
1356 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 4, APRIL 2015

Integrated Foreground Segmentation and
Boundary Matting for Live Videos

Minglun Gong, Member, IEEE, Yiming Qian, and Li Cheng, Senior Member, IEEE

Abstract— The objective of foreground segmentation is to
extract the desired foreground object from input videos. Over the
years, there have been significant amount of efforts on this topic.
Nevertheless, there still lacks a simple yet effective algorithm
that can process live videos of objects with fuzzy boundaries
(e.g., hair) captured by freely moving cameras. This paper
presents an algorithm toward this goal. The key idea is to train
and maintain two competing one-class support vector machines
at each pixel location, which model local color distributions for
both foreground and background, respectively. The usage of two
competing local classifiers, as we have advocated, provides higher
discriminative power while allowing better handling of ambigu-
ities. By exploiting this proposed machine learning technique,
and by addressing both foreground segmentation and boundary
matting problems in an integrated manner, our algorithm is
shown to be particularly competent at processing a wide range of
videos with complex backgrounds from freely moving cameras.
This is usually achieved with minimum user interactions.
Furthermore, by introducing novel acceleration techniques and
by exploiting the parallel structure of the algorithm, near
real-time processing speed (14 frames/s without matting and
8 frames/s with matting on a midrange PC & GPU) is achieved for
VGA-sized videos.

Index Terms— Foreground segmentation, video matting,
support vector machine (SVM), one-class SVM (1SVM).

I. INTRODUCTION

FOREGROUND segmentation, a.k.a. video cutout, studies
how to extract objects of interest from input videos. It is

a fundamental problem in computer vision and often serves
as a pre-processing step for other video analysis tasks such as
surveillance, teleconferencing, action recognition and retrieval.
Over the years a significant amount of related techniques
have been proposed in both computer vision and graphics
communities. However, some of them are limited to sequences
captured by stationary cameras, while others require significant
amount of training examples or cumbersome user interactions.

Manuscript received April 27, 2014; revised September 4, 2014 and Novem-
ber 25, 2014; accepted February 2, 2015. Date of publication February 6,
2015; date of current version March 3, 2015. The work of M. Gong was
supported by the Natural Sciences and Engineering Research Council of
Canada under Grant 293127. The work of L. Cheng was supported by the
Agency for Science, Technology and Research through the Joint Council
Office. The associate editor coordinating the review of this manuscript and
approving it for publication was Mr. Pierre-Marc Jodoin.

M. Gong and Y. Qian are with the Department of Computer Science,
Memorial University, St. John’s, NL A1B 3X9, Canada (e-mail:
gong@cs.mun.ca; yq4048@mun.ca).

L. Cheng is with the Bioinformatics Institute, Agency for Science,
Technology and Research, Singapore 138632, and also with the School of
Computing, National University of Singapore, Singapore 119077 (e-mail:
chengli@bii.a-star.edu.sg).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2015.2401516

Furthermore, most existing algorithms are rather complicated
and computationally too demanding to be operated in real-
time. As a result, there still lacks an efficient and powerful
algorithm capable of processing challenging live video scenes
with minimum user interactions.

Motivated by the above finding, we here present a novel
integrated foreground segmentation and boundary matting
approach, which is an extension to our preliminary work
on foreground segmentation [19]. As shown in Figure 1,
with only a few strokes from user on the first frame of the
video, the algorithm is able to propagate labeling information
to neighboring pixels through a simple train-relabel-matting
procedure, resulting in a proper segmentation of the frame.
This same procedure is used to further propagate labeling
information across adjacent frames, regardless of the fore-
ground or background motions. Several techniques are also
proposed in order to reduce computational costs. Furthermore,
by exploiting the parallel structure of the proposed algorithm,
real-time processing speed of 14 frames per second (FPS) is
achieved for VGA-sized videos when matting is not applied,
with the frame rate dropping to 8 FPS when matting over large
fuzzy areas is needed.

A. Overview of the Presented Algorithm

The key insight of our approach is to maintain two
Competing one-class Support Vector Machines (C-1SVMs)
at every pixel location. The two one-class Support Vector
Machines (1SVMs) capture the local foreground and back-
ground color densities separately, but determine a proper
label for the pixel jointly. By iterating between training local
C-1SVMs and applying them to label the pixels, the algorithm
effectively propagates initial user labeling to the entire image,
as well as to consecutive frames.

Empirical studies such as Figures 4 and 7 suggest that,
compared to using a global classifier, maintaining local
classifiers endows the resulting algorithm with higher discrim-
inative power. Moreover, as will be explained in section III-A,
using C-1SVMs instead of binary SVMs allows better
handling of ambiguous situations. As a result, the algorithm
can deal with a variety of challenging scenarios studied by
the state-of-the-art methods (see Figures 1 and 9). Finally,
using two 1SVMs to model foreground and background color
distributions separately facilitates the matting calculation along
object boundaries, making it possible to solve foreground
segmentation and boundary matting problems in an integrated
manner (see Figures 1 and 13).

1057-7149 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

GONG et al.: INTEGRATED FOREGROUND SEGMENTATION AND BOUNDARY MATTING 1357

Fig. 1. Handling the “kim” sequence [9], which is challenging due to fuzzy object boundaries and camera motions. The user is only required to label the first
frame (a) using strokes (b). Local classifiers are trained at each pixel location and then used to relabel the center pixel (c). Iterative training and relabeling
leads to convergence (d, e, & g), even though ambiguous (grey) areas still exist. At each iteration, pixels along fore/background boundaries (non-cyan pixels
in f & h) are detected, for which matting is performed. The final binary segmentation is computed through graph-cut optimization (i). Combining binary
segmentation (i) with boundary matte (h) produces the full alpha matte, which is used to generate a blue screen composite (j). When new frames (k & o) arrive,
they are initially labeled (l & p) using the classifiers trained by previous frames, before the same train-relabel-matting procedure takes place to produce the
alpha mattes (m & q) and composites (n & r).

In summary, the proposed algorithm bears the following
characteristics:

Ability to Deal With Challenging Scenarios: As shown in
Figure 1 and 9, the algorithm performs competitively under a
variety of challenge scenarios such as fuzzy object boundaries,
camera motion, topology changes, and low fore/background
color contrast.

Minimal User Interaction: Users are only asked to annotate
foreground and background of the first frame with few key
strokes. Alternatively, the algorithm can also be configured
to train with only pure background images, allowing fully
automatic segmentation (see Figure 11).

Unified Framework for Segmentation and Matting: The
ability of C-1SVMs to train separate classifiers for foreground
and background colors not only allows more robust labeling
of the pixels, but also facilitates the matting procedure along
object boundaries. This leads to an integrated solution for both
foreground segmentation and boundary matting problems.

Easy to Implement: The same train-relabel-matting proce-
dure is used to segment foreground objects from input user
strokes, as well as to take care of fore/background motions in
the video. No additional procedure is required for obtaining
trimaps or estimating scene motions.

Low Computational Cost: The classifiers are trained using
online learning, which allows much more efficient learning of
a dynamic set of examples than batch learning. Two novel
techniques are also proposed in this paper to further reduce
computational cost of training.

Parallel Computing: The algorithm is designed for par-
allel execution at individual pixel locations. Our current

implementation processes VGA-sized videos in real-time using
a mid-range graphics card.

The rest of the paper is organized as follows. Related
works are reviewed in Section II. Section III discusses how
to train classifiers and proposes novel techniques for reducing
training costs. The details of the segmentation algorithm are
presented in Section IV. Experimental results and comparisons
to existing techniques are provided in Section V. Finally,
Section VI concludes the paper and suggests future research
directions.

II. LITERATURE REVIEW

There is a vast body of existing work in the areas of
foreground segmentation and video matting. Here the most
related ones are discussed in the subsections below.

A. Foreground Segmentation

Existing work on foreground segmentation can be catego-
rized into unsupervised [5], [14], [22], [32], [33], [35], [43]
and supervised [1], [2], [12], [24], [28], [36], [41], [42]
approaches.

