A Broadband Coaxial Line-to-SIW Transition Using Aperture-Coupling Method

Anil Kumar Nayak, Graduate Student Member, IEEE, Igor M. Filanovsky, Life Senior Member, IEEE, Kambiz Moez, Senior Member, IEEE, and Amalendu Patnaik, Senior Member, IEEE

Abstract—The letter demonstrates a coaxial transmission line-to-substrate integrated waveguide (CT-SIW) transition using aperture-coupling approach. The method broadens the bandwidth (BW) and reduces the transition insertion loss (IL). Two coaxial line supports with apertures for coupling are attached at the ends of substrate integrated waveguide (SIW). The copper inlay of the apertures increases coupling of the coaxial line to SIW and can be controlled by the aperture length and the length of the line wire put in the aperture. The transition was designed, fabricated, and experimentally evaluated. The transition provides the measured 10 dB return loss (RL) fractional BW (FBW) of 104.3%, and 15 dB RL (FBW) of 78.06%. The IL of 0.37 to 0.87 dB at 19.63–62.7 GHz frequency range was obtained. The measured results are well correlated with the simulated ones.

Index Terms—Aperture-coupling, broadband enhancing, coaxial line, coaxial transmission line-to-substrate integrated waveguide (CT-SIW) transition, low insertion loss (IL), substrate integrated waveguide (SIW).

I. INTRODUCTION

At the mm-wave frequency range the role of the transmission lines connecting different devices, and the transitions between different types of transmission lines becomes more critical. Any transition degrades their impedance bandwidth (BW) and adds insertion losses (ILs) [1]. Several methods were proposed to compensate these deficiencies. They include using ridge gap [2], coupled striped lines [3], ridge waveguide methods [4]–[6], and others.

The aperture-coupling feeding is proposed as an effective solution to enhance the BW and achieve better isolation amongst components such as antenna, filter, power divider, etc., [7]. This problem was addressed in [3] where the fabrication used multilayer printed circuit board (PCB) structure allowed to achieve a reliable structure. In the meantime, the substrate integrated waveguide (SIW) technique in mm-wave was also improved making high-Q 2-D components available [8]–[11], and several recent developments have described broadband transitions between the SIW and other transmission lines and waveguides [12]–[21]. In [12], a transition with close match between coaxial line and SIW has been reported using thick as well as thin substrates. This design reported 15 dB return loss (RL) with 30% fractional BW (FBW), IL less than 1.2 dB at X-band (8–12 GHz). In [13], a broadband coaxial to SIW transition with compact size, wider BW, and lower value of total loss has been reported. The losses of below 15%, 15 dB RL FBW of 48.5%, 20 dB RL FBW of 20%, and IL below 0.75 dB have been achieved. A transition between the conductor-backed-coplanar waveguide (CB-CPW) and coupled strip-line is illustrated in [14]. It investigated the linear tapered feed to improve the impedance absolute BW (ABW) to 19.95 GHz and achieved IL below 2.3 dB. Two apertures and short-circuiting patch create coupling of air-filled rectangular waveguide (RWG) to SIW for V-band [15]. A wider FBW of 35% at the center of the frequency band is obtained. In [16], a broadband transition between grounded coplanar waveguide (CPW) and substrate integrated coaxial line (SICL) has been demonstrated. It is done by connecting two copper layers through the blind vias at two sides of the ground plane. The impedance BW of 42 GHz and IL of 0.76 dB have been received. In the recent studies, novel techniques like microstrip-vertical SIW [17], wideband excitation between SIW and microstrip line [22], SIW-waveguide [18],
SIW-air-field RWG [19], microstrip-ridged empty SIW (RESIW) [20], and coaxial to SIW transition in multilayer [21] transitions have been reported.

In this letter, the aperture-coupling transition between coaxial line to SIW (CT-SIW) is designed and tested. The authors stress that the aperture-coupling approach enhances the BW of the transition for various: (b) L_{ap} at H = 0.254 mm and (c) H at L_{ap} = 2.25 mm.

Fig. 1 shows the proposed transition. The main parts of it, denoted as SUB-1, SUB-2, and SUB-3 are using PCB with the board thickness h = 0.508 mm. Part SUB-1 is used for SIW realization.

