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Abstract

A key challenge in complex activity recognition is the fact
that a complex activity can often be performed in several dif-
ferent ways, with each consisting of its own configuration of
atomic actions and their temporal dependencies. This leads
us to define an atomic activity-based probabilistic framework
that employs Allen’s interval relations to represent local tem-
poral dependencies. The framework introduces a latent vari-
able from the Chinese Restaurant Process to explicitly char-
acterize these unique internal configurations of a particular
complex activity as a variable number of tables. It can be ana-
lytically shown that the resulting interval network satisfies the
transitivity property, and as a result, all local temporal depen-
dencies can be retained and are globally consistent. Empirical
evaluations on benchmark datasets suggest our approach sig-
nificantly outperforms the state-of-the-art methods.

Introduction
Activity recognition has become an important research field,
given its role in facilitating a broad range of applications in
areas such as healthcare, sports, smart homes and product
recommendations (Padoy et al. 2008). Current techniques
are becoming mature to recognize basic actions and move-
ments from cameras or other sensors (Frank, Mannor, and
Precup 2010; Gupta and Mooney 2010; Lara and Labrador
2013; Bulling, Blanke, and Schiele 2014; Yürüten, Zhang,
and Pu 2014). For example, actions like drink from cup can
be inferred by sensors attached to the user’s arms and the
cups, while movements like walk, lie down and sit can be
inferred by an accelerometer placed on the user’s waist. The
intervals of these actions and movements can also be ob-
tained as the period of time over which the corresponding
sensor states remain unchanged. These actions and move-
ments describe low-level activities that can be inferred from
sensors and cannot be further decomposed under applica-
tion semantics (Saguna, Zaslavsky, and Chakraborty 2013),
and are referred to as atomic activities here. The main fo-
cus of this paper is on complex activities, where a complex
activity is a collection of temporally related atomic activi-
ties. For example, relax is a complex activity that may con-
tain six atomic activities, i.e. walk, reach lazychair, sit, lie
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down, and drink from cup. As illustrated in Fig. 1(a), mod-
eling complex activities naturally requires the characteriza-
tion of their temporal dependencies among atomic activities.
A complex activity recognition model should also represent
uncertainties associated with individual atomic activities as
well as their temporal dependencies. It is well known that
each individual often possesses a unique style of performing
the same complex activity, which may differ noticeably from
the others. To further complicate the matter, the same person
might perform differently at a different time or location. One
such example is provided in Fig. 1(b), where relax can also
be performed in an alternative manner with only two atomic
activities involved. This kind of inherit uncertainty or vari-
ability of complex activities usually manifest themselves in
terms of the types of the underlying atomic activities and
their temporal relationships (Kim et al. 2015).

Despite being a very challenging problem, in recent years
there has been a rapid growth of interest in modeling
and recognizing complex activities. Semantic-based mod-
els (Ryoo and Aggarwal 2009; Morariu and Davis 2011;
Helaoui, Riboni, and Stuckenschmidt 2013) have gained
attention in recent years for addressing complex activity
recognition problems, but they often lack the expressive
power to capture and propagate the uncertainties associated
with their temporal dependencies. Moreover, formulae and
their weights need to be carefully hand-crafted by domain
experts, which could be rather difficult in many practical
scenarios. On the other hand, the most popular modeling
paradigm might be that of the graphical models, which in-
clude techniques such as hidden Markov models, Bayesian
networks, and conditional random fields (Bui et al. 2008;
Hospedales et al. 2011; Liu et al. 2015). While these graphi-
cal model-based approaches are capable of managing uncer-
tainties, they are unfortunately rather limited in characteriz-
ing rich temporal relationships among activities. In fact, as
these models are mostly time-point based, only three rela-
tions (i.e. precedes, follows, equals) can be sufficiently cap-
tured. Moreover, the time-point based graphical models are
computationally expensive when the number of overlapping
activities grows (Pinhanez 1999).