Unsupervised approaches try to generate background
models automatically and detect outliers of the models as
foreground. Most of them, referred as background subtrac-
tion approaches, assume that the input video is captured
by a stationary camera and model background colors at
each pixel location using either generative [35], [43] or
non-parametric [5], [18], [33] methods. Some of these tech-
niques [5], [18], [43] can handle repetitive background motion,

1358 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 4, APRIL 2015

such as rippling water and waving trees, but none can deal with
large camera motion.

Considering scenarios where camera motion does not
change the viewing position, such as PTZ security cameras,
the background motion can be described by a homography,
which can be used to align different frames before applying the
conventional background subtraction methods [22]. Recently
there is also some new development to deal with freely
moving cameras by means of tracking the trajectories of salient
features across the frames [14], [32], where the trajectories
are used for classifying the feature points into foreground or
background based on their motion characteristics. While these
methods automatically detect moving objects, they tend to
classify background motion (e.g., waving trees or passing-by
persons) as foreground. In addition, successful separation of
foreground and background trajectories demands the detection
of sufficient number of fore/background features and they
having different motions, making it hard to handle scenes with
weakly textured background or with large rigid foreground
objects.

On the other hand, supervised methods allow users to
provide training examples for both foreground and back-
ground, then use them to learn classifiers. A number of
methods [12], [24], [41] along this line have been developed
with impressive results, where multiple visual cues such as
color, contrast, motion, and stereo are utilized. These cues
are integrated with the help of structured prediction methods
such as conditional random fields. Although working very well
for video conference applications, these algorithms require a
large set of fully annotated images and considerable amount
of offline training.

Instead of resort to additional visual cues for higher discrim-
inative power, approach has also been proposed to model loca-
tion dependent color distributions using spatial-color Gaussian
mixture models (SCGMM) [42]. We also model location
dependent color distributions, but instead of learning and
tracking SCGMMs, we train and update local C-1SVM based
classifiers at every pixel location. This leads to a simple solu-
tion that segments foreground objects from input user strokes
and tracks fore/background motions under the same procedure.

B. Video Matting

Video matting techniques aim for extracting fuzzy bound-
aries along foreground objects [39]. They can be grouped
into batch processing [1], [8], [9], [27], [28], [36] and online
processing [2], [15]–[17], [20], [23], [29], [40] approaches.

A pre-captured video sequence is often perceived by the
batch approaches as a 3D volume of voxels. Users are then
required to label foreground and background on multiple
frames [1], [8], [9], [28] or directly on the 3D volume [36].
Dense and precise labeling in the form of trimaps are required
by many [9], [28] as necessary input, while some more recent
approaches accept causally drawn strokes [1], [8], [27], [36].
To enforce temporal coherence, these algorithms usually
segment over the entire volume altogether by solving a
global optimization problem, which unfortunately restricts
their capacity toward live video processing.

Fig. 2. Comparison between a binary SVM and C-1SVMs under two situa-
tions. White circles and black dots represent the foreground and background
training instances, respectively, while red dot denotes an unseen example. The
straight line indicates the decision boundary of the binary SVM, whereas the
ellipsoids show the boundaries of the two C-1SVMs. In (a), binary SVM
classifies the test example as foreground, whereas the C-1SVMs labels it as
unknown, since neither of the 1SVMs accepts it as inlier. In (b), binary SVM
cannot confidently classify the test example since it is too close to the decision
boundary, whereas C-1SVMs is able to label it as background with confidence
since only background 1SVM accepts it as inliner.

The frame-by-frame processing characteristic of the online
approaches, on the other hand, make them more natural to
work with live videos. Some of these approaches assume that
foreground and background are properly and densely labeled
in each frame by an existing algorithm [17], [20]; others
try to solve foreground segmentation and matting problems
in an integrated manner by either propagating user provided
labeling information forward to future frames [2], automati-
cally generating scribbles through salient point tracking and
discriminative fore/background color models [15], [16], or by
utilizing additional cues, such as focus [23], [29] or depth [40].

The workflow of our approach is similar to the
Video SnapCut [2]. Starting from a segmentation of the first
frame, Video SnapCut trains both global and local classifiers
using color and shape cues, then propagates labeling informa-
tion to the rest of the video frame by frame. However, the
two approaches possess notably different objectives. Video
SnapCut aims toward high quality video segmentation and
produces very convincing results, but it expects users to
provide a fine annotation of the entire first frame which can
be challenging for fuzzy objects, and runs at about 1 FPS for
VGA-sized videos (excluding the time for matting). Mean-
while our approach is designed to process live videos, which
starts by inquiring only a few strokes from users, takes
1-2 seconds to initialize and segment the first frame, then
new frames are processed in real-time. Another key difference
is how the local classifiers are used. Video SnapCut utilizes
local classifiers only along the object boundaries, whereas in
our approach they are trained at each of the pixel locations.
Appearing as being redundant, this in fact facilitates the prop-
agation of label information to future frames without explicitly
tracking foreground and background motions. In contrast,
SIFT features are firstly employed in Video SnapCut to
estimate rigid motion, which is followed by optical flow to
compute per-pixel motion. This nevertheless leads to a much
more complex and computational demanding algorithm.

Finally, compared to our preliminary work that focuses
on foreground segmentation [19], the algorithm discussed
here incorporates an additional matting step (Section IV-C)
into the original train-relabel procedure, allowing both fore-
ground segmentation and boundary matting problems to be

GONG et al.: INTEGRATED FOREGROUND SEGMENTATION AND BOUNDARY MATTING 1359

Algorithm 1 Foreground Segmentation From User Strokes

solved in an integrated manner. To properly utilize the
information extracted from matting calculation, the training
process (Section IV-A) has been revised. The benefit of this
integrated approach is demonstrated in Figure 12. In addition,
more detailed explanation on the algorithm (e.g., Algorithm 1),
new experimental results (e.g., Figures 13-12), analysis on
limitations (Section V-D), and more precise report on
processing time (Section V-E) are added throughout the paper.

III. KEY BUILDING BLOCKS

A. Binary SVMs vs C-1SVMs

Intuitively, being a binary classification problem, foreground
segmentation seems best solved by binary SVMs. However,
we hypothesize that better performance can be achieved using
two C-1SVMs, which learns foreground and background
distributions separately. Here are the reasons:

First, foreground and background may not be well separable
in the color feature space. For example, the black sweater and
the dark background shown in Figure 1(a) share a similar
appearance. As a result, it is not proper to deal with this
scenario by means of training a global binary SVM and use
it to classify the entire image. Moreover, trying to train local
binary SVMs at each pixel location is problematic as well
since in most cases merely one of the two (foreground or
background) types of observations is locally available. In fact,
even in areas that both foreground and background examples
are available, modeling the two sets separately using the
C-1SVMs produces two hyperplanes that enclose the training
examples more tightly. As illustrated in Figure 2, this helps
toward better detecting and handling of ambiguous cases. This
hypothesis is also supported by empirical evidence such as the
experiments conducted in Figure 7.

B. Batch vs. Online Learning

Training a SVM using a large set of examples is a classical
batch learning problem, the solution of which can be found

through minimizing a quadratic objective function. Previous
studies [3] have shown that a similar performance can be
achieved using online learning by showing all examples
repetitively to an online learner. A distinct advantage of
online learning is that it produces a partially trained model
immediately, which is then gradually refined toward the final
solution. In our application, 1SVM training is part of an
iterative process: the learned 1SVMs are used to classify the
pixels, which in turn are used to update the 1SVMs. Therefore,
faster convergence can be achieved using online learning since
we can classify the pixels using partially learned 1SVMs,
providing quicker feedback in the loop.

The online learner we use follows the one proposed
by [6] and [7]. Let f j (·) be a score function of example j
in the online learning sequence and k(·, ·) be a kernel func-
tion, and denote w j a non-negative weight of example j .
We further denote clamp(·, A, B) an identical function of
the first argument bounded from both sides by A and B .
When a new example x j arrives, the score function becomes
f j (x j) = ∑ j−1

i=1 wi k(xi , x j), and the update rule for
weights is:

w j = clamp

(
γ − (1− τ) f j (x j)

k(x j , x j)
, 0, (1 − τ)C

)

,

wi ← (1− τ)wi ∀i = 1, . . . , j − 1, (1)

where γ := 1 is the margin, τ ∈ (0, 1) the decay parameter,
and C > 0 the cut-off value.