The design procedure is described by following steps:

1) The design frequency of the SIW was decided as 19–65 GHz. The length L_{SIW} and width W_{SIW} of the SIW (see Fig. 1) were chosen for 19–65 GHz band following the SIW design guidelines reported in [8]–[11], [23]–[25]. The SIW cut-off frequency is 18.94 GHz.

2) The diameter d_{via} \leq (\lambda/5), where \lambda is the guided wavelength at 40 GHz (center frequency of the range), pitch distance P_{via} \leq 2d_{via} of the metallic vias of the row, and equivalent width of SIW W_{Equiv} (W_{Equiv} = W_{SIW} - 1.08(d_{via}^2/P_{via}) + 0.1(d_{via}^2/W_{SIW})) were decided by the cutoff frequency at TE_{10}. The sizes are d_{via} = 0.6 mm and P_{via} = 1.1 mm.

3) The dimensions of support pieces L_{SB} = 5.8 mm and W_{SB} = 7.8 mm are chosen to provide a convenient mechanical connection with the coaxial line and SIW.

4) These support pieces have an aperture of size L_{ap} = 2.25 mm, W_{ap} = 1.52 mm (\approx 3 \times h), and on the side of SIW, have two copper strips (stubs) L_{stub} = 2.4 mm = 0.45\lambda and W_{stub} = 0.4 mm [see Fig. 2(a)]. Two copper plates A and B [see Fig. 1, left corner, and Fig. 2(a)] are positioned at the inner walls of the slot. The plates, together with stubs, are connected to the coaxial line grounded outer shell.

5) The length H of naked wire inside the aperture (see Fig. 1, right corner) was chosen for optimal performance after parametric analysis by simulations.

The aperture slot can be represented [3] as a parallel LC-circuit, L_A, C_A in our case. Using this idea one can represent the whole transition by the lumped parameter equivalent (see Fig. 3). For this equivalent Z_{in}(s) = (R_{SIW} (1 + L_A) (C_A + C_C) s^2 + L_A s) / (C_C s + R_{SIW} (1 + L_A C_A s^2 + L_A s)). Considering now \Gamma_{in}(s = j\omega) = (Z_{in} - R_s) / (Z_{in} + R_s) = S_{11}. Modifying the elements of this circuit so that L_A \rightarrow \infty, C_A \rightarrow 0, and C_C \rightarrow \infty brings the circuit to the condition of ideal matching (when, of course, R_s = R_{SIW}). Hence, increasing L_A (including the length of plates and adding the stubs), increases the distance between the plates, and finding the maximum value of C_C (by simulations) were our guidelines to improve the transition characteristics.

The aperture slot is the place where electromagnetic (EM)-wave changes from TEM-mode to TE_{10}-mode. It is desirable that the aperture slot operates as an intermediate half-wavelength (\lambda/2) resonator between the line and SIW. This provides a stronger coupling and improves the impedance BW.

The length H, as was mentioned above, is set by simulations [see Fig. 2(b)]. H is varied uniformly from 0.154 to 0.354 mm with a step size of 0.05 mm. Variation in H is influencing both RL and IL. As a result, the value of H is fixed at 0.254 mm or 0.0474 \lambda (in practice 0.25 mm). The length of the aperture L_{ap} is also set by parametric analysis [see Fig. 2(c)]. L_{ap} is varied from 1.75 to 2.75 mm with a step size of 0.25 mm. It can be noted that RL decreases with increasing L_{ap} and vice versa. At the same time, the IL is also changing with the variation in L_{ap}. The RL and IL are found best at the specific L_{ap}, fixed at 2.25 mm. The structure was simulated using HFSS ver.2020R2 with the RT/duriod 5880LZ substrate having \epsilon_r = 1.96 (\pm 0.04), h = 0.508 mm, and tan\delta = 0.0019 in the proposed design. The electric and magnetic field patterns are shown in Fig. 4(a) and (b).
Fig. 4. Field distribution at 30, 40, and 50 GHz (from left to right): (a) electric field and (b) magnetic field.

respectively, and Fig. 4(a) confirms that only the fundamental mode (TE_{10}) exists, and the higher mode (TE_{20}) is suppressed in the SIW with the proposed method of excitation.

