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Abstract—This paper introduces a non-isolated bidirectional
converter with high-voltage conversion ratio. In the proposed
converter, by integrating the two-phase LVS-parallel HVS-series
bidirectional converter with the coupled inductors, features such
as high voltage-gain, low voltage stresses, current sharing, and
current-ripple-cancellation are achieved. Due to the proposed
converter’s operation in triangular conduction mode, the desir-
able benefits of zero voltage switching, diode reverse recovery
elimination, and reduction of converter filter inductors and,
consequently, leakage inductors are obtained. To recycle the
leakage inductors’ energy and to solve the related difficulties
for both operation modes, a simple passive clamp with the
minimum number of elements is utilized. Also, to improve the
light-loads’ efficiency, the variable frequency control is developed.
The proposed converter is comprehensively analyzed, and to
verify the analysis, the experimental results are provided.

Index Terms—Non-isolated bidirectional converter (BDC),
High step-up/step-down converter, LVS-parallel HVS-series con-
verter, Zero voltage switching (ZVS)

I. INTRODUCTION

IN the past decades, the development of renewable energy
systems, hybrid/electric vehicles (EVs/HEVs), and uninter-

ruptible power supplies (UPSs) are among the most attractive
topics in power electronics. DC-DC bidirectional converters
(BDCs) are one of the key components in such applications
[1], [2], [3] with the important functions of managing the
charge and discharge of batteries and handling the voltage
difference between batteries and the DC bus. Applying the
battery cells in series connection is usually avoided due to the
difficulties such as charge imbalance between the series battery
cells and the need for additional battery voltage-balancing
circuits [4]. As a solution, the high step-up/step down BDCs
are utilized to match the low-voltage battery with the high-
voltage DC bus.

Compared with unidirectional high-step-up or high-step-
down converters, the design of high step-up/step-down BDCs
faces more challenges, due to two operation modes in opposite
directions. Since the low-voltage-side (LVS) source is com-
monly batteries, providing the continuous-non-pulsating LVS
current with a low ripple to maintain the battery life-time is
necessary [5]. Furthermore, the current level of LVS is high,
and important issues such as conduction losses and thermal
management should be taken into consideration.

The LVS-parallel high-voltage-side (HVS)-series structures
are among the most favorable circuit structures to address
the aforementioned challenges [6]. In these structures, the

converter is normally based on parallel-interleaved converters
to obtain excellent features such as current sharing and current-
ripple-cancellation. Moreover, each phase’s HVS terminals are
electrically placed in series to increase the voltage-gain and
reduce the components’ voltage stress.

In a general classification, the BDCs can be divided into
isolated BDCs and non-isolated BDCs. In isolated converters,
the converter transformer processes all the output power, which
causes increased transformer volume and losses. Moreover,
many of the isolated topologies such as dual-active-bridge
(DAB) converters, as the most common structure of isolated
BDCs, require high number of active switches [7], [8]. Hence,
when isolation is not a requirement, non-isolated BDCs are
usually preferred.

Utilizing the coupled-inductor with the converter filter-
inductor (i.e. coupled-filter-inductor) is the most common
method to increase the voltage-gain in non-isolated BDCs
[9]–[20], and is also common in non-isolated unidirectional
structures [21]. This method is also integrated with other
switched-capacitor circuits to increase the voltage-gain and
recycle the leakage inductor energy [9]–[18]. In these convert-
ers, unlike the isolated BDCs, only a portion of output power
is processed through the coupled inductors. Besides, as the
magnetizing inductor of the coupled inductors plays the filter
inductor’s role, the core reset is not an issue. In the BDCs with
coupled-filter-inductor, by properly controlling the converter,
the leakage inductor energy could be utilized to achieve zero-
voltage-switching (ZVS) [10]–[18].