C. Reweighting Scheme

The above online learning algorithm does not consider the
situation where a given example is used repetitively during
training. Hence, directly applying Equation (1) adds multiple
support vectors to the model, all come from the same example
but have different weights. To address this, here we apply
an explicitly reweighting scheme: If a training example x j

arrives and it turns out identical to an existing support vector
(x j , w j) inside the model, this support vector is first taken out
when computing the score function, it is then included with its
newly obtained weight, w′j , to substitute the original one w j .
That is:

f j (x j) =
j−1∑

i=1

wiχ(xi �= x j)k(xi , x j), (2)

w j ← w′j = clamp

(
γ − f j (x j)

k(x j , x j)
, 0,C

)

, (3)

where χ(·) is an indicator function: χ(true) = 1 and
χ(f alse) = 0.

Intuitively, our modified online learning method resets the
weight component of a particular support vector (x j , w j),
based on how well the separating hyperplane defined by the
remaining support vectors is able to classify example x j . This
reweighting process can either increase or decrease w j and
hence decay is no longer necessary. With fewer operations,
this leads to a method with shorter training time. Empirical
simulations such as the ones reported in Figure 8 confirm
that the performance of the learned model using this online

1360 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 4, APRIL 2015

Fig. 3. The neighborhood system used for 1SVM training. For the center
pixel p shown in red, the pixels within the local 33× 33 window is divided
into 25 subgroups, with each subgroup having 25 pixels and a 2-pixel wide
gap between adjacent subgroups. This setup reduces the number of examples
used for training at each pixel location from 1089 to 25; see text for details.

learning with reweighting scheme is as competitive as that of
batch learning.

D. Max-Pooling of Subgroups

Training 1SVMs with large scale examples is known to
be computationally expensive, which becomes a serious issue
in our real-time processing scenario. In addition to online
learning, we propose a novel idea to alleviate this by what
we term as max-pooling of subgroups: We divide the whole
example set � into N non-intersecting groups ψi (0 ≤ i < N)
and train a 1SVM on each group. Then the original 1SVM
score function is approximated by the maximum operation of
these 1SVM score functions from subgroups:

f (x) ≈ max
0≤i<N

f ψi (x), (4)

where f ψi (·) is the score function trained using examples in
subgroup ψi .

As will become more clear in later sections, when divid-
ing examples into subgroups, our approach exploits the
spatial coherence of images so that the 1SVM trained on
each subgroup models local appearance density. Nevertheless,
Empirical simulations show that the error introduced by the
above approximation is acceptable even when the subgroups
are randomly generated (see Figure 8).

IV. OUR APPROACH

As shown in Algorithm 1, the core of our approach is
a train-relabel-matting procedure: Two competing 1SVMs,
Fp for foreground and Bp for background, are trained locally
for each pixel p using known foreground and background
colors within the local window �p . Once trained, Fp and Bp

are used to jointly label p as either foreground, background,
or unknown. Pixels along the boundary between foreground
and background regions are then detected and form a matting
pixel set M , on which matting operation is performed.

Since the knowledge learned from neighboring pixels in �p

is considered in labeling p, the above procedure effectively
propagates known foreground and background information to
its neighborhood. As a result, based on only a few initial
strokes, the algorithm can segment the whole image and
perform matting along object boundaries (see Figure 1(a-i)).

Fig. 4. The incurred losses calculated after different numbers of iterations.
These loss values are used to produce the label maps of Figure 1(c-e). Red
channel encodes the losses from background 1SVMs and green encodes
those from foreground 1SVMs. Yellow and black colors indicate that the
corresponding areas are ambiguous in cases where the foreground and
background losses are both high or both low. (a) After 1 iteration. (b) After 2
iterations. (c) After convergence.

The same train-relabel-matting procedure is employed for
handling temporal changes as well. When a new frame t + 1
arrives, the label Lt+1(p) is initialized automatically using the
existing Fp and Bp . The initial labels, together with newly
observed colors, are then utilized to conduct the train-relabel-
matting process. Since Fp and Bp are trained using all pixels
within �p of frame t , if any of these pixels moves to p,
Fp and Bp are able to classify it properly. Consequently, the
algorithm can cope with arbitrary foreground and background
movement without a prior motion information, as long as the
amount of movement is less than the radius of �.

Under ideal situations, where the appearance distributions
of foreground and background pixels are locally separable,
the above baseline procedure is sufficient. However, the two
distributions may intersect due to fuzzy object boundary,
motion blur, or low color contrast. To address these cases,
global optimization is employed in favor of a globally
consistent and smooth solution. In addition, when moving to a
new frame, decaying is applied to existing support vectors for
better adapting to temporal changes. Details of the above steps
are further discussed in each of the following subsections.

A. Train Local C-1SVMs at Each Pixel Location

Examples Used for Training: The two competing classifiers
at each pixel p, Fp and Bp , are trained using known fore-
ground and background colors within the local window �p.
In our previous approach [19], where matting is not performed,
the observed colors of neighboring pixels with known labels
are used as training examples. For foreground objects with
highly fuzzy boundaries, some pixels along the boundaries
may be labeled as foreground (or background) even though
their observed colors contain trace of background (or fore-
ground) colors. In these cases, using observed colors as train-
ing example may cause the fore/background 1SVM models
being contaminated.

To address this problem, the following strategy is used
in our integrated segmentation and matting approach. If a
neighboring pixel q is a non-matting pixel and is labeled
as foreground (or background), we use its observed color
I (q) as a training example to update Fp (or Bp) based on
Equations (2) and (3). If q is a matting pixel, regardless
whether q has been labeled or not, the estimated foreground
and background colors (i.e. F(q) and B(q)) are both used as
training examples. To properly use these estimated colors, two

GONG et al.: INTEGRATED FOREGROUND SEGMENTATION AND BOUNDARY MATTING 1361

Fig. 5. Alpha matte estimation. Cyan color in (a) and (b) indicates no
foreground or background training examples are available for the corre-
sponding pixels. Cyan in (c) indicates non-matting pixels, where the number
of foreground or background examples within the local neighborhoods is
insufficient.

modifications are made to the aforementioned online learning
method:

Firstly, for a given pixel q , its estimated F(q) and B(q)
colors may vary during the iterative process. Standard online
learning method may insert different variations of the esti-
mated colors into the SVMs, resulting in unnecessary bias in
the trained models. To address this problem, we adjust the
reweighting scheme so that not only identical examples but
also different examples originated from the same pixel are
excluded from score calculation. That is:

f j (x j) =
j−1∑

i=1

wiχ(xi �= x j)χ(si �= s j)k(xi , x j), (5)

where si is a vector keeping the pixel coordinates and frame ID
for example i .

Secondly, the foreground and background colors estimated
through matting may not be accurate. The accuracy of an
estimated color is related to the corresponding alpha value.
For example, if a pixel p is mostly covered by the foreground
(α(p) ≈ 1), its observed color is close to its true foreground
color (F(p) ≈ I (p)), the accuracy of estimated F(p) is likely
high whereas the one for B(p) is likely low. Hence, we only
use F(p) for training if α(p) is larger than a threshold η and
use B(p) if α(p) < 1−η. Furthermore, to give lower weights
to inaccurate training examples, we revise the weight update
function to:

w j ← w′j = ρ clamp

(
γ − f j (x j)

k(x j , x j)
, 0,C

)

, (6)

where we set parameter ρ = α(p) when training foreground
1SVM and ρ = 1− α(p) when training background 1SVM.

Methods for Reducing Training Costs: Besides the exam-
ples used for training, the size of the local window �p

is also an important parameter. It needs to be sufficiently
small so that the local foreground and background appearance
distributions are separable, while remain large enough for
effective propagation of label information and for covering
fore/background motions. Throughout the experiments of this
paper, we set �p to 33× 33 pixels, large enough to deal with
motions of up to 16 pixels between adjacent frames. While
the discussion below focuses on how to reduce training costs
under this setting, the idea can be easily applied for other
window sizes.