The interval temporal Bayesian network (ITBN) (Zhang
et al. 2013) is the first interval-based graphical model that
combines the Allen relations with the probabilistic descrip-
tion of Bayesian network. This model can capture 13 tem-



(a) Relax (Case I) (b) Relax (Case II)

(c) Interval network (Case I) (d) Interval network (Case II)

Figure 1: Two examples of the complex activity relax and
its corresponding interval networks. a1 =walk, a2 =reach
lazychair, a3 =sit, a4 =drink from cup, a5 =lie.

poral interval relations among activities. However, since
Bayesian network structure is a directed acyclic graph, the
ITBN has to remove some temporal relations from the
training dataset in order to maintain temporal consistency,
which nevertheless would result in information loss. Be-
sides, checking temporal consistency of such triangle rela-
tionships and evaluating all possible network structures (i.e.
which relation should be ignored or not) are computation-
ally expensive, and would end up being intractable with the
growth of the network size. Moreover, in ITBN the network
size is fixed to be the same as the number of atomic ac-
tivities. Subsequently, while it can handle situations where
an atomic activity occurs no more than one time during a
complex activity, it is nonetheless difficult for ITBN to man-
age the repetitive occurrences of atomic activities. In other
words, in the event that an atomic activity occurs more than
once, ITBN faces the awkward situation where each repeti-
tive occurrence of this atomic activity has to be treated as a
novel atomic activity.

To address these issues in complex activity recognition,
we present a generative probabilistic model based on Allen
interval relations. In particular, our approach considers a
principled way of dealing with the inherit structural vari-
ability in complex activities. Briefly speaking, to describe
a complex activity such as relax, we propose to introduce
an additional latent variable generated from the Chinese
Restaurant Process or CRP (Pitman 2002). Now each re-
sulting table from the CRP contains its unique set of atomic
activities that together with the corresponding Allen inter-
val relations, characterize a certain cluster of instances that
possess similar atomic activities and their temporal depen-
dencies, i.e. a particular style of this complex activity. Note
the CRP also enables our model to depict repetitive occur-
rences of atomic activities. In addition, an interval relation
generation constraint is introduced to ensure temporal con-
sistency during the network generation procedure without
loss of internal relations. In this way, our generative model is
more capable of characterizing the inherit structural variabil-
ity in complex activities when comparing to existing meth-
ods such as ITBN, which is also verified during empirical
evaluations to be detailed in later sections.

Figure 2: Allen’s 13 temporal relations between two intervals.
Note that f often refers to finish in other literatures.

Problem Formulation
Given a dataset C of N records from a set of M complex
activities, a complex activity recognition model is generated
with respect to the interval relations among atomic activities.
Each record is a sequence of atomic activity intervals or-
dered by start-time, i.e. 〈I1, I2, . . . , Ik〉. An atomic activity
interval (or interval in shorthand) Ii is denoted by a triplet
Ii = (t−i , ai, t

+
i ). Here t−i and t+i refer to the start-time and

end-time of the atomic activity ai, respectively, with t−i <
t+i . In the seminal work (Allen 1983), Allen provides an enu-
meration of 13 feasible temporal relations between two in-
tervals, i.e. {b,m, o, s, c, f,≡, b−,m−, o−, s−, c−, f−}, as
summarized in Fig. 2.

An interval network can be used to represent the tempo-
ral relationships between atomic activities within a complex
activity, where a node represents an interval (i.e. an instanti-
ation of an atomic activity) and a directed link describes the
Allen’s temporal relationship of the two involved intervals.
Each such link is associated with one and only one interval
relation that is in the subset of the Allen’s temporal relations
without negative superscript, i.e. R = {b,m, o, s, c, f,≡}.
It can be verified that the resulting interval network is a di-
rected acyclic graph, whereas the temporal relations on links
shall be consistent. Taken an example illustrated in Fig. 1(c),
since a1 overlaps a2 and a2 meets a3, the temporal relation
before will appear on the link from a1 to a3. More formally,
given any two temporal relations ri,j and rj,k, where ri,j ,
rj,k refer to the relations on the links from ai to aj and from
aj to ak, respectively, and ri,j , rj,k ∈ R, the interval rela-
tion ri,k on the link from ai to ak shall follow the transitiv-
ity properties as listed in Table. 1. Take another example, if
ri,j = rj,k = o, then ri,k ∈ {b,m, o}. Meanwhile, the set
of the seven relations is closed under composition operation,
denoted by ri,j ◦ rj,k. That is to say, if any ri,j , rj,k ∈ R,
then ri,j ◦ rj,k ⊆ R. An interval network is consistent if
and only if the temporal relations on every triangle 4ijk
in the network satisfy the transitivity properties. Notice that
the interval network is different from the interval algebra
network (Allen 1983) where each link are labeled with the
union of all possible interval relations. In this paper, the term
network refers to the interval network in our definition, and
relation refers to the interval relation inR.