The general drawback of BDCs with coupled-filter-inductor
is the large current-ripple and/or pulsating state of LVS current
due to the coupled inductor on the converter filter inductor
[10]–[19]. As a solution, it is necessary to utilize the bulky
low-pass filter on the converter’s high-current LVS, which
increases the converter volume and conduction losses [9].
The reference [20] introduces a two-phase interleaved struc-
ture with current-ripple-cancellation featuring the continuous-
low-ripple current on LVS. However, recycling the leakage
inductors’ energy is the main issue in this converter, which
is solved with many auxiliary components, including four
separate clamp circuit without achieving ZVS condition. In
[22], [23], the single-phase BDCs with coupled-filter-inductor
are introduced, featuring low LVS-current-ripple. However,
these converters suffer from limited voltage-gain since the
coupled inductors are merely utilized to obtain current-ripple-
cancellation, and the voltage-gain is independent of the cou-
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pled inductors’ wingdings turn ratio.
In high step-up/step down BDCs with coupled inductors

proposed in [24]–[29], the coupled inductors are implemented
separately from the converter filter inductor (i.e., built-in
transformer). Therefore, the LVS current benefits from contin-
uous state and low-ripple. Besides, in [24]–[26], this method
is utilized with the parallel-interleaved structure. However,
in [29], the voltage-stress of all switches are more than
the voltage level of HVS, and BDCs in [27], [28] suffer
from limited voltage-gain. Moreover, despite the benefits of
proposed converters in [24]–[26], they utilize high number
of components including eight [24], [25] and six [26] active
switches.

In BDCs [30]–[42], the high voltage-gain is obtained with-
out using the coupled inductors, and thus, the related men-
tioned issues with the coupled inductors do not exist in these
converters. These converters are based on integrating the basic
BDCs with the switched-capacitor or quasi-Z-source circuits
[31]–[42]. Generally, the voltage-gains of these converters are
limited, and to increase the voltage-gain, additional circuit
cells are required [32], [33], which increases the converter’s
volume. This is in contrast with the coupled inductors BDCs,
where the voltage-gain could be increased by increasing the
windings turns ratio, considering the value of the leakage
inductor and the associated issues. Besides, the pulsed-current
related to parallel unbalanced-voltage capacitors in switched-
capacitor circuits should be addressed as it requires the
large value capacitors to alleviate this issue [33]–[42]. The
other drawback of these converters is that most of them
are hard-switched [31]–[42]. This issue limits the converter
switching frequency, especially when the conventional Silicon
MOSFETs are utilized as their body diodes commonly suffer
from the large reverse-recovery-time [43], [44]. It worths
mentioning that in BDCs, the antiparallel diodes of switches
mostly operate as the converter main diodes.

The triangular conduction mode (TCM) operation is among
the simplest methods to obtain soft switching in BDCs [22],
[45], [46]. In this method, the main inductor of the converter
is designed small enough such that its current flows in both
directions. This way, ZVS condition, elimination of diodes-
reverse-recovery losses, and reduction of main inductances can
be obtained [22]. However, due to the large current ripple of
main inductors, both the converter’s conduction losses and core
losses are increased. These losses are almost constant regard-
less of the output power in fixed-frequency operation; hence,
the value of these losses would be dominant in light loads,
results in dropped efficiency in this region [22]. Moreover,
the regular BDCs with single-phase structure in TCM suffer
from a large current ripple on the LVS source [45].

This paper introduces a two-phase LVS-parallel HVS-series
TCM bidirectional converter with coupled inductors to address
the existing solutions’ issues. Thanks to the LVS-parallel HVS-
series structure, the current sharing is achieved, voltage-gain
is increased, and the voltage stresses are reduced. Further-
more, the coupled inductors’ secondary windings are jointly
implemented on the common path of two phases in the
form of winding-cross-coupled-inductors (WCCIs) [47]. As
a result, excellent voltage-gain and current-ripple-cancellation
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Fig. 1. (a) Circuit structure of the proposed converter. (b) Equivalent circuit
of the proposed converter.

are achieved utilizing a minimum number of windings. Due
to TCM operation and current ripple cancellation, ZVS and
elimination of the diodes-reverse-recovery losses are obtained
without a large current ripple on the LVS side. Moreover, the
converter inductors values, including the leakage inductors’
values and the associated issues, are reduced. To completely
solve the leakage inductors’ difficulties in two phases and
both boost and buck operation modes, a simple passive clamp
circuit with the minimum number of elements is applied. Fur-
thermore, to reduce losses related to TCM operation in light
loads, variable frequency control is adopted in the proposed
converter.