Using a 33 × 33 window means 1089 examples are used
for training each 1SVM. Considering training is performed

Algorithm 2 Train C-1SVMs Using Frame I, Label L, Alpha
Matte α, Estimated Fore/Background Colors F and B

for 1SVMs at all pixel locations, this is not affordable for
real-time processing. To reduce the training cost, the tech-
niques proposed in Sections III-C and III-D are applied.

First, based on the max-pooling scheme of Section III-D,
the 1089 examples inside �p are divided into 25 subgroups.
To further cut computational costs by taking advantage of
the spatial coherence among neighboring pixels, we leave
a 2-pixel wide gap between adjacent subgroups (see Figure 3).
Pixels inside the gap are not used to train Fp and Bp, but are
used for their immediate neighbors. Since these local 1SVMs
are trained at all pixel locations simultaneously, after splitting
the examples into subgroups, we only need to train the center
subgroup at each pixel location. The training for the remaining
24 subgroups will occur at their corresponding center pixel
locations. This strategy enables us to reduce the computational
costs of training from 1089 examples to merely 25 examples.
For the sake of clarity, we reserve symbols Fp and Bp for the
two C-1SVMs obtained through training with all examples
in �p, and use F̂p and B̂p to denote the C-1SVMs trained
using pixels in the center subgroup �̂p .

Moreover, as suggested in Section III-C, online learning is
employed to provide an on-demand feedback during the train-
relabel-matting process. As shown in Algorithm 2, instead
of repetitively processing examples in �̂p to F̂p and B̂p

and waiting for the training to converge, we only process
these examples once in an online learning fashion during each
train step. The partially trained 1SVMs are thus directly used
to perform relabeling. This enables a faster propagation of
labeling information through neighborhoods, and empirically
it exhibits a faster convergence of the train-relabel-matting
process. For example, starting from the input user stokes
shown in Figure 1(b), it takes about 40 iterations to propa-
gates labeling information to the whole image and generate
segmentation for the first frame. Afterward, it only takes
2-3 iterations to update the 1SVMs and segment a new frame
when matting is not required, or up to 5-6 iterations when
alpha mattes need to be extracted for a large fuzzy area.

1362 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 4, APRIL 2015

Algorithm 3 Relabel Input Frame I Using C-1SVMs

Fig. 6. Global optimization step. The label map (a) computed through
applying dual thresholding over the converged incurred losses (Figure 4(c))
contains unlabeled pixels. Performing graph cuts over the whole image based
on the incurred losses yields a global optimal binary segmentation (b). The
final alpha matte (c) is generated by merging segmentation labels of
non-matting pixels in (b) with alpha values of matting pixels in Figure 5(c).

B. Relabel Each Pixel Using Learned C-1SVMs

Once Fp and Bp are trained, they are used jointly to classify
pixel p. That is, p is labeled as foreground or background only
if the two competing classifiers give consistent predictions.
Otherwise it is labeled as unknown.

As shown in Algorithm 3, the relabeling module starts
by computing the scores of observation I (p) based on
Equation (2) with both Fp and Bp. As depicted in
Section III-D, these two quantities are approximated by the
scores of F̂ (or B̂) from a set of nearby subgroups and by
taking the maximum. To allow examples closer to p having
higher influence than those further away, we additionally
incorporate a spatial decay parameter τspat ial .

Both scores are then used to compute the incurred losses of
labeling p as either foreground or background (see Figure 4),
respectively. p is subsequently classified as foreground
(or background), iff. the loss of Fp (or Bp) is low and the
loss of Bp (or Fp) is high. This dual thresholding strategy
facilitates the detection of ambiguities, which is crucial to
prevent incorrect labeling information from being propagated.

C. Perform Matting Along Foreground Boundary

Both motion blur and fuzzy foreground objects such as hair
strands may cause pixels near foreground boundary having a
mixture of foreground and background colors. In our previous

Fig. 7. Classification using the LibSVM implementation of C-SVM. The
SVM trained using user strokes shown in Figure 1(b) cannot properly
segment the image (a). Allowing the binary SVM to access manfully labeled
trimap (b) only marginally improves the result (c).

Fig. 8. Performance of batch learning vs. online learning with and without
reweighting/max-pooling over 100 trials. (a) Data used for one trial, where
foreground and background examples are colored in blue and red, respectively.
(b) The mistake made by batch learning for each trial is compared against
the conventional online learning (shown in red plus), the online learning with
reweighting (blue circle), and the online learning with both reweighting and
max-pooling (green square).

approach [19], these pixels are initially labeled as unknown
by the aforementioned dual thresholding process and after-
wards classified as either foreground or background through
graph-cut based global optimization. Here we decompose the
observed colors for these pixels into fore/background values
and the alpha mattes, directly producing a soft segmentation
for the foreground.

It is well-known that matting is an ill-posed problem with
possibly multiple solutions. At each pixel, the unknowns on
the right side of the following image compositing equation
need to be estimated using the known observed color I :

I = αF + (1− α)B, (7)

where α ∈ [0, 1] is the alpha matte; F and B are the real
foreground and background colors for the pixel, respectively.

To solve the problem, we add a further constrain that
F and B should fit the local foreground and background
1SVMs (Fp and Bp) as much as possible. That is, the
scores fFp (F) and fBp (B) should be high. Consequently, we
optimize the following energy function at each pixel:

arg max
F,B,α

e−(αF+(1−α)B−I)2/2σ 2
c + fFp (F)+ fBp (B), (8)

where parameter σc controls the support of the Gaussian.
Since Fp and Bp are not explicitly trained in our approach,
we approximate functions fFp (·) and fBp (·) using fF̂u

(·)
and fB̂v (·), respectively, where u and v are computed by:

⎧
⎨

⎩

u = arg maxq,�̂q∈�p

(
max

(
fF̂q
(F ′), fF̂q

(I)
))

v = arg maxq,�̂q∈�p

(
max

(
fB̂q
(B ′), fB̂q

(I)
))
,

(9)

GONG et al.: INTEGRATED FOREGROUND SEGMENTATION AND BOUNDARY MATTING 1363

where F ′ and B ′ are the foreground and background colors
estimated for the pixel in the previous train-relabel-matting
iteration. Please note that for a given pixel p, both u and v
are constant with respect to the unknowns. As a result, when
differentiable kernels such as Gaussian kernel are used for
1SVMs, both Equation (8) and its approximation are differ-
entiable. This allows us to use gradient-based approaches to
search for the optimal F , B and α values.

In practice, the matting module starts with determining
the matting pixel set M . We treat a pixel p as a matting
pixel iff. sufficient number of examples are used to train both
the foreground and the background 1SVMs, Fp and Bp . Here
we require the numbers of both foreground and background
examples within the 33 × 33 local window to be greater
than 50. Please note that, as explained in Subsection IV-A,
the training examples can be either the observed colors
of labeled non-matting pixels or the previously estimated
fore/background colors of matting pixels; see Figure 5(a & b).

Once the matting pixels are determined, a nonlinear conju-
gate gradient technique is applied to these pixels in parallel.
The initial F and B values are set to the mean colors of
foreground and background training examples within the local
33× 33 window, respectively. The initial α is set to the local
mean of the label map L for the first train-relabel-matting
pass and to the mean of previously estimated alpha matte for
the following passes. During the optimization, we explicitly
enforce F, B to remain in range [0, 255] and α to remain in
range [0, 1].

It is worth noting that, even though the matting is performed
for different pixels in parallel without explicitly enforcing
the smoothness, the estimated alpha matte is still smooth
due to the coherence among neighboring 1SVMs that models
foreground and background colors. In a similar manner, the
temporal coherence among the alpha mattes of adjacent frames
is also enforced implicitly.