III. RESULTS, DISCUSSION, AND COMPARISON

The satisfactory simulation results allowed us to fabricate the proposed structure; a laboratory prototype is developed. The parts of the back-to-back CT-SIW transition and its connector are demonstrated in Fig. 5(a)–(d). Three parts (SUB-1–SUB-3) are glued together with the Feviquick solution [26], [27]. The experiments are carried out using coaxial connectors (model no: 26-HV-RSR2-ND) with frequency up to 67 GHz and Agilent N5247A (10 MHz–67 GHz) vector network analyzer (VNA). Moreover, the electronics calibration (Ecal) method has been used to do the experimental validation. The measurements were taken up to the frequency of 65 GHz. The simulated and experimental S-parameters (S_{11} and S_{21}) of the proposed CT-SIW transition are presented in Fig. 6(a). From this plot, the measured RL is better than 10 dB from 19.63 to 62.7 GHz and is above 15 dB from 27 to 61.57 GHz. At the same time, the simulated RL is above 10 dB from 20.25 to 65 GHz and is better than 15 dB from 22.64 to 65 GHz. The experimental IL is below 0.37 dB (minimum) and 0.83 dB (maximum) in the whole band except for the narrow region from 60 to 65 GHz. In contrast, the minimum and maximum simulated ILs are 0.37 and 0.83 dB in the whole band, except for the narrow frequency ranges from 20 to 22.83 GHz (lower end) and from 60 to 65 GHz (higher end). It means that measured minimum and maximum ILs are about 0.013 and 0.029 dB/mm in the whole band (except of 60–65 GHz), respectively. Moreover, an early change in the transition phase (not shown) marks the low loss in the structure at the specified frequency band in the design.

Fig. 6. Characteristics of the transition: (a) S_{11} and S_{21}, and (b) total loss.

TABLE I

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Freq.(GHz)</th>
<th>Structure</th>
<th>RL (dB)</th>
<th>IL (dB)</th>
<th>BW (GHz/%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[13]</td>
<td>8–12</td>
<td>CT-SIW</td>
<td>≥15</td>
<td>≤0.75</td>
<td>4/48.5</td>
</tr>
<tr>
<td>[15]</td>
<td>50–75</td>
<td>RWG-SIW</td>
<td>≥10</td>
<td>≤0.58</td>
<td>25/35</td>
</tr>
<tr>
<td>[16]</td>
<td>0–42</td>
<td>SICL-CPW</td>
<td>≥10</td>
<td>≤0.76</td>
<td>42/NR</td>
</tr>
<tr>
<td>[17]</td>
<td>33–36.7</td>
<td>MS-SIW</td>
<td>≥15</td>
<td>≤0.95</td>
<td>3.7/10.57</td>
</tr>
<tr>
<td>[12]</td>
<td>8–12</td>
<td>CT-SIW</td>
<td>≥15</td>
<td>≤1.2</td>
<td>4/50</td>
</tr>
<tr>
<td>[3]</td>
<td>48.6–67</td>
<td>MS-SIW</td>
<td>≥10</td>
<td>≤2.5</td>
<td>18.4/42.3</td>
</tr>
<tr>
<td>This work</td>
<td>19.63–62.7</td>
<td>CT-SIW</td>
<td>≥10</td>
<td>≤0.83</td>
<td>43.07/104.53</td>
</tr>
<tr>
<td></td>
<td>27–61.57</td>
<td></td>
<td>≥15</td>
<td>≤0.37</td>
<td>34.57/78.06</td>
</tr>
</tbody>
</table>

The simulated and measured total losses are plotted in Fig. 6(b). The loss is low (<20% and <40%) at the specified frequency range. However, the loss is higher (>40%) in the range of 60–65 GHz. Table I illustrates the performance of the proposed transition and compares it with the previously known results. The proposed design operates at the mm-wave frequency (19–65 GHz) and has the benefits of easy fabrication, large BW, low IL, and total loss below 20%.

IV. CONCLUSION

In this letter, an aperture-coupled-based broadband CT-SIW transition is presented. It is implemented using PCB technology. The simulation proves that the proposed transition offers competitive advantages such as wider impedance BW, low IL, and low total loss (<20%). Finally, the prototype back-to-back CT-SIW is fabricated and measured to validate the transition operation and performance.
REFERENCES