The paper is organized as follows. Section II describes the
circuit configuration and operation principles of the proposed
converter. The proposed converter specifications are discussed
in Section III. Section IV provides the design considerations.
In Section V, the experimental results, loss analysis, and
comparison are presented. Finally, conclusions are mentioned
in Section VI.

II. CIRCUIT CONFIGURATION AND OPERATION

Fig. 1(a) shows the circuit configuration of the proposed
converter. The converter circuit comprises two phases in which
the LVSs of phases are parallel, and the HVSs (VH1 and VH2)
are series. The upper phase comprises of the inductor L1, the
LVS switch S1, HVS switch S3, and the HVS capacitor CH1.
The lower phase includes the inductor L2, the LVS switch
S2, HVS switch S4, and the HVS capacitor CH2. Besides, the
capacitors CS1 −CS4 are the snubber capacitors of switches.
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To increase the voltage-gain and obtain the current-ripple-
cancellation, the secondary windings of coupled inductors (L3

and L4) are inserted in the common path of two phases, in the
crossed form. The secondary windings of coupled inductors
L3 and L4 contribute to increasing the voltage-gain of both
phases. This leads to a reduced number of coupled inductor
windings compared to other existing converters with WCCIs
[47].

The proposed converter also includes a simple passive clamp
circuit, which composes of a single clamp capacitor CC and
three diodes, DC1, DC2, DC3. The passive clamp has the role
of limiting the voltage of the switches S1 and S2 at both the
boost and buck operation modes. Otherwise, during the turn-
off instants of S1 and S2, the stored energy in the leakage
inductors is depleted through a resonance with switches output
capacitors, causing an undesirable voltage spike on S1 and S2.

A pair of coupled inductors L1 and L2 with coupling
coefficient k, as shown in Appendix A, can be modeled with
an ideal transformer with turn ratio N (N = k

√
L2/L1), a

magnetizing inductor (LM ) on the primary side (LM = L1),
and a leakage inductor (Llk) on the secondary side (Llk =
(1− k2)L2). Fig. 1(b) illustrates the equivalent circuit of the
proposed converter using the model. It is worth mentioning
that, in the equivalent circuit of the proposed converter, the
magnetizing inductors LM1 and LM2 act as the converter
filter inductor. Also, the series leakage inductors (Llk1 and
Llk2) can be replaced with an equivalent leakage inductor Llk

(Llk = Llk1 + Llk2).
The proposed converter has two overall operation modes

of boost and buck modes, based on whether the power flow
direction is from VL to VH or vice versa. Also, each operation
mode includes twelve operating intervals, which are discussed
below comprehensively. In the analysis, the following assump-
tions are considered:
• The converter is in the steady-state condition.
• The values of the windings turn ratios are equal (N1 =
N2 = N ).

• The converter operates in TCM (the values of magnetiz-
ing inductors LM1 and LM2 are small enough such that
their currents flow in both directions).

• The values of the HVS capacitors CH1 and CH2, and
also the clamp capacitor CC are large enough that their
voltages are constant in a switching cycle.

• The voltage drop of the diodes DC1, DC2 and DC3

during the forward biased condition are equal and defined
as VD,ON.

A. Boost Mode

In the boost mode, S1 and S2 are the main switches, and S3

and S4 act as the synchronous switches complementary to S1

and S2 with a proper dead-time. Also, two phases operate with
interleaved pattern and there is a phase-shift of 180◦ between
them. The equivalent circuits of twelve operating intervals in
boost mode, and the theoretical key waveforms are illustrated
in Figs. 2 and 3, respectively.

At the beginning of interval 1, it is assumed that the value
of iLM1 is I0, and iLM2 has a negative value of −I ′0. Also,

it is assumed that S1 is ON, and the body diode of S2 is
conducting.