D. Apply Global Optimization

Since users provide foreground and background examples
using only a few strokes, there may be pixels in the frame with
colors that are not recognized by either foreground or back-
ground 1SVMs. Similar situation also occurs when pixels with
new foreground or background colors show up in the frame
due to motions. These pixels are labeled as unknown at the end
of the train-relabel-matting process. Our next task is to label
these unknown pixels, as well as pixels along fore/background
boundaries, so that a clean binary segmentation G can be
generated. It is worth noting that G is needed even when the
desired output is an alpha matte α, in which case α is obtained
by combining the estimated alpha values for matting pixels and
labels from G for non-matting pixels; see Figure 6, Here, we
compute G through optimizing a Markov random field (MRF)
based energy function defined over a lattice graph:

E(G) =
∑

p

U(G(p))+
∑

(p,q)

V (G(p),G(q)). (10)

where the data term
∑

U(·) sums together the energy (cost)
of assigning each pixel to its label, which can be constructed

directly from the local losses:

U(G(p)) =
{

lF (p) if G(p) = 1,

lB(p) if G(p) = 0,
(11)

and the contrast term
∑

V (·, ·) encourages segmentation
boundary to be aligned with image edges. Here we adopt
a widely used contrast term to penalize labeling changes
adaptively based on appearance distance between neighboring
pixels [12], [35]:

V (G(p),G(q)) =
{

0 if G(p) = G(q),

λe−μ‖I (p)−I (q)‖q else,

(12)

where ‖I (p) − I (q)‖ computes the Euclidian appearance
distance between pixels p and q . λ is a constant controlling
the strength of the smoothness constraint. μ = (2〈‖I (p) −
I (q)‖2〉)−1, where 〈·〉 denotes expectation over all pairs of
neighbors in an image sample.

It is well known that graph cuts can usually infer G
efficiently, and it is able to pick up the optimal G for
binary MRFs. As shown in Figure 6(b), unknown pixels are
now properly labeled. In practice, we use a GPU version of
the push-relabel algorithm to compute the min cuts [18], and
limit the number of push-relabel steps to 20, which is found
sufficient throughout our experiments.

E. Deal With Incoming Frames

When a new frame t +1 arrives, the following preparations
are performed before the train-relabel-matting procedure:

First, the non-matting pixels in Gt are used to train the
C-1SVMs one more time. Since the ambiguous areas are
labeled in Gt using smoothness constraints, using it to train
F and B helps to resolve ambiguities in future frames.

Next, the updated F and B are used to label the new
frame t + 1. It is worth noting that when labeling the new
frame using the C-1SVMs trained from the previous frames,
the spatial decay weighting term ξ is removed. The reason is
that a pixel p may move to any place in its local window �p

due to the observed motion. The bias toward the center of the
window is no longer justified.

Finally, to facilitate the adaptation of C-1SVMs to temporal
changes in the foreground and background appearance
distributions, a temporal decay is applied: after Lt+1 is
predicted, the weights of existing support vectors in F and B
are down-weighted by a factor (1− τtemporal).

V. EXPERIMENTS

To exploit the inherit parallel structure of the proposed
algorithm, we implement it on GPU using DirectCom-
pute, which is proposed by Microsoft as an alternative to
CUDA and is included in the Direct3D11 API. Unless for
the cases (e.g., Figure 11) specified below, the same set
of parameter values are used throughout the experiments:
C = 0.5, τtemporal = 0.25, τspat ial = 0.05, T low

F = 0.1,
T high
F = 0.3, T low

B = T high
B = 0.4, σc = 5, η = 0.2.

Notice that we set the background labeling requirements

1364 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 4, APRIL 2015

Fig. 9. Results on testbed sequences referred to as (from top to bottom) “JM” [12], “jug” [43], “hand”, and “car” [32]. The results clearly demonstrate
the capacity of our algorithm to deal with different challenges, such as background changes (in “JM”), repetitive background motion (in “jug”), camera
motion (in “hand” & “car”), strong motion blur (caused by camera zooming in “jug”), non-rigid foreground deformations (in “JM” & “hand”), topology
changes (holes in “hand” & “car”), and low fore/background color contrast (in “JM” & “car”). (a) First frame w/strokes. (b) Test frame. (c) Converged label.
(d) Binary segmentation. (e) Foreground mask.

Fig. 10. Segmentation accuracy for two sequences, where ground truth
segmentations are available for every 5 or 10 frames. The errors of tree-based
approach [41] shown in (a) are based on our readings from Figure 12(a) of
their paper. (a) Dataset “JM” used in [12] and [41]. (b) Dataset “IU” used
in [24] and [41].

(lB < T low
B and lF > T high

F) to be looser than those for
foreground objects. Leveraged with a relatively high temporal
decay τtemporal , this introduces a tendency of accepting unseen
examples as background, which allows proper management
of background changes. Besides, the kernel function k(·, ·)
is computed as a Gaussian kernel with σ = 10. The batch
learners used for comparison is from LibSVM [4], where
the Gaussian kernels are used and the parameters are tuned
through cross-validation.

A. Evaluation on C-1SVM

We start with comparing the performances of the proposed
C-1SVM with the standard binary SVM, as well as evaluating
the proposed reweighting and max-pooling strategies.

C-1SVM v.s. Binary SVM: Figure 7 shows the segmen-
tation result generated by a global binary SVM for the

Fig. 11. Comparisons to background subtraction algorithms. When only
the background 1SVM is trained using the pure background image (a), the
foreground detected by our algorithm for test frame (b) is shown in (d). The
results of existing algorithms (e-h) are reported in their respective papers.
Alternatively, training both 1SVMs using Figure 9(a) allows our algorithm to
label the reflection as background (i).

same image shown in Figure 1(a). The results empirically
confirm our previous claim that a global binary SVM does
not work well for challenging sequences due to overlapping

GONG et al.: INTEGRATED FOREGROUND SEGMENTATION AND BOUNDARY MATTING 1365

fore/background distributions. Having access to much richer
labeling information during training does not solve the
problem either.

Batch v.s. Online Learning: To evaluate the performance
of our dedicated online learning method using reweighting
and max-pooling strategies, we also compare it to standard
batch learning method on synthesized dataset. As shown in
Figure 8(a), 2000 2D instances are sampled under a prede-
fined Bernoulli prior from two partially overlapped stationary
distributions, each forms a mixture of two Gaussians. The
Bernoulli prior is biased so more instances are drawn from
the distribution representing the background than that from the
foreground one. The task is to train a background 1SVM model
with 1000 of the instances, which is then used to classify the
remaining instances into one of the two classes. When apply-
ing max-pooling, the 1000 training instances are randomly
split into 25 non-overlapping subgroups, each is used to train a
local 1SVM. The sequence of training instances are presented
to the learner in 20 repeats for all online learning methods.

Figure 8(b) shows that the online learning method [7]
using Equation (1) performs inferior to the batch learning
counterpart, which is to be expected and well aligned with
previous work [7]. The online learner with reweighting using
Equation (3) is shown to perform as well as, or slightly better
than, the batch learner. The performance drops when both
reweighting and max-pooling is applied, but is still comparable
to the conventional online learning approach.

B. Evaluation on Binary Segmentations

To assess the performance of our algorithm for foreground
segmentation tasks, here we conduct both visual and quanti-
tative evaluations on the binary segmentations Gt generated.

Results on Testbed Videos: As displayed in Figure 9, our
algorithm is tested over a variety of video scenarios used by
previous foreground segmentation papers [5], [12], [24], [32],
[41], [43]. The segmentation results are visually satisfactory
and are comparable to the state-of-the-art approaches that are
designed specifically for video conferencing [12], [24], [41],
background subtraction [5], [43], or for handling freely mov-
ing camera [32]. Here we refer readers to these papers for
their results on the same sequences.

Quantitative Evaluation Using Ground Truth: We further
evaluate the segmentation quality quantitatively on
two sequences. For a fair comparison with previous
approaches [12], [24], [41], which uses multiple annotated
images for training, here the C-1SVMs are trained using
both the first frame and one more selected frame where
the initially occluded foreground portion is visible. The
quantitative evaluations (see Figure 10) show that the median
segmentation errors are 0.07% and 0.88% for the two
sequences, respectively. In comparison, [41] reports higher
median errors of 0.27% and 2.56% for the same sequences.