A network however characterizes only a possible style of
a complex activity. Fig. 1(c) and Fig. 1(d) show two net-
works that represents the same complex activity relax in two



Table 1: The transitivity table for the interval relation ri,k
adapted from (Allen 1983).
ri,j ◦ rj,k b m o s c f ≡

b b b b b b b b

m b b b m b b m

o b b bmo o bmocf bmo o

s b b bmo s bmocf bmo s

c bmocf ocf ocf ocf c c c

f b m o o c f f

≡ b m o s c f ≡

different ways of composing atomic activities and their tem-
poral dependencies. On the other hand, a complex activity
can be considered as an instantiation of one such network
sampled with certain probability that can be decomposed
following the network structure. This inspires us to present
in what follows a generative probabilistic model where these
interval-based networks can be systematically constructed to
characterize the complex activities of interests.

Our Model
Let us consider a dataset C of N records over M complex
activities. For any complex activity m (1 ≤ m ≤ M ), de-
note Cm ⊆ C the corresponding subset of Nm records. Here
each record c ∈ Cm is an instance of the m-th complex
activity, and is associated with a set of K atomic activities
A = {A1, A2, . . . , AK} and the set of seven non-negative
superscripted relations R stated previously. The number of
intervals involved in the record c is denoted as |c|.

Denote Gc = (Vc, Ec) the corresponding network of c,
with Vc and Ec being the sets of vertices and edges respec-
tively. A network Gc contains |c| nodes vc,1, . . . , vc,|c| as
well as a set of links. Each node needs to be assigned with
an atomic activity inA, and each link is to be assigned with a
temporal relation inR. We first consider a simple model that
contains only the links between two neighbouring nodes,
which specifies a set of |c| − 1 links ec,1,2, . . . , ec,|c|−1,|c|,
with ec,i,i+1 (1 ≤ i ≤ |c| − 1) representing the link of
vc,i → vc,i+1. Similarly, we can obtain a second model
with fully connected links that is furnished with the set of
all pairwise links with a fixed direction from past to future.
It can be seen that any network constructed by both variants
of our model are consistent because no inconsistent trian-
gle exists. In what follows, these two variants are referred
to as GPA (abbreviation of Generative Probabilistic model
with Allen’s relations), and GPA-F (where F denotes that
the network is fully connected), respectively.

We further introduce a set of latent tables drawn from the
Chinese Restaurant Process. In a restaurant with possibly
an infinite number of tables, each node (analogous to a cus-
tomer) is associated with a table, and without loss of gener-
ality assume each table contains K atomic activities (anal-
ogous to dishes) with associated probabilities. We assume a
group of nodes (customers) from the same complex activity
(preferring the same cuisine) is more likely to gather on a set
of tables where the atomic activities (dishes) relating to the
complex activity (preferred cuisine) are served with higher
probabilities. The basic process is specified as follows. The

first node (customer) chooses the first table. The n-th subse-
quent node (customer) chooses a table drawn from the fol-
lowing distribution:{ nti

n+α−1
if choose a non-empty table ti,

α
n+α−1

if choose a new table,

where nti is the number of previous n − 1 nodes at table
ti, with

∑
i nti = n − 1, and α > 0 is a tuning param-

eter. Note that there is no a priori distinction between the
empty tables, and the CRP-induced distribution over table
assignments is exchangeable and invariant under permuta-
tion. Besides, Dirichlet processes extend this construction
by serving each table a set of different, independently cho-
sen atomic activities (dishes). In this way, a complex activity
(i.e. a class of networks) can be characterized by a unique set
of tables and their distributions over atomic activities. Also,
networks of various sizes and repetitive occurrences of the
same atomic activity can be generated through the CRP.