Interval 1 [t0 – t1]: In this interval and by conducting the S2

body diode, S2 turns ON under ZVS. During this interval, the
voltage of VL is placed across LM1 and LM2. Hence, iLM1

increases linearly, and iLM2 reduces linearly in the negative
direction, as follows:

iLM1(t) = I0 +
VL
LM1

(t− t0), (1)

iLM2(t) = −I ′0 +
VL
LM2

(t− t0). (2)

In this interval, the currents of iLM1 and iLM2 conducts
through the S1 and S2, respectively, and there are no currents
in the windings of the ideal transformers.

Interval 2 [t1 – t2]: At t1, S1 turns OFF, and the snub-
ber capacitors CS1 and CS3 start to charge and discharge,
respectively, by means of iLM1. Meanwhile, a resonance starts
between Llk and CS4 causes CS4 charging.

Interval 3 [t2 – t3]: At t2, CS1 is charged to VC , DC1

is forward biased, and the voltage of CS1 is clamped on
VC . Hence, the resonance between Llk and CS4 in interval 2
continues in this interval between Llk, CS4, and CS3. During
this resonance, CS3 is discharged from VH1 to zero, and CS4

is charged from VH2 to VH − VC . At the end of this interval,
the values of iLM1, iLM2 and iLlk are defined I1, −I ′1, and
IK0, respectively.

Interval 4 [t3 – t4]: At t3, S3 body diode is forward
biased. By conducting S3 body diode, the synchronous switch
S3 turns ON under ZVS, and thus, the current of S3 body
diode conducts through S3. In this interval, the voltage of
−(VC + VD,ON − VL) is placed across LM1, and the voltage
of LM2 is VL as yet. Hence, the equations of iLM1 and iLM2

would be:

iLM1(t) = I1 −
VC + VD,ON − VL

LM1
(t− t3), (3)

iLM2(t) = −I ′1 +
VL
LM2

(t− t3). (4)

Also, the voltage of (N + 1)(VC + VD,ON) − VH1 is placed
across Llk, hence, the equation of iLlk is given by:

iLlk(t) = IK0 +
(N + 1)(VC + VD,ON)− VH1

Llk
(t− t3). (5)

At the end of this interval, the value of iLlk is defined IK1.
Interval 5 [t4 – t5]: At t4, the current of CC reaches zero,

and so, DC1 turns OFF. Then, the current of CC increases
in the negative direction through DC3. In this interval, the
voltages of LM1 and LM2 are −(VC − VD,ON − VL) and VL,
respectively. Hence, iLM1 and iLM2 continues to reduce and
increase, respectively, at almost the same current rates in inter-
val 4. Besides, the voltage of −(VH1− (N+1)(VC−VD,ON))
is placed across Llk. Hence, the equation of iLlk is given by:

iLlk(t) = IK1 −
VH1 − (N + 1)(VC − VD,ON)

Llk
(t− t4). (6)
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Fig. 2. Equivalent circuits of twelve operating intervals in boost mode.
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At the end of this interval, the value of iLlk is defined −IK2.
Interval 6 [t5 – t6]: At t5, the synchronous switch S3

turns OFF, and the snubber capacitors CS1 and CS3 start to
discharge and charge, respectively, by means of iLM1. Mean-
while, a resonance starts between Llk and CS4 causes CS4

discharging. During this interval, CS1 discharges completely,
CS3 charges until VH1, and CS4 discharges from VH −VC to
VH2. At the end of this interval, the values of iLM1 and iLM2

are defined −I2 and I ′2, respectively.
Interval 7 [t6 – t7]: At t6, CS1 is discharges, and its body

diode turns ON. By conducting the S1 body diode, S1 turns
ON under ZVS. During this interval, the voltage of VL is
placed across LM1 and LM2. Hence, iLM1 reduces linearly
in the negative direction, and iLM2 increases linearly. In this
interval, the currents of iLM1 and iLM2 conducts through
the S1 and S2, respectively, and there are no currents in the
windings of the ideal transformers.

Interval 8 [t7 – t8]: At t7, S2 turns OFF, and the snub-
ber capacitors CS2 and CS4 start to charge and discharge,
respectively, by means of iLM2. Meanwhile, a resonance starts
between Llk and CS3 causes CS3 charging.

