our approach. This is in addition to theoreti-
cal consistency analysis of its slightly simplified version. For
future work, we consider to integrate into our consideration
the temporal information, to eliminate the jittering effects of
our system when working with live streams.
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Appendix: Proof of the Main Theorem

Before the formal proof of Theorem 1, We start with several
intermediate results. These results can also be found in Biau
et al. (2008), Denil et al. (2014), and are included here for
completeness.

Proposition 1 Suppose {rn} is a sequence of consistent
regression estimates for a certain distribution of (X ,Y ). Then

the sequence of averaging estimates
{
r (Z)
n

}
(for any value of

Z) is also consistent.

Proof Since {rn} is consistent, we have

lim
n→∞EX ,Ψ,Dn

{
‖rn(X , Ψ ) − r(X)‖2

}
= 0.

Moreover,

EX ,{Ψ j },Dn
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∥
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∥
∥
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⎬
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,

where we used the fact that
(∑Z

j=1 a j

)2 ≤ Z
∑Z

j=1 a
2
j in

the inequality and that {Ψ j }Zj=1 are i.i.d. random variables of
Ψ in the last equality. Therefore, we have

lim
n→∞EX ,{Ψ j },Dn

{∥
∥
∥r (Z)

n (X) − r(X)

∥
∥
∥
2
}

= 0,

that is,
{
r (Z)
n

}
is consistent. ��

Proposition 2 Suppose {rn} is a sequence of regression esti-
mates which are consistent conditioned on the partition
random variable J for a certain distribution of (X ,Y ). That
is,

lim
n→∞EX ,G,Dn

{
‖rn(X , (J,G)) − r(X)‖2 | J

}
= 0,

for all J . Moreover, suppose ‖r(x)‖ is bounded and ‖rn(x,
Ψ )‖ is bounded with probability 1. Then the sequence {rn}
is unconditionally consistent.

Proof Since

EX ,Ψ,Dn

{∥
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∥2

}

= EJ
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and for any given J
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∥
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‖r(X)‖2

}

≤ 2 sup
x

EG,Dn

{
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x
‖r(x)‖2,

where the last inequality is derived from the boundedness
assumption, it follows from the dominated convergence the-
orem that
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To summarize, Proposition 1 states that the consistency
of the regression forests is implied by the consistency of
the trees it contains. Proposition 2 states that proving the
consistency conditioned on the partition random variable J
is sufficient for the consistency of each tree. As a preparation,
we also need the following lemma.

Lemma 1 If {Xi }mi=1 is a set of i.i.d. U(0, a) random vari-
ables, then

E

{
max

(
max
1≤i≤m

Xi , a − min
1≤i≤m

Xi

)}
= 2m + 1

2(m + 1)
a

Proof Let X = max

(
max
1≤i≤m

Xi , a − min
1≤i≤m

Xi

)
, then the

cumulative distribution function (cdf) of X is given by

FX (x) =P(X ≤ x)

=P

(
max
1≤i≤m

Xi ≤ x, min
1≤i≤m

Xi ≥ a − x

)

=
∏

1≤i≤m

P
(
a − x ≤ Xi ≤ x

)

=
(
2x

a
− 1

)m

for all a
2 ≤ x ≤ a. The probability density function (pdf) of

X is then

fX (x) = F ′
X

(x) = 2m

a

(
2x

a
− 1

)m−1

,

which implies

E
{
X

} =
∫ a

a/2
x fX (x)dx = 2m + 1

2(m + 1)
a.

��
A few more notations need to be in place: let Kn(X , Ψ )

denote the number of splits required to get the leaf node
An(X , Ψ ), Vnj (X , Ψ ) be the size of the j th dimension of

An(X , Ψ ) and A(t)
n (X , Ψ ) as the (t + 1)th node in the path

from the root to An(X , Ψ ). Also denote as V (t)
nj (X , Ψ ) the

size of the j th dimension of A(t)
n (X , Ψ ), and N (t)

ns (X , Ψ )

as well as N (t)
ne (X , Ψ ) the number of structure and esti-

mation data in A(t)
n (X , Ψ ), respectively. Moreover, we use

M (t)
ns (X , Ψ ) to denote the number of structure data selected to

choose candidate threshold set T in node A(t)
n (X , Ψ ). Since

M (t)
ns (X , Ψ ) is set as the smaller value between N (t)

ns (X , Ψ )

and a user-specified integer m0, it follows that

M (t)
ns (X , Ψ ) ≤ m0

always holds. With the above results in hand, we are now
ready to prove the main consistency theorem of our regres-
sion forests. Although our proof closely follows that of Denil
et al. (2014), it still bears many differences due to the usage
of different stopping criteria.