In what follows, we describe the process of generating a
network Gc: For each node vc,n, a table tc,n is chosen from
CRP(α). The first node always chooses the first table t1 with
probability 1. With a table tk (k = 1, 2, . . .), an atomic ac-
tivity ac,n on node vc,n is chosen from a multinomial distri-
bution Multinomial(ξk) over all atomic activities, and ξk is
chosen a priori from Dirichlet(β), with β being a hyperpa-
rameter. Provided with a pair of atomic activities (Ai, Aj),
the relation rc,n−1,n on link ec,n−1,n is chosen from a Multi-
nomial(θi,j) over the seven relations in R, where θi,j is
the parameter vector of the multinomial distribution con-
ditioned on the pair (Ai, Aj), with 1 ≤ i, j ≤ K. Under
such construction, a consistent networkGc can be associated
with atomic activities and relations. Now, given a set of net-
works associated with Cm and the maximum number of ta-
bles `, our model assumes the following generative process:

1 Choose a distribution ξj ∼ Dirichlet(β), for each j =
1, 2, . . . , `;

2 For each complex activity record c (c ∈ Cm),

2.1 Set tc,1 = t1;
2.2 Choose an atomic activity ac,1 ∼ Multinomial(ξtc,1);
2.3 For each node vc,n (2 ≤ n ≤ |c|),

(1) Choose a table tc,n ∼ CRP(tc,1, . . . , tc,n−1;α);
(2) Choose an atomic activity ac,n ∼ Multinomial(ξtc,n);
(3) Choose a relation rc,n−1,n ∼ Multinomial(θac,n−1,ac,n);

Denote V =
∑
c∈Cm |c| and W = V − Nm. The joint

distribution of a set of V variables a for atomic activity as-
signments, a set of V variables t for table assignments, and
a set of W variables r for relation assignments, is given by:

P (a, t, r;α, β, θ) =
∏
c

(P (ac,1; β)

|c|∏
n=2

P (tc,n | tc,1, . . . , tc,n−1;α)

P (ac,n | tc,n; β)P (rc,n−1,n | ac,n−1, ac,n; θac,n−1,ac,n
)).

(1)

Notice that although the CRP can generate an infinite num-
ber of tables, there are at most max{|c|} tables given the
training dataset Cm. So we can often set ` = max{|c|}. A



` > max{|c|} can also be set to generate a new class of
networks with the size greater than any training complex ac-
tivities. In such cases, atomic activities are chosen with the
same probability (i.e. 1

K ) after the max{|c|}-th node.

Parameter Estimation
There are two independent parameter estimation problems:
the estimation of ` node distribution associated parameters
{ξ1, ξ2, . . . , ξ`} and the estimation of K×K relation distri-
bution associated parameters {θi,j : 1 ≤ i, j ≤ K}.

Since the probability distribution of the relation rc,i,j only
relies on the pair of atomic activities (Ai, Aj), the maximum
likelihood estimate (MLE) can be used here to learn param-
eters for the given training dataset Cm. The parameters in-
clude the conditional probability for each pair (Ai, Aj) ∈
A × A. According to our generative model, the relations
are independently distributed given a pair of atomic activi-
ties and the conditional probability distribution is a multino-
mial over the seven relations in R. Assuming the relations
are also identically conditioned on each pair of (Ai, Aj), the
likelihood of the parameter θi,j for P (rc,i,j | Ai, Aj) with
respect to the training dataset becomes:

L(θAi,Aj ; Cm) =
∏
c

P (rc,i,j | Ai, Aj ; θi,j) =

7∏
r=1

θ
nri,j,r
i,j,r , (2)

where θi,j = {θi,j,1, . . . , θi,j,7}, θi,j,r is the parameter
for the r-th relation in R, and nri,j,r is the number of
times the link Ai → Aj is labeled with the r-th relation
in the training dataset. By taking the logarithm of the
likelihood function, applying a Lagrange multiplier to
satisfy

∑7
r=1 θi,j,r = 1, and setting the partial derivatives to

zero, we can get the maximum likelihood estimate for θi,j as

θ̂i,j,r =
nri,j,r∑7

r′=1 nri,j,r′
. (3)

Unlike the relation associated parameter leaning, it is un-
fortunately intractable to perform an exact learning for pa-
rameters {ξ1, ξ2, . . . , ξ`}. Instead we develop an approxi-
mate inference procedure based on Gibbs sampling. More
specifically, for each node, we estimate the posterior dis-
tribution on latent table t based on the following condi-
tional probabilities, which can be derived by marginalizing
the above joint probabilities in Eq.(1). The probability of as-
signing the node vc,n to the table tζ (1 ≤ ζ ≤ `) is shown
as

P (tc,n = tζ | tc,−n, a, r;α, β, θ)

=


naζ,ac,n,−n+β∑K

k′=1
na
ζ,k′,−n+βK

×
ntc,ζ
n+α−1 if ζ ≤ Tc,n,

naζ,ac,n,−n+β∑K
k′=1

na
ζ,k′,−n+βK

× α
n+α−1 if ζ = Tc,n + 1,

(4)

where naζ,k is the number of times node has been assigned
to the atomic activity Ak on the ζ-th table tζ , ntc,ζ is the
number of times the previous n − 1 nodes in Gc are as-
signed to the table tζ . Tc,n is the number of non-empty
tables occupied by the previous n − 1 nodes in Gc, and∑Tc,n
i=1 ntc,i = n − 1. The suffix −n of na means the count

that does not include the current assignment of table for the
node vc,n. The detailed derivations and procedures of the
Gibbs sampling are provided in the supplementary material.

With the sampled tables available, we can readily estimate
the distributions of ξy (1 ≤ y ≤ `) as

ξy,k =
nay,k + β∑K

k′=1 nay,k′ + βK
. (5)

Now we are ready to evaluate the probability P (a, r; Cm)
of the occurrence of a set of atomic activities a and their
relations r given the m-th complex activity by integrating
out the latent table t, which gives

P (a, r; Cm) =
∏
k

(
∑
y

ξy,k)×
∏
i,j,r

θi,j,r. (6)

GPA-F: The Variant with Fully Connected Links
So far we have described GPA, a simple variant of our ap-
proach with only relations between two temporally neigh-
bouring nodes. This model may potentially lead to the loss
of relations. For example, in Fig. 1(c), a3 contains a4 and a4
is before a5. There are five possible relations between a3 and
a5. The previous model can only depict the possibilities of
relations between neighbouring nodes rather than between
any pair of nodes.

As a remedy of this issue, we extend the model by gener-
ating networks with links between any pair of nodes, which
gives rise to the GPA-F variant considered in this section.
The generation of atomic activities remains the same as in
the previous model. To generate a relation, we have to en-
sure network consistency. We define an interval relation
generation constraint Ic,n′,n ⊆ R for each link ec,n′,n
(1 ≤ n′ < n ≤ |c|), where

Ic,n′,n =

{ ⋂n−1
u=n′+1 (rc,n′,u ◦ rc,u,n) if n > n′ + 1,
R if n = n′ + 1,

where n = n′ + 1 indicates vc,n′ and vc,n are neighbour-
ing nodes. Each rc,n′,n can only be chosen from the set
Ic,n′,n . Given a pair of atomic activities (Ai, Aj) and a con-
straint Iz ⊆ R (z = 1, 2, . . .) on ec,n′,n, rc,n′,n is chosen
from a multinomial distribution Multinomial(ϕi,j,z) over all
possible relations in Iz , where ϕi,j,z is the parameter vec-
tor of the multinomial distribution. The generative process
for a network with fully connected links is given as follows:

. . . (the same as GPA) . . .