Interval 9 [t8 – t9]: At t8, CS2 is charged to VC , and thus,
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DC2 is forward biased. In this interval, resonance continues
between Llk, CS3, and CS4. During this resonance, CS4

discharges completely, and CS3 charges from VH1 to VH . At
the end of this interval, the values of iLM1, iLM2 and iLlk are
defined −I3, I ′3, and −IK3, respectively.

Interval 10 [t9 – t10]: At t9, S4 body diode is forward
biased and starts to conduct. By conducting S4 body diode,
the synchronous switch S4 turns ON under ZVS, and so, S4

body diode current conducts through S4. In this interval, the
voltage of −(VC +VD,ON−VL) is placed across LM2, and the
voltage of LM1 is VL as yet. Hence, the equations of iLM1

and iLM2 would be:

iLM1(t) = −I3 −
VL
LM1

(t− t9), (7)

iLM2(t) = I ′3 +
VC + VD,ON − VL

LM2
(t− t9). (8)

Also, the voltage of VH2− (N + 1)(VC +VD,ON) is placed
across Llk, hence, the equation of iLlk is obtained as follows:

iLlk(t) = −IK3+
VH2 − (N + 1)(VC + VD,ON)

Llk
(t−t9). (9)

At the end of this interval, the value of iLlk is defined −IK4.
Interval 11 [t10 – t11]: At t10, the current of CC reaches

zero, and so, DC2 turns OFF. In this interval, the voltage of
LM1, LM2 and Llk are VL, −(VC +VD,ON−VL), and VH2−
(N + 1)(VC + VD,ON), respectively. Hence, iLM1 increases
linearly, iLM2 reduces linearly, and iLlk reduces linearly in
the negative direction, at the same current rates in interval 10.
At the end of this interval, the value of iLlk is defined IK5.

Interval 12 [t11 – (t0 + T )]: At t11, the synchronous
switch S4 turns OFF, and the snubber capacitors CS2 and
CS4 start to discharge and charge, respectively, by means of
iLM2. Meanwhile, a resonance starts between Llk and CS3

causes CS3 discharging. During this interval, CS2 discharges
completely, CS4 charges until VH2, and CS3 discharges from
VH to VH1. At the end of this interval, the values of iLM1

and iLM2 are defined I0 and −I ′0, respectively, and the next
switching cycle begins.

B. Buck Mode

In the Buck mode, S3 and S4 are the main switches, and
the switches S1 and S2 act as the synchronous switches in the
complementary with S3 and S4, considering a sufficient dead-
time. Also, two phases operate with interleaved pattern and
there is a phase-shift of 180◦ between them. The equivalent
circuits of twelve operating intervals in buck mode, and the
theoretical key waveforms are illustrated in Figs. 4 and 5,
respectively.

At the beginning of interval 1, it is assumed that iLM1 has
a negative value of −I0, and the value of iLM2 is I ′0. Also,
it is assumed that S1 is ON, and the body diode of S2 is
conducting.

Interval 1 [t0 – t1]: In this interval and by conducting the S2

body diode, the synchronous switch S2 turns ON under ZVS,
and so, S2 body diode current conducts through S2. During

this interval, the voltage of −VL is placed across LM1 and
LM2. Hence, iLM1 increases linearly in the negative direction,
and iLM2 reduces linearly, as follows:

−iLM1(t) = −I0 −
VL
LM1

(t− t0), (10)

−iLM2(t) = I ′0 −
VL
LM2

(t− t0). (11)

In this interval, the currents of −iLM1 and −iLM2 conducts
through the S1 and S2, respectively, and there are no currents
in the windings of the ideal transformers.

Interval 2 [t1 – t2]: At t1, the synchronous switch S1 turns
OFF, and the snubber capacitors CS1 and CS3 start to charge
and discharge, respectively, by means of iLM1. Meanwhile, a
resonance starts between Llk and CS4 causes CS4 charging.

Interval 3 [t2 – t3]: At t2, CS4 is charged to VH − VC ,
and thus, DC3 is forward biased. In this interval, resonance
continues between Llk, CS1, and CS3. During this resonance,
CS3 discharges completely, and CS1 charges to VC . At the
end of this interval, the values of −iLM1, −iLM2 and iLlk

are defined −I1, I ′1, and IK0, respectively.
Interval 4 [t3 – t4]: At t3, S3 body diode is forward biased.