Proof From Propositions 1 and 2, we know that to prove the
consistency of {r (Z)

n } it is sufficient to prove the consistency
of each tree conditioned on random variable J . To this end,
we appeal to a general consistency theorem (the Stone’s theo-
rem) for partitioning estimate (Gyröfi et al. 2002). According
to this theorem, it is sufficient to show that

Nne(X , Ψ ) → ∞ and diam(An(X , Ψ )) → 0

in probability.3

Consider a tree defined by random variableΨ conditioned
on J (i.e., defined by the given structured data and random
variable G). First we show that Nne(X , Ψ ) → ∞ in proba-
bility. Suppose there are Qn leaf nodes in the tree denoted by
A1, . . . , AQn , then by the construction of the tree we have
Qn ≤ 2�log2 Ln� ≤ 2Ln . LetS = {X}∪{Xi |Xi ∈ En} denote
the ne +1 points composed of the union of X and all estima-
tion data, and N1, . . . , NQn denote the number of points of
S falling in those leaf nodes. Since all data points are i.i.d.,
we have P{X ∈ Ai |S, Ψ } = Ni/(ne + 1). That is, given the
set S andΨ , the conditional probability that X falls in the i th
leaf node is Ni/(ne + 1). Therefore, for every fixed c > 0,

P{Nne (X , Ψ ) < c} =E{P{Nne(X , Ψ ) < c | S, Ψ }}

=E

⎧
⎨

⎩

∑

i :Ni<c

P{X ∈ Ai | S, Ψ }
⎫
⎬

⎭

=E

⎧
⎨

⎩

∑

i :Ni<c

Ni

ne + 1

⎫
⎬

⎭

≤ cQn

ne + 1
≤ 2cLn

ne + 1
≤ 4cLn

n + 2
,

which converges to zero by the assumption that Ln
n → 0.

To show that diam(An(X , Ψ )) → 0 in probability, it
suffices to show that Vnj (x, Ψ ) → 0 in probability for all
j ∈ {1, 2, . . . , d} and all x in the support of X , so it is enough
to show that E{Vnj (x, Ψ )} → 0 for all x. Consider the node
A(t)
n (x, Ψ ) and let X1, . . . , XN (t)

ns (x,Ψ )
denote all structure

data in this node and X ( j)
i be the size of the j th dimension

of Xi . Then

X ( j)
i ∼ U(0, V (t)

nj (x, Ψ )), i = 1, . . . , N (t)
ns (x, Ψ ),

j = 1, 2, . . . , d.

3 diam(A) = supx1,x2∈A ‖x1 − x2‖ for a set A ⊂ R
d .
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Provided that the j th dimension is split, and without loss of

generality we assume
{
X ( j)
i

}M(t)
ns (x,Ψ )

i=1
are selected to choose

the threshold, then the size of the j th dimension of the child
nodes is bounded by

V̄ (t+1)
nj (x, Ψ )

= max

{

max
1≤i≤M(t)

ns (x,Ψ )

X ( j)
i , V (t)

nj (x, Ψ ) − min
1≤i≤M(t)

ns (x,Ψ )

X ( j)
i

}

.

By Lemma 1, we have

E

{
V̄ (t+1)
nj (x, Ψ )

}
= 2M (t)

ns (x, Ψ ) + 1

2(M (t)
ns (x, Ψ ) + 1)

V (t)
nj (x, Ψ ).