Ability to Work in Background Subtraction Scenario: With a
different set of threshold settings (T low

F = ∞ and T low
B = 0.2),

the algorithm can also be initialized by one or a few
pure background image(s) instead of any stroke. Under this
setup, only the local background 1SVMs are trained initially.

Fig. 12. Comparison on the binary segmentation results generated with and
without using the estimated colors to train the classifiers. Top row shows
the frame 58 of the “broom” sequence and the bottom row is for the frame
89 of the “kim” sequence. The final alpha mattes generated for these two
frames can be found in Figures 13(c) and 16(b), respectively. (a) Input frame.
(b) w/o estimated colors. (c) With estimated colors.

As new frames are processed, outliers to the background
1SVMs are classified as foreground, which are then utilized
to initiate the training of local foreground 1SVMs. Meanwhile
inliers are used to update the background 1SVMs, allowing
the algorithm adapt to dynamic changes and background
motion. As displayed in Figure 11, the additional foreground
1SVMs help our algorithm remembering the detected fore-
ground appearance, and as a result, lead to better performance
than previous work using only local background models such
as [5], [18], and [43].

Benefit of Integrated Matting Operation: Instead of per-
forming segmentation and matting as two separate steps, our
approach uses an integrated train-relabel-matting operation.
As a result, not only the segmentation result can guide
the matting through providing fore/background color models,
but also the matting operation can benefit the segmentation
through estimating fore/background colors in fuzzy areas for
training the corresponding classifiers. To confirm whether
the matting step can indeed improve binary segmentation,
Figure 12 compares the results generated with and without
using the estimated colors. It shows that when the estimated
colors are used to train the fore/background 1SVMs, the binary
segmentation results are more accurate.

C. Evaluation on Matting Results

Next, we evalute the performance of our algorithm on
extracting objects with fuzzy boundaries and compare it with
existing approaches.

Comparison With Existing Approaches: Figures 1 and 9
show the results of our algorithm for several sequences used
by previous video matting papers [1], [8], [9], [17], [20]. Note
that for the “broom” and “class” datasets, we adjusted the
parameter T low

F = 0.3 so that the potions of occluded-then-
reappeared foreground can be properly segmented.

Visual inspection suggests that the alpha mattes estimated
are smooth and rich in details. Available results gener-
ated by authors of existing approaches are also shown in
Figures 9 and 14 for comparison. They suggest that the per-
formance of our algorithm is on par with existing approaches,

1366 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 4, APRIL 2015

Fig. 13. Results on testbed sequences referred to as (from top to bottom) “wind”, “class” [1], “ball”, and “broom” [17]. The results show that our algorithm
can properly handle background motions (in “class” & “ball”) and strong motion blur (in “ball” & “broom”). The results of geodesic matting [1] (for
“wind” & “class”) and shared matting [17] (for “ball” & “broom”) are generated by the authors (e). For better comparison, matching background colors are
used in our composites (d). Areas with suboptimal matte results are highlighted with red boxes. (a) First frame w/strokes. (b) Test frame. (c) Alpha matte.
(d) Composite. (e) Other approaches.

Fig. 14. Comparison on alpha mattes generated by different approaches. Areas with suboptimal matte results are highlighted with red boxes. (a) Test frame.
(b) Our result. (c) Bayesian matting [9]. (d) Multi-ch. Poisson [20]. (e) Nonlocal matting [8].

Fig. 15. Matting results obtained under different stroke inputs than the one shown in Figure 13(a). Under different stroke inputs (a), labeling information
is propagated differently across the image (b), but the final per-pixel labeling results (c) are similar. The impact of the stroke variations on the first frame is
even less noticeable in the per-pixel labeling results for the test frame (d). As a result, the alpha mattes generated for the test frame (e) are nearly identical
to the one shown in Figure 13(c).

which often require additional steps to compute dense
trimaps [17], [20] or background colors [9] for each frame.
Some of these approaches also require long computational
time [8], [9] or process all frames in a batch manner [1],
making them hard to be applied to real-time video processing.

Robustness w.r.t. Input Stroke Variations: To evaluate the
impact of the users’ input stroke variations on the matting
results, here we also test our algorithm under different input
settings. As shown in Figure 15, changing input stroke loca-
tions affects how the labeling information is propagated across

GONG et al.: INTEGRATED FOREGROUND SEGMENTATION AND BOUNDARY MATTING 1367

Fig. 16. Alpha mattes (middle row) and composites (bottom row) generated for adjacent frames. Despite that the background behind the fuzzy hair changes
from bright window to brown building then to green leaves, our approach extracts temporal coherent alpha mattes. Please note that although artifacts show
up in the estimated alpha mattes (highlighted with red boxes), they are hardly noticeable in the final composites. (a) Frame 86. (b) Frame 89. (c) Frame 92.
(d) Frame 95. (e) Frame 98. (f) Frame 101.

the image, but has very little impact on the final alpha matte
generated. This suggests that our program is robust against
users’ input variations.

Evaluation on Temporal Coherence: Unlike some existing
video matting approaches [2], [8], [28], our approach does
not explicitly enforce the temporal coherence among adjacent
frames. Instead, it relies on the local fore/background clas-
sifiers trained at each pixel location, F and B, being stable
across multiple frames. As a result, for pixels from different
frames but with similar observed colors, the optimal alpha
values found by maximizing Equation (8) will be similar.
To evaluate the effectiveness of this strategy, Figure 16 shows
the matting results for six nearby frames of the “kim” dataset,
which contains a large and detailed fuzzy area. The results
demonstrate that our approach is able to generate coherent
alpha mattes for the foreground object even in front of a
changing background.

To quantitative evaluate temporal coherence, we used
the measure proposed by Lee, et al. [25], which quantifies
the amount of temporal flicker by computing the weighted
difference in alpha values between successive frames.
Figure 17 plots this weighted alpha difference measure for
our approach and three existing techniques. It shows that
ours produces more coherent video matting results than the
multi-frame nonlocal matting algorithm, which is one of the
state-of-the-art techniques [8].

Quantitative Evaluation on Image Matting: Due to the
lack of video sequences with ground truth alpha mattes, we
cannot perform quantitative evaluation on videos. Hence, here
we test our approach on an image matting testbed [38] by
treating each test image as the first frame of a video and
the corresponding trimap as input user strokes. We choose
this testbed over the newer one [30] because: 1) it includes
trimaps with ten different levels of accuracy, allows us to
evaluate the performances under different user input set-
tings; and 2) the newer one contains highly transparent

Fig. 17. Quantitative temporal coherence comparison among four approaches
on the “kim” dataset: the Bayesian matting [9], the multi-channel Poisson
matting [20], the multi-frame nonlocal matting [8], and our approach.

objects, which boundary matting algorithms, such as ours,
cannot handle.

The performances of our approach under the best and the
worst trimaps, in comparison with several classical matting
algorithms, are shown in Table I. The results indicate that over-
all our approach performs better than Poisson matting [34],
random walk [21], and Bayesian matting [10] approaches,
where the last one is used for processing individual frames
in Bayesian video matting [9]. However, it does not do as
well as closed-form matting [26], robust matting [38], and
matting with comprehensive sampling sets [31] since it is
designed to efficiently extract foreground objects from videos
in real-time and apply matting only along object boundaries.
It trains local classifiers using fore/background examples from
a relatively small neighborhood and expects examples from
previous frames to contribute to the training. When dealing
with single images and when matting pixels do not have
sufficient foreground or background examples nearby, such as
the thin and isolated hair strands in T7, our approach does not
perform well.

It is worth noting that the relative performance of our
approach improves as the trimap gets less accurate. On tests
with the largest unknown areas, i.e., T8, T1, and T2 under their
worst trimaps, our approach ranks 3, 4, and 4, respectively.