By conducting S3 body diode, S3 turns ON under ZVS. In this
interval, the voltage of VC−VD,ON−VL is placed across LM1,
and the voltage of LM2 is −VL as yet. Hence, the equations
of −iLM1 and −iLM2 would be:

−iLM1(t) = −I1 +
VC − VD,ON − VL

LM1
(t− t3), (12)

−iLM2(t) = I ′1 −
VL
LM2

(t− t3). (13)

Also, the voltage of −(VH1 − (N + 1)(VC − VD,ON)) is
placed across Llk, and iLlk reduces linearly from IK0. Hence,
the equation of iLlk is given by:

iLlk(t) = IK0−
VH1 − (N + 1)(VC − VD,ON)

Llk
(t− t3). (14)

At the end of this interval, the value of iLlk is defined IK1.
Interval 5 [t4 – t5]: At t4, the current of CC reaches zero,

and so, DC3 turns OFF. In this interval, similar to interval 4,
the voltage of LM1, LM2 and Llk are VC−VD,ON−VL, −VL,
and −(VH1 − (N + 1)(VC − VD,ON)), respectively. Hence,
−iLM1 increases linearly, −iLM2 reduces linearly, and iLlk

reduces linearly, at the same current rates in interval 4. At the
end of this interval, the values of iLlk is defined −IK2.

Interval 6 [t5 – t6]: At t5, S3 turns OFF, and the snubber
capacitors CS1 and CS3 start to discharge and charge, respec-
tively, by means of −iLM1. Meanwhile, a resonance starts
between Llk and CS4 causes CS4 discharging. During this
interval, CS1 discharges completely, CS3 charges until VH1,
and CS4 discharges from VH −VC to VH2. At the end of this
interval, the values of −iLM1 and −iLM2 are defined I2 and
−I ′2, respectively.

Interval 7 [t6 – t7]: At t6, S1 body diode is forward biased
and starts to conduct. By conducting S1 body diode, the
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Fig. 4. Equivalent circuits of twelve operating intervals in buck mode.
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Fig. 5. Theoretical key waveforms in buck mode.

synchronous switch S1 turns ON under ZVS, and so, S1 body
diode current conducts through S1. During this interval, the
voltage of−VL is placed across LM1 and LM2. Hence,−iLM1

reduces linearly, and −iLM2 increases linearly in the negative
direction. In this interval, the currents of −iLM1 and −iLM2

conducts through the S1 and S2, respectively, and there are
no currents in the windings of the ideal transformers.

Interval 8 [t7 – t8]: At t7, S2 turns OFF, and the snubber
capacitors CS2 and CS4 start to charge and discharge, respec-
tively, by means of −iLM2. Meanwhile, a resonance starts
between Llk and CS3 causes CS3 charging.

Interval 9 [t8 – t9]: At t8, CS2 is charged to VC , and thus,
DC2 is forward biased. In this interval, resonance continues
between Llk, CS3, and CS4. During this resonance, CS4

discharges completely, and CS3 charges to VH . At the end
of this interval, the values of −iLM1, −iLM2 and iLlk are
defined I3, −I ′3, and −IK3, respectively.

Interval 10 [t9 – t10]: At t9, S4 body diode and DC2 are
forward biased and starts to conduct. By conducting S4 body
diode, S4 turns ON under ZVS. In this interval, the voltage
of VC + VD,ON − VL is placed across LM2, and the voltage
of LM1 is −VL as yet. Hence, the equations of −iLM1 and
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−iLM2 would be:

−iLM1(t) = I3 −
VL
LM1

(t− t9), (15)

−iLM2(t) = −I ′3 +
VC + VD,ON − VL

LM2
(t− t9). (16)

Also, the voltage of VH2− (N + 1)(VC +VD,ON) is placed
across Llk, hence, the equation of iLlk is obtained as follows:

iLlk(t) = −IK3 +
VH2 − (N + 1)(VC + VD,ON)

Llk
(t− t9).