Define the following two events E1 ={There is only
one candidate feature} and E2 ={The j th dimension is a
candidate feature}. Since we randomly select s candidate
features and s ∼ 1 + Binomial(d − 1, p), it follows that
P{E1 ∩ E2} = P{E2|E1}P{E1} = (1 − p)d−1/d. Thus,

E

{
V (t+1)
nj (x, Ψ )

}

≤ E

{
1{(E1∩E2)c}V

(t)
nj (x, Ψ ) + 1{E1∩E2}V̄

(t+1)
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}

= (1−P{E1 ∩ E2})E
{
V (t)
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}

+ P{E1 ∩ E2}E
{
V̄ (t+1)
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}

=
(

1 − (1 − p)d−1

2d(M (t)
ns (x, Ψ ) + 1)

)

E

{
V (t)
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}
,

which implies that

E
{
Vnj (x, Ψ )

}

= E

{
V (Kn(x,Ψ ))
nj (x, Ψ )

}

≤
Kn(x,Ψ )−1∏

t=0

(

1− (1 − p)d−1

2d(M (t)
ns (x, Ψ ) + 1)

)

E

{
V (0)
nj (x, Ψ )

}

≤
(
1 − (1 − p)d−1

2d(m0 + 1)

)Kn(x,Ψ )

,

where in the last inequality we usedE
{
V (0)
nj (x, Ψ )

}
= 1 and

M (t)
ns (x, Ψ ) ≤ m0.

Since
(
1 − (1−p)d−1

2d(m0+1)

)
< 1 and is independent of n, it

remains to show that Kn(x, Ψ ) → ∞ in probability. For the
leaf node An(X , Ψ ), the ending of splitting can be resulted
fromeither the tree has reached themaximum level �log2 Ln�
or further splitting will results in less than kn estimation data
in its children. If the former is the case, then Kn(x, Ψ ) =

�log2 Ln� − 1 → ∞ as n → ∞. Therefore, in the rest of
the proof, we assume that further splitting of An(X , Ψ ) will
results in less than kn estimation data in its child nodes, and
show that Kn(x, Ψ ) → ∞ in probability. The idea is to prove
that for any fixed T ≥ 1 the probability P{Kn(x, Ψ ) < T }
approaches zero as n → ∞.

For any fixed T ≥ 1 and 0 < δ < ( 12 )
T , we have by

Lemma 1

P

{
V̄ (t)
nj (x, Ψ ) ≤ (1 − δ

1
T )V (t−1)

nj (x, Ψ ) | V (t−1)
nj (x, Ψ )

}

=
(
2(1 − δ

1
T ) − 1

)M(t−1)
ns (x,Ψ )

, ∀1≤ t≤T, 1 ≤ j ≤ d.

In other words, the size of the j th coordinate of the child
nodes of A(t−1)

n (X̄ , Ψ ) is at least δ
1
T V (t−1)

nj (x, Ψ )with prob-

ability (2(1 − δ
1
T ) − 1)M

(t−1)
ns (x,Ψ ), that is,
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1
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nj (x, Ψ )

}

=
(
2(1 − δ

1
T ) − 1

)M(t−1)
ns (x,Ψ )

, ∀1 ≤ t ≤ T, 1≤ j ≤d,

which implies that

P

{
V (T )
nj (x, Ψ ) ≥ δ

}

≥ P

{
V (T )
nj (x, Ψ ) ≥ δ

1
T V (T−1)

nj (x, Ψ ) | V (T−1)
nj (x, Ψ ) ≥ δ

T−1
T

}

× P

{
V (T−1)
nj (x, Ψ ) ≥ δ

T−1
T

}

...(recursively apply the above inequality to T − 1, T − 2, . . .)

≥
T−1∏

t=0

P

{
V (t+1)
nj (x, Ψ ) ≥ δ

1
T V (t)

nj (x, Ψ ) | V (t)
nj (x, Ψ ) ≥ δ

t
T

}

× P

{
V (0)
nj (x, Ψ ) ≥ 1

}

≥
T−1∏

t=0

(
2(1 − δ

1
T ) − 1

)M(t)
ns (x,Ψ )

≥
(
2(1 − δ

1
T ) − 1

)Tm0
,

wherewe usedP
{
V (0)
nj (x, Ψ ) ≥ 1

}
= 1 in the last inequality

and M (t)
ns (x, Ψ ) ≤ m0 in the last equality.