2 For each complex activity c (c ∈ Cm),

. . . (the same as GPA) . . .
2.3 For each node vc,n (2 ≤ n ≤ |c|),

. . . (the same as GPA) . . .
(3) Choose rc,n−1,n ∼ Multinomial(ϕac,n−1,ac,n,R);
(4) for each node vc,n′ (n− 2 ≥ n′ ≥ 1),

(4-1) Set Ic,n′,n =
⋂n−1
u=n′+1 (rc,n′,u ◦ rc,u,n);

(4-2) Choose rc,n′,n ∼ Multinomial(ϕac,n′ ,ac,n,Ic,n′,n);

Theoretical analysis is also carried out to ensure the net-
works generated by our model are temporally consistent and
relation lossless. This is summarized in the two theorems be-
low, with the proofs relegated to the supplementary material.



Theorem 1 (Network Consistency)
A network Gc constructed by the above generative process
is consistent.
Theorem 2 (Lossless)
Any possible combination of relations in a consistent net-
work can be constructed through the above generative pro-
cess.

We further consider the interval relation generation con-
straints. From the 7 relations inR, naively the set of possible
composition relations between intervals would be 27 = 128
when including the empty relation. Fortunately with the
above generative process and the transitivity table in Table 1,
there are only 12 feasible unions for any constraint Ic,n′,n,
as displayed in Table 2. Denote I = {Iz : 0 ≤ z ≤ 11}
the set of all 12 possible unions, with Ic,n′,n ∈ I be-
ing any interval relation generation constraint. In particular,
Ic,n−1,n = I11 = R and ϕac,n−1,ac,n,R = θac,n−1,ac,n . For
a union containing only one relation (i.e. I0 − I7), the prob-
ability of choosing that relation is always one. If all the con-
straints in a network (except for Ic,n−1,n) are one of these
unions, the network amounts to be the same as our first vari-
ant GPA. Notably, although GPA-F is lossless, it can pro-
duce a network with empty relation ∅ on links. To remedy
this issue, ∅ is considered as a special relation on links in our
context with always zero probability. In practice, the empty
relation never appears in the training dataset.

Table 2: The 12 possible interval composition relations.

I0 = {∅}, I1 = {b}, I2 = {m}, I3 = {o},
I4 = {s}, I5 = {c}, I6 = {f}, I7 = {≡},

I8 = {b,m, o}, I9 = {o, c, f}, I10 = {b,m, o, c, f},
I11 = {b,m, o, s, c, f,≡}

Moreover, the total number of the set of variables r for
relation assignments is

∑
c
|c|×(|c|−1)

2 . Now, the joint dis-
tribution of our GPA-F model with fully connected links is
given by:

P (a, t, r;α, β, ϕ) =
∏
c

(P (ac,1; β)

|c|∏
n=2

P (tc,n | tc,1, . . . , tc,n−1;α)

P (ac,n | tc,n; β)
1∏

n′=n−1

P (rc,n′,n | ac,i, ac,n;ϕa
c,n′ ,ac,n,Ic,n′,n

)).

Similar to the estimation of the parameter θ in the GPA
model i.e. Eq. (2), the parameter ϕ can be learned by MLE:

ϕ̂i,j,z,r =
nri,j,z,r∑|Iz |

r′=1 nri,j,z,r′
. (7)

where ϕi,j,z,r is the parameter for the r-th relation in Iz ,
and nri,j,z,r is the number of times the link Ai → Aj with
constraint Iz is labeled with the r-th relation in the train-
ing dataset. Notice that for 1 ≤ z ≤ 7, | Iz |= 1 and
ϕ̂i,j,z,r = 1. The probability of the occurrence of a new
set of atomic activities a and their relations r given the m-th
complex activity is updated as

P (a, r; Cm) =
∏
k

(
∑
y

ξy,k)×
∏
i,j,z,r

ϕi,j,z,r. (8)