(17)
At the end of this interval, the value of iLlk is defined −IK4.
Interval 11 [t10 – t11]: At t10, the current of CC reaches

zero, and so, DC2 turns OFF. In this interval, similar to interval
10, the voltages of LM1, LM2 and Llk are −VL, VC+VD,ON−
VL, and VH2 − (N + 1)(VC + VD,ON), respectively. Hence,
−iLM1 reduces linearly, −iLM2 increases linearly, and iLlk

increases linearly, at the same current rates in interval 10. At
the end of this interval, the value of iLlk is defined IK5.

Interval 12 [t11 – (t0 + T )]: At t11, S4 turns OFF, and the
snubber capacitors CS2 and CS4 start to discharge and charge,
respectively, by means of −iLM2. Meanwhile, a resonance
starts between Llk and CS3 causes CS3 discharging. During
this interval, CS2 discharges completely, CS4 charges until
VH2, and CS3 discharges from VH to VH1. At the end of this
interval, the values of −iLM1 and −iLM2 are defined −I0 and
I ′0, respectively, and the next switching cycle begins.

III. CONVERTER SPECIFICATIONS

This section describes the key specifications of the proposed
converter, including the voltage-gain, stresses of the switches,
and the current ripple cancellation. For this purpose, the
following assumptions are considered in the analysis:
• The operating duty-cycle in boost mode (duty cycle of
S1 and S2) and buck mode (duty cycle of S3 and S4) are
D and D′, respectively.

• The resonance intervals (intervals 2, 3, 6, 8, 9, and 12) are
very short, and these intervals are omitted in the analysis.
Besides, the voltage drop of the diodes is omitted here
(VD,ON = 0). Based on these simplifications, some of the
required simplified waveforms of the proposed converter
in boost mode are shown in Fig. 6.

A. Voltage-Gain and Voltage Stress of Semiconductors

In the steady-state condition, the average voltage across each
converter inductor is equal to zero (i.e., volt-second balance).
Considering this fact, and from the simplified waveform of
vLM1 (or vLM2) in Fig. 6, the value of VC is derived as

VC =
VL

1−D
. (18)

Also, due to the almost symmetrical operation of the pro-
posed converter, we have VH1 = VH2. Hence, considering that
VH1 + VH2 = VH , the following equation would be obtained:
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Fig. 6. Simplified waveforms of the proposed converter in boost mode.

VH1 = VH2 =
VH
2
. (19)

From equivalent circuit of interval 11 in boost mode (See
Fig. 2), and using the KVL and KCL laws, we have −VL +
LM2

diLM2

dt −NVC−Llk
diLlk

dt +VH2 = 0 and iLM2 = −(N+
1)iLlk. Using these equations, and also from (18), (19), (42),
(43), and (44), the voltage-gain of the proposed converter in
boost mode would be obtained as:

VH
VL

=
2(1 +N)−Dα

1−D
, (20)

where, α is given by

α =
2N2(1− k2)

(N + 1)k2
. (21)

Similarly, in the buck mode and considering the value of α
given by (21), the voltage-gain is derived as:

VL
VH

=
D′

2(N + 1)− (1−D′)α
. (22)

Based on (20), (21), and (22), the voltage-gain of the
proposed converter versus duty-cycle for different values of
k considering N = 1 are plotted in Fig. 7(a).

In an ideal case that coupling is complete (k = 1), from
(21), the value of α would be equal to zero. Hence, from (20)
and (22), the voltage-gains in boost and buck modes when
k = 1 are given by (23) and (24), respectively.

VH
VL

=
2(1 +N)

1−D
, (23)

VL
VH

=
D′

2(N + 1)
. (24)

From (23) and (24), the voltage-gain of the proposed
converter for different values of N are plotted in Fig. 7(b).

Based on the analysis of the converter operation, the voltage
stress of the switches S1 and S2, and diodes DC1 and DC2 is
equal to VC . From (18) and (23), the voltage of VC , and so,
the voltage stress of S1, S2, DC1, and DC2 is derived as:

VC =
VH

2(N + 1)
. (25)
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Fig. 7. (a) Voltage-gain versus duty-cycle for different values of k (N = 1).
(b) Voltage-gain versus duty-cycle for different values of N (k = 1). (c)
Voltage stress of switches versus N (k = 1).