Thus, for any ε1 > 0, we can select δ satisfying

0 < δ
1
T ≤ 1 − 1

2

(
(1 − ε1)

1
dTm0 + 1

)
<

1

2

so that

P

{
V (T )
nj (x, Ψ ) ≥ δ

}
≥ (1 − ε1)

1/d , ∀1 ≤ j ≤ d
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and know that A(T )
n (x, Ψ ) contains a hypercube with sides

of length δ with probability at least 1 − ε1.
Let Ã(T )

n (x, Ψ ) denote the sibling node of A(T )
n (x, Ψ )

(i.e., Ã(T )
n (x, Ψ ) and A(T )

n (x, Ψ ) are two child nodes of
A(T−1)
n (x, Ψ )) and Ñ (T )

ne (x, Ψ ) be the number of estimation
data it contains. Then, following the same procedure as the
above, we can show that Ã(T )

n (x, Ψ ) contains a hypercube
with sides of length δ with probability at least 1 − ε1. Let

κ := min
{
μ(A(T )

n (x, Ψ )), μ( Ã(T )
n (x, Ψ ))

}
,

we know that P{κ > 0} = 1 since for any ε1 > 0, we
can find δ > 0 such that both A(T )

n (x, Ψ ) and Ã(T )
n (x, Ψ )

contains a hypercube with sides of length δ (i.e. κ ≥ δd )
with probability at least 1 − ε1.

Next, we show that for any ε2 > 0 we can choose suffi-
ciently large n such that

P{N (T )
ne (x, Ψ ) < kn} ≤ ε2

2
.

Notice that for any hypercube of volume κ > 0 in [0, 1]d , the
number of estimation data is contains denoted as Ne satisfies
Ne ∼ Binomial(ne, κ), by Hoeffding’s tail inequality we
have

P{Ne < kn} ≤ exp

(
−2(neκ − kn)2

ne

)

= exp

(

−2ne

(
κ − kn

ne

)2
)

.

Since kn
n → 0 and ne → ∞ as n → ∞, it follows that for

any ε2 > 0 we have

kn
ne

≤ 2kn
n

≤ κ −
√

1

2ne
ln

(
2

ε2

)
,

for sufficiently large n, which together with the inequality
above implies that

P{Ne < kn} ≤ ε2

2
,

which further implies that

P{N (T )
ne (x, Ψ ) < kn} =P{N (T )

ne (x, Ψ ) < kn | κ > 0}
≤P{Ne < kn} ≤ ε2

2
.

Similarly, we have

P{Ñ (T )
ne (x, Ψ ) < kn} ≤ ε2

2
.

Remember that we assume that the further splitting of
An(X̄ , Ψ ) would result in child node containing fewer than
kn estimation data. Therefore,

P{Kn(x, Ψ )<T } ≤P{N (T )
ne (x, Ψ )<kn or Ñ (T )

ne (x, Ψ )<kn}
≤P{N (T )

ne (x, Ψ ) < kn}
+ P{Ñ (T )

ne (x, Ψ ) < kn}
≤ε2,

for sufficiently large n.
In summary, we have proven that for both stopping criteria

in our tree construction Kn(x, Ψ ) → ∞ in probability,which
completes the proof. ��

References

Andrews, H. C., & Patterson, C. L. (1976). Digital interpolation of
discrete images. IEEE Transactions on Computers,C–25(2), 196–
202.

Ballan, L., Taneja, A., Gall, J., Gool, L., & Pollefeys,M. (2012).Motion
capture of hands in action using discriminative salient points. In
ECCV.

Biau, G., Devroye, L., & Lugosi, G. (2008). Consistency of random
forests and other averaging classifiers. Journal onMachine Learn-
ing Research, 9, 2015–2033.

Biau, G. (2012). Analysis of a random forests model. Journal on
Machine Learning Research, 13, 1063–1095.

Breiman, L. (2004).Consistency for a simple random forests. Tech. rep.
UC Berkeley.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Comaniciu,D.,&Meer, P. (2002).Mean shift:A robust approach toward

feature space analysis. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 24, 603–619.

Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for
human detection. In CVPR (Vol. 1, pp. 886–893).

de La Gorce, M., Fleet, D., & Paragios, N. (2011). Model-based 3d
hand pose estimation from monocular video. IEEE Transaction
on Pattern Analysis and Machine, 33(9), 1793–1805.

Denil, M., Matheson, D., & de Freitas, N. (2014). Narrowing the gap:
Random forests in theory and practice. In ICML.