Empirical Evaluations
Datasets
Three complex activity recognition datasets are considered
in our experiments.
OSUPEL dataset (Brendel, Fern, and Todorovic 2011).
This is a video-recorded dataset of actual two-on-two bas-
ketball games. The players are tracked and labelled with six
atomic activities: pass, catch, hold ball, shoot, jump, and
dribble, which are used to form two complex offensive play
activities as defined in (Zhang et al. 2013). The numbers of
instances for the two offensive play types are 56 and 16, re-
spectively.
Opportunity dataset (Roggen et al. 2010). It contains five
complex daily living activities (relax, coffee time, early
morning, cleanup, and sandwich time) performed by four
subjects and recorded in a room with 72 sensors of 10 differ-
ent modalities simultaneously deployed either in objects or
on the body. These complex activities involves a total num-
ber of 211 atomic activities such as sit, walk, reach table,
open door, and so on. Overall the dataset contains a total
number of 28,976,744 sensor data records with sampling
rate of 30Hz.
Composable activities dataset (CAD14) (Lillo, Soto, and
Niebles 2014). It is consist of 693 RGB-D video records
captured by Microsoft Kinect, with 14 actors performing 16
complex activities such as talk phone and drink, walk while
clapping, talk phone and pick up, among others. The total
number of atomic activities is 26, including clap, talk phone,
and so on. Each complex activity contains 3 to 11 intervals
(i.e. instances of atomic actions).

These three datasets contain unique challenges: The OS-
UPEL dataset is comprised of a small number of atomic
activities and records with simple relations, the Opportu-
nity dataset involves a large number of atomic activities and
records with intricate relations, while the CAD14 dataset
have a large number of complex activities with diverse forms
of relations.

Experimental Set-Ups
The classification performance of our approach is compared
against four established graphical model-based methods:
HMM (Oliver and Horvitz 2005), skip-chain conditional
random field or SCCRF (Hu and Yang 2008), DBN (Oliver
and Horvitz 2005) and ITBN (Zhang et al. 2013). Accu-
racy is employed as the evaluation metric, which is com-
puted as the proportion of true results among the total num-
ber of records examined. The evaluation procedures for rec-
ognizing atomic activities of basketball playing from ordi-
nary videos and those of composable activities from RGB-
D videos proposed by (Zhang et al. 2013) and (Lillo, Soto,
and Niebles 2014) are adopted here, respectively. The activ-
ity recognition chain (ARC) system developed by (Bulling,
Blanke, and Schiele 2014) is utilized for atomic activity
recognition from sensors. Note the records that are not an-
notated to any activities are labeled as null activity.

To monitor the empirical convergence behaviors of the
Gibbs sampling components (Eq. 4) for GPA and GPA-F,
we utilized the Raftery and Lewis diagnostic tool (Raftery



and Lewis 1992) to detect the burn-in (i.e. convergence),
and we set na and nt to the average values of their first 500
samples collected right after the burn-in stage. Besides, the
hyperparameters α and β are generally unknown before the
start of Gibbs sampling and therefore need to be estimated.
In our experiment, we used the convergent method (Minka
2000) that iteratively updates these hyperparameters by ap-
proximately estimating the objective maximum likelihood
function values. More details can be found in the supple-
mentary material. Besides, a small smoothing constant S
(S = 0.00001) is introduced to avoid the numerical issue
of division by zero, i.e.

∑7
r′=1 nri,j,r′ = 0 in Eq. (3) or∑|Iz|

r′=1 nri,j,z,r′ = 0 in Eq. (7).

Experimental Results
Table 3 shows the averaged accuracy results over 5-fold
cross-validations. The two variants of our approach clearly
outperform the other methods with a large margin on all
three datasets. This is mainly due to their abilities to take
advantage of the rich temporal dependency information be-
tween atomic activities. Notably, although ITBN also en-
codes temporal information in the model, during training
it has to remove all the inconsistent relations. This might
explain why ITBN gives the worst performance among all
comparison methods for the CAD14 dataset where a large
amount of inconsistent relations exist.