1368 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 4, APRIL 2015

TABLE I

QUANTITATIVE COMPARISON WITH IMAGE MATTING TECHNIQUES ON A GROUND TRUTH DATASETS WITH EIGHT TEST IMAGES (T1∼T8) [38]. EACH

CELL SHOWS THE MINIMUM AND MAXIMUM ERRORS UNDER TRIMAPS WITH DIFFERENT LEVELS OF ACCURACY. THE RESULTS OF THE FIRST SEVEN

TECHNIQUES ARE REPORTED IN [38], WHEREAS THOSE OF THE NEXT TWO ARE GENERATED USING THE IMPLEMENTATIONS THAT THE AUTHORS

MADE AVAILABLE. ON AVERAGE OUR APPROACH RANKS 6.3 IN MINIMUM ERROR AND 5.1 IN MAXIMUM ERROR AMONG THE TEN APPROACHES

Fig. 18. A failure case: When the hand suddenly shows up in (b), both local foreground and background 1SVMs classify pixels with unseen colors as
outliers. The final segmentation labels these pixels incorrectly due to the bias toward background. The algorithm corrects the mistakes in 10 frames without
any user intervention (c-f).

Fig. 19. Another failure case for the “walkman” [2] sequence: Given the training frame and user labels (a), our approach leaves holes on the foreground
coat (c) since the details are undersampled. It also fails to label the foreground pents when the person walks into the shadow (e) because its color becomes
closer to the background wall than its original color. (a) First frame w/strokes. (b) Frame 5. (c) Segmentation for (b). (d) Frame 41. (e) Segmentation for (d).

This suggests that our approach is robust with respect to
labeling variation, a finding that agrees with Figure 15.
It also hints that our relative performance can be even better
when sparse user stokes rather than trimaps are used as input,
which our approach is designed for.

D. Limitations

Handling (Locally) Novel Foreground Colors: To achieve
real-time performance through parallel processing, our
approach labels a pixel based on local classifiers only.

GONG et al.: INTEGRATED FOREGROUND SEGMENTATION AND BOUNDARY MATTING 1369

When pixels with unseen colors show up in the local
neighborhood, both foreground and background classifiers
return low scores, resulting the pixels being labeled as
unknowns. When computing the final binary segmentation
through global optimization, these unknown pixels tend to
be labeled as background due to the aforementioned bias
toward accepting unseen examples as background. While this
strategy helps to correctly handle background changes, such
as the background person in “JM” and new background scene
in “kim”, it occasionally introduces errors if locally unseen
foreground appearances are presented (see e.g. Figure 18).
Nevertheless, thanks to the redundancy of using two com-
peting 1SVMs, the incorrect labels do not affect the training
of foreground 1SVMs, which gradually recognize the novel
foreground colors. As a result, the mistakes are corrected after
a few consecutive frames without any user intervention.

Handling Low Resolution Images: To obtain proper label-
ing, the proposed C-1SVMs need sufficient training examples.
When the input video is of low resolution or there are areas
rich in details but undersampled, a given fore/background color
may be represented by only a couple of pixels and the observed
fore/background color may change across the frames due to
aliasing. In these cases, the C-1SVMs may fail to recognize
the colors and improperly label the pixels; see Figure 19(b-c).

Handling Illumination Changes: The proposed algorithm
separates foreground and background using color cues only.
When sudden illumination changes cause the color of fore-
ground object to vary rapidly and match to the one for
background, or vice versa, incorrect labels will be given;
see Figure 19(d-e). To address this limitation, additional user
interactions would be needed [2].

Handling Large Semi-Transparent Objects: Our approach
is mainly designed for extracting foreground objects from
dynamic backgrounds with minimal user interactions. While
the added video matting functionality allows the algorithm to
properly extract alpha mattes along the boundaries of fuzzy
objects, it cannot be used to handle large semi-transparent
regions since the matting relies on locally trained foreground
and background classifiers. For highly transparent objects,
such as the ones used for image matting evaluation [30],
a more global classifier trained using non-local examples
would be needed.

E. Processing Time

Finally, to measure the processing time of the pro-
posed approach, we run our implementation on a Lenovo
ThinkStation S20 with nVidia GeForce GTX 480 GPU, which
is a system released four years ago. For the VGA-sized
“kim” sequence with large fuzzy area, our approach runs
at 14 FPS without matting and 8 FPS with matting. Please
note that this does not include the processing time for
the first frame, which highly depends on the size of the
unknown area. When the input is sparse user strokes as
shown in Figure 1(b), the algorithm takes 1.5 seconds to
propagate known labels to the rest of the frame. On the
other hand, if a detailed trimap is provided, the algorithm
can process the first frame almost as fast as the remaining
frames.

TABLE II

THE PROCESSING TIME FOR THE FIVE MATTING

SEQUENCES SHOWN IN FIGURES 1 AND 13

The precise processing times needed for the different frames
on all five matting sequences are reported in Table II. They
show that the frame rates for the four sequences shown in
Figure 13 range from 9 FPS to 31 FPS, depending mostly on
the resolution of the video.

VI. OUTLOOK AND DISCUSSION

A novel foreground segmentation algorithm is proposed in
this paper that is able to efficiently and effectively deal with
live videos. The algorithm is easy to implement, simple to use,
and capable of handling a variety of difficult scenarios, such
as dynamic background, camera motion, topology changes,
and fuzzy objects. For fuzzy objects, the integrated boundary
matting step can effectively pull the matte, allowing seamless
composites over new backgrounds. Experiments on standard
testbed videos demonstrate that our algorithm possesses com-
parable or superior performance comparing to the state-of-
the-art approaches designed for specifically for background
subtraction [5], [18], [43], foreground segmentation [32], [41],
and video matting [9], [20].

Possible future research directions include incorporating
other visual cues such as texture and shape into the proposed
algorithm. We also plan to embed the proposed algorithm
into an real-time interactive video matting application, where
users can see the matting results as soon as they draw
the strokes. This would allow them to easily control the
matting and to correct errors in future frames by providing
additional strokes.

ACKNOWLEDGMENT

The authors gratefully acknowledge the constructive
comments that they received from anonymous reviewers.
They would also like to thank Dr. Yung-Yu Chuang,
Dr. Antonio Criminisi, Dr. Stan Sclaroff, Dr. Yaser A. Sheikh,
Dr. Seth Teller, Dr. Xue Bai, Dr. Jue Wang, Dr. Yu-Wing Tai,
and Mr. Eduardo S. L. Gastal for sharing their datasets or
experiment results with us or online.

REFERENCES

[1] X. Bai and G. Sapiro, “Geodesic matting: A framework for fast
interactive image and video segmentation and matting,” Int. J. Comput.
Vis., vol. 82, no. 2, pp. 113–132, 2009.

[2] X. Bai, J. Wang, D. Simons, and G. Sapiro, “Video SnapCut: Robust
video object cutout using localized classifiers,” ACM Trans. Graph.,
vol. 28, no. 3, 2009, Art. ID 70.

[3] L. Bottou and O. Bousquet, “The tradeoffs of large scale learning,” in
Advances in Neural Information Processing Systems 20. Red Hook, NY,
USA: Curran Associates, 2008, pp. 161–168.

1370 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 4, APRIL 2015

[4] C.-C. Chang and C.-J. Lin, LIBSVM: A Library for Sup-
port Vector Machines, 2001. [Online]. Available: http://
www.csie.ntu.edu.tw/~jlin/libsvm/

[5] L. Cheng and M. Gong, “Realtime background subtraction from dynamic
scenes,” in Proc. IEEE 12th Int. Conf. Comput. Vis., Sep./Oct. 2009,
pp. 2066–2073.

[6] L. Cheng, M. Gong, D. Schuurmans, and T. Caelli, “Real-time discrim-
inative background subtraction,” IEEE Trans. Image Process., vol. 20,
no. 5, pp. 1401–1414, May 2011.

[7] L. Cheng, S. V. N. Vishwanathan, D. Schuurmans, S. Wang, and
T. Caelli, “Implicit online learning with kernels,” in Advances in Neural
Information Processing Systems 19. Cambridge, MA, USA: MIT Press,
2007, pp. 249–256.

[8] I. Choi, M. Lee, and Y.-W. Tai, “Video matting using multi-frame
nonlocal matting Laplacian,” in Proc. 12th Eur. Conf. Comput. Vis.,
2012, pp. 540–553.

[9] Y.-Y. Chuang, A. Agarwala, B. Curless, D. H. Salesin, and R. Szeliski,
“Video matting of complex scenes,” in Proc. 29th Annu. Conf. Comput.
Graph. Interact. Techn., 2002, pp. 243–248.