Erol, A., Bebis, G., Nicolescu, M., Boyle, R., & Twombly, X. (2007).
Vision-based hand pose estimation: A review. Computer Vision
Image Understanding, 108(1–2), 52–73.

Fanelli,G.,Gall, J.,&Gool, L.V. (2011).Real timeheadpose estimation
with random regression forests. In CVPR.

Gall, J., & Lempitsky, V. (2013). Class-specific hough forests for object
detection. In Decision forests for computer vision and medical
image analysis (pp. 143–157). Berlin: Springer.

Girshick, R., Shotton, J., Kohli, P., Criminisi, A., & Fitzgibbon, A.
(2011). Efficient regression of general-activity human poses from
depth images. In ICCV.

Gustus, A., Stillfried, G., Visser, J., Jorntell, H., & van der Smagt, P.
(2012). Human hand modelling: Kinematics, dynamics, applica-
tions. Biological Cybernetics, 106(11–12), 741–755.

Gyröfi, L., Kohler, M., Krzyzak, A., &Walk, H. (2002). ADistribution-
Free Theory of Nonparametric Regression. Berlin: Springer.

Hackenberg, G., McCall, R., & Broll, W. (2011). Lightweight palm and
finger tracking for real-time 3d gesture control. In IEEE virtual
reality conference (pp. 19–26).

Hamming, R. W. (1997). Digital filters (3rd ed.). Dover Publications.

123



Int J Comput Vis

Hansard, M., Lee, S., Choi, O., & Horaud, R. (2013). Time-of-flight
cameras: Principles, methods and applications. Berlin: Springer.

Hinterstoisser, S., Lepetit, V., Ilic, S., Fua, P., & Navab, N. (2010).
Dominant orientation templates for real-time detection of texture-
less objects. In CVPR.

Keskin, C., Kirac, F., Kara, Y., & Akarun, L. (2012). Hand pose estima-
tion and hand shape classification using multi-layered randomized
decision forests. In ECCV.

Kinect. (2011). http://www.xbox.com/en-US/kinect/.
Leapmotion. (2013). http://www.leapmotion.com.
Lewis, J. (1995). Fast normalized cross-correlation. In Vision interface

(Vol. 10, pp. 120–123).
Melax, S., Keselman, L.,&Orsten, S. (2013). Dynamics based 3d skele-

tal hand tracking. In Graphics interface.
Oikonomidis,N.,&Argyros,A. (2011). Efficientmodel-based 3d track-

ing of hand articulations using kinect. In BMVC.
Oikonomidis, I., Lourakis, M., & Argyros, A. (2014). Evolutionary

quasi-random search for hand articulations tracking. In CVPR.
Peachey, D. (1990). Texture on demand. Tech. rep.
ShapeHand. (2009). http://www.shapehand.com/shapehand.html.
Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore,

R., Kipman, A., & Blake, A. (2011). Real-time human pose recog-
nition in parts from single depth images. In CVPR.

Shotton, J., Sharp, T.,Kipman,A., Fitzgibbon,A., Finocchio,M., Blake,
A., et al. (2013). Real-time human pose recognition in parts from
single depth images.Communication of the ACM, 56(1), 116–124.

Softkinetic. (2012). http://www.softkinetic.com.

Sridhar, S.,Oulasvirta,A.,&Theobalt,C. (2013). Interactivemarkerless
articulatedhandmotion trackingusing rgb anddepthdata. In ICCV.

Sueda, S., Kaufman, A., & Pai, D. (2008). Musculotendon simulation
for hand animation. In SIGGRAPH (pp. 83:1–83:8).

Tang, D., Tejani, A., Chang, H., & Kim, T. (2014) Latent regression
forest: Structured estimation of 3d articulated hand posture. In
CVPR.

Taylor, J., Stebbing, R., Ramakrishna, V., Keskin, C., Shotton, J., Izadi,
S., Fitzgibbon, A., & Hertzmann, A. (2014). User-specific hand
modeling from monocular depth sequences. In CVPR.

Tzionas, D., & Gall, J. (2013). A comparison of directional distances
for hand pose estimation. InGerman conference on pattern recog-
nition.

Umeyama, S. (1991). Least-squares estimation of transformation para-
meters between two point patterns. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 13, 376380.
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