Table 3: Accuracies on the three evaluation datasets.
HMM SCCRF DBN ITBN GPA GPA-F

OSUPEL 0.53 0.67 0.58 0.69 0.79 0.76
Opportunity 0.74 0.94 0.83 0.88 0.98 0.96

CAD14 0.93 0.95 0.95 0.51 0.97 0.98

Robustness under atomic activity detection errors. We
evaluate the performance robustness of comparison meth-
ods under various atomic activity recognition errors. They
are first evaluated by testing against two types of synthetic
errors that are common with atomic activity recognition, i.e.
misdetection errors (the correct activity is not detected or
is falsely recognized as another activity) and time detec-
tion errors (either the start-time or end-time of an activity
is falsely detected). Synthetic misdetection errors are simu-
lated by perturbing the true labels under a varying amount
of error rates; while time detection errors are simulated by
perturbing the start and end time with a varying noise level
of 10, 20, and 30 percent of the maximal temporal dis-
tance between neighboring intervals, respectively. Besides,
the performances are also evaluated under real detected er-
rors caused by three classifiers (i.e. kNN, SVM and Decision
Tree) that are specifically built to recognize atomic activities
and their time durations from sensor records. Table 4 depicts
the comparison results on the Opportunity Dataset. ITBN is
relatively more robust to these errors than other compari-
son methods as being capable to capture interval relations.
Moreover, it is clear that the proposed GPA and GPA-F are
significantly more robust than ITBN (with around 15% –

(a) under misdetection error (b) under time detection error

Figure 3: Comparisons of GPA and GPA-F on CAD14
dataset.

100% performance boost) as well as others under various
atomic activity detection errors.

Table 4: Accuracies under synthetic and detected errors of
atomic activity recognition on Opportunity dataset.

atomic activities classification accuracy
error rate HMM SCCRF DBN ITBN GPA GPA-F

under synthetic misdetection errors
0.1 0.31 0.71 0.73 0.79 0.92 0.88
0.2 0.29 0.69 0.67 0.74 0.87 0.87
0.3 0.22 0.69 0.65 0.71 0.83 0.84

under synthetic time detection errors
0.1 0.16 0.65 0.45 0.76 0.83 0.88
0.2 0.16 0.65 0.45 0.72 0.83 0.85
0.3 0.16 0.65 0.45 0.69 0.82 0.83

under real detected errors
0.165 (kNN) 0.66 0.69 0.62 0.54 0.91 0.79
0.242 (SVM) 0.58 0.10 0.54 0.46 0.83 0.71
0.315 (DT) 0.16 0.10 0.04 0.38 0.71 0.54

GPA v.s. GPA-F. We consider two factors that may affect
the performances of the two variants, i.e. misdetection er-
ror and time detection error. As suggested in Fig.3 and from
the results on the other datasets in supplemental material, it
seems GPA-F is more robust to the time detection errors than
GPA, but not to the misdetection errors. This may be due to
the fact that GPA-F contains more temporal relations.

Runtime. We present three variables that may affect the
runtime, i.e. the number of atomic activities, the number
of intervals per record and the number of training (or test-
ing) records per complex activity. The empirical runtime is
tested on different settings by varying one variable while fix-
ing others. The training and testing stages of each approach
were investigated separately. The results of varying the num-
ber of atomic activities are shown in Fig. 4, while others are
reported in the supplemental material. It can be seen that the
GPA and GPA-F variants performs nearly the same, which
on average outperform the other methods at both training
and testing stages. Theoretically, the time complexities of
GPA and GPA-F are the same, which areO(MK2+NTn`

2)
andO(NM`) at the training and testing stages, respectively,
where Tn is the number of iterations in Gibbs sampling.



Figure 4: Runtime comparison by varying the number of
atomic activities.

Conclusion
In this paper, we present a probabilistic interval-based model
where the CRP model is incorporated to capture the inherit
structural varieties of complex activities. It is more efficient
and flexible than existing methods including ITBN for com-
plex activity recognition. As for future work, we will further
investigate the difference between our two models on more
datasets, and we will consider relaxing the assumption that
a network is either chain-based or fully connected and will
instead learn the network structures.
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