[10] Y.-Y. Chuang, B. Curless, D. H. Salesin, and R. Szeliski, “A Bayesian
approach to digital matting,” in Proc. IEEE Comput. Soc. Conf. Comput.
Vis. Pattern Recognit., Dec. 2001, pp. II-264–II-271.

[11] Knockout User Guide, Powerworld Corp., Champaign, IL, USA, 2002.
[12] A. Criminisi, G. Cross, A. Blake, and V. Kolmogorov, “Bilayer segmen-

tation of live video,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit., Jun. 2006, pp. 53–60.

[13] G. Dalley, J. Migdal, and W. E. L. Grimson, “Background subtraction for
temporally irregular dynamic textures,” in Proc. IEEE Workshop Appl.
Comput. Vis., Jan. 2008, pp. 1–7.

[14] A. Elqursh and A. Elgammal, “Online moving camera background
subtraction,” in Proc. 12th Eur. Conf. Comput. Vis., 2012, pp. 228–241.

[15] J. Fan, X. Shen, and Y. Wu, “Closed-loop adaptation for robust tracking,”
in Proc. 11th Eur. Conf. Comput. Vis., 2010, pp. 411–424.

[16] J. Fan, X. Shen, and Y. Wu, “Scribble tracker: A matting-based approach
for robust tracking,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34,
no. 8, pp. 1633–1644, Aug. 2012.

[17] E. S. L. Gastal and M. M. Oliveira, “Shared sampling for real-time
alpha matting,” Comput. Graph. Forum, vol. 29, no. 2, pp. 575–584,
May 2010.

[18] M. Gong and L. Cheng, “Real-time foreground segmentation on GPUs
using local online learning and global graph cut optimization,” in Proc.
19th Int. Conf. Pattern Recognit., Dec. 2008, pp. 1–4.

[19] M. Gong and L. Cheng, “Foreground segmentation of live videos using
locally competing 1SVMs,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2011, pp. 2105–2112.

[20] M. Gong, L. Wang, R. Yang, and Y.-H. Yang, “Real-time video matting
using multichannel Poisson equations,” in Proc. Graph. Interf., 2010,
pp. 89–96.

[21] L. Grady, T. Schiwietz, S. Aharon, and R. Westermann, “Random walks
for interactive alpha-matting,” in Proc. Vis., Imag., Image Process., 2005,
pp. 423–429.

[22] E. Hayman and J.-O. Eklundh, “Statistical background subtraction for a
mobile observer,” in Proc. 9th IEEE Int. Conf. Comput. Vis., Oct. 2003,
pp. 67–74.

[23] N. Joshi, W. Matusik, and S. Avidan, “Natural video matting using
camera arrays,” ACM Trans. Graph., vol. 25, no. 3, pp. 779–786,
Jul. 2006.

[24] V. Kolmogorov, A. Criminisi, A. Blake, G. Cross, and C. Rother,
“Bi-layer segmentation of binocular stereo video,” in Proc. IEEE
Comput. Soc. Conf. Comput. Vis. Pattern Recognit., Jun. 2005,
pp. 407–414.

[25] S.-Y. Lee, J.-C. Yoon, and I.-K. Lee, “Temporally coherent video
matting,” Graph. Models, vol. 72, no. 3, pp. 25–33, 2010.

[26] A. Levin, D. Lischinski, and Y. Weiss, “A closed-form solution to natural
image matting,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 2,
pp. 228–242, Feb. 2008.

[27] D. Li, Q. Chen, and C.-K. Tang, “Motion-aware KNN Laplacian
for video matting,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2013, pp. 3599–3606.

[28] Y. Li, J. Sun, and H.-Y. Shum, “Video object cut and paste,” ACM Trans.
Graph., vol. 24, no. 3, pp. 595–600, 2005.

[29] M. McGuire, W. Matusik, H. Pfister, J. F. Hughes, and F. Durand,
“Defocus video matting,” ACM Trans. Graph., vol. 24, no. 3,
pp. 567–576, 2005.

[30] C. Rhemann, C. Rother, J. Wang, M. Gelautz, P. Kohli, and P. Rott,
“A perceptually motivated online benchmark for image matting,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2009, pp. 1826–1833.

[31] E. Shahrian, D. Rajan, B. Price, and S. Cohen, “Improving image
matting using comprehensive sampling sets,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2013, pp. 636–643.

[32] Y. Sheikh, O. Javed, and T. Kanade, “Background subtraction for
freely moving cameras,” in Proc. IEEE 12th Int. Conf. Comput. Vis.,
Sep./Oct. 2009, pp. 1219–1225.

[33] Y. Sheikh and M. Shah, “Bayesian object detection in dynamic scenes,”
in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.,
Jun. 2005, pp. 74–79.

[34] J. Sun, J. Jia, C.-K. Tang, and H.-Y. Shum, “Poisson matting,” in Proc.
ACM SIGGRAPH, 2004, pp. 315–321.

[35] J. Sun, W. Zhang, X. Tang, and H.-Y. Shum, “Background cut,” in Proc.
9th Eur. Conf. Comput. Vis., 2006, pp. 628–641.

[36] J. Wang, P. Bhat, R. A. Colburn, M. Agrawala, and M. F. Cohen,
“Interactive video cutout,” ACM Trans. Graph., vol. 24, no. 3,
pp. 585–594, 2005.

[37] J. Wang and M. F. Cohen, “An iterative optimization approach for unified
image segmentation and matting,” in Proc. 10th IEEE Int. Conf. Comput.
Vis., Oct. 2005, pp. 936–943.

[38] J. Wang and M. F. Cohen, “Optimized color sampling for robust
matting,” in Proc. IEEE Conf. CVPR, Jun. 2007, pp. 1–8.

[39] J. Wang and M. F. Cohen, “Image and video matting: A survey,” Found.
Trends Comput. Graph. Vis., vol. 3, no. 2, pp. 97–175, Jan. 2007.

[40] L. Wang, M. Gong, C. Zhang, R. Yang, C. Zhang, and Y.-H. Yang,
“Automatic real-time video matting using time-of-flight camera and
multichannel Poisson equations,” Int. J. Comput. Vis., vol. 97, no. 1,
pp. 104–121, 2012.

[41] P. Yin, A. Criminisi, J. Winn, and I. Essa, “Tree-based classifiers for
bilayer video segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2007, pp. 1–8.

[42] T. Yu, C. Zhang, M. Cohen, Y. Rui, and Y. Wu, “Monocular video
foreground/background segmentation by tracking spatial-color Gaussian
mixture models,” in Proc. IEEE Workshop Motion Video Comput.,
Feb. 2007, p. 5.

[43] J. Zhong and S. Sclaroff, “Segmenting foreground objects from a
dynamic textured background via a robust Kalman filter,” in Proc. 9th
Int. Conf. Comput. Vis., Oct. 2003, pp. 44–50.

Minglun Gong received the Ph.D. degree from the
University of Alberta, in 2003, the M.Sc. degree
from Tsinghua University, in 1997, and the
B.Eng. degree from Harbin Engineering University,
in 1994. He is currently an Associate Professor
with the Memorial University of Newfoundland. His
research interests cover various topics in the broad
area of visual computing, including computer vision,
graphics, visualization, image processing, and
pattern recognition.

Yiming Qian received the B.E. degree from the
University of Science and Technology of China,
Hefei, China, in 2012, and the M.Sc. degree from the
Memorial University of Newfoundland, St. John’s,
NL, Canada, in 2014. He is currently pursuing
the Ph.D. degree with the Department of Com-
puting Science, University of Alberta, Edmonton,
AB, Canada. His research interests include machine
learning and computer vision.

Li Cheng received the Ph.D. degree in computer
science from the University of Alberta, Edmonton,
AB, Canada. Prior to joining the Bioinformatics
Institute (BII) in 2010, he was with the Statistical
Machine Learning Group, NICTA, Australia,
TTI-Chicago, USA, and the University of Alberta.
He is currently a Research Scientist with BII. His
research expertise is mainly on machine learning
and computer vision.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