Moreover, the voltage stress of switch S4 and diode DC3 is
VH−VC . By using the equation (25), the voltage of VH−VC ,
and so, the voltage stress of S4 and DC3 is obtained as:

VH − VC =
(2N + 1)VH

2(N + 1)
. (26)

Finally, the voltage stress of S3 is VH . Based on the derived
equations, the voltage stress of the converter switches versus
N , considering k = 1, are plotted in Fig. 7(c).

B. Current Ripple Cancellation

In the proposed converter, similar to the converters with
WCCIs [47], the current-ripple-cancellation is feasible. To
illustrate this point, based on the defined currents in Fig. 1(b),
the LVS currents of upper phase (iL1) and lower phase (iL2)
are equal to iLM1−N1iLlk and iLM2 +N2iLlk, respectively.

Since the current of LVS (iV L) is equal to iL1+ iL2, the value
of iV L would be obtained as:

iV L = iLM1 + iLM2 −N1iLlk +N2iLlk. (27)

From (27), if the turn ratios of the ideal transformers in
the model are equal (N1 = N2), regardless of iLlk shape, we
always have iV L = iLM1 + iLM2. On the other hand, if the
shape of iLM1 and iLM2 are the same with a phase-shift of
180◦, the LVS-current-ripple cancellation is feasible. For this
purpose, the main switches in each operation mode should
be driven with the interleaved pattern in which a phase-shift
of 180◦ is applied between them. Besides, in the ideal case,
the operating duty cycles of both phases, the average values
of phases current and each phase’s specifications should be
the same. The simplified waveforms of iLM1, iLM2 and iV L

shown in Fig. 6 are clarified the mentioned points. Hence, if
the mentioned conditions is satisfied, regardless of converter
operation mode, output power, and the voltage levels of LVS
or HVS, the current ripple cancellation would be obtained.
From Fig. 6, the current-ripple of the LVS current (∆iV L)
would be derived as:

∆iV L =
2VL(D − 0.5)

LMf
, (28)

where, f is the operating switching frequency of the converter.
Also, the current-ripple ratio of LVS current (iV L) to magne-
tizing inductor current (iLM ) is obtained as:

∆iV L

∆iLM
=

2(D − 0.5)

D
. (29)

From (28) and (29), the normalized value of ∆iV L versus
duty-cycle, and ∆iV L/∆iLM versus duty-cycle are depicted
in Fig. 8.

IV. DESIGN CONSIDERATIONS

This section describes various design parameters of the
proposed converter. For this purpose, the initial points that
should be considered are as follows:

• Since the voltage waveforms of LM1 and LM2 include
two similar waveforms with a phase-shift of 180◦, to
realize the current-ripple-cancellation, the values of the
magnetizing inductors LM1 and LM2 should be equal
(LM1 = LM2 = LM ).

• The average values of iLM1 and iLM2 are equal (ILM ).
In fact, the current-balance between the two phases is
established.

• As discussed in the previous section, to realize the
current-ripple-cancellation, the turn ratios of the ideal
transformers in the model should be selected the same
(N1 = N2 = N ).

• Due to similar condition of the LVS switches (S1 and
S2), the values of their snubber capacitors can be selected
the same (CS1 = CS2 = CSL). Similarly, since the
conditions of the HVS switches (S3 and S4) are almost
the same, the values of their snubber capacitors are
selected equally (CS3 = CS4 = CSH ).
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Fig. 8. (a) Normalized value of LVS current ripple (∆iV L) versus duty-cycle.
(b) Current-ripple ratio of LVS current (iV L) to magnetizing inductor current
(iLM ) versus duty-cycle.

A. ZVS Condition

To guarantee the ZVS condition of the proposed converter in
boost mode, at the beginning of intervals 6 and 12, the stored
energy in LM1 and LM2 should be sufficient to discharge CS1

and CS3 from VC to zero, and to charge CS2 and CS4 from
zero to VH/2. Similarly, in buck mode, at the beginning of
intervals 2 and 8, the sufficient energy should be stored in
LM1 and LM2 to discharge CS2 and CS4 from VH/2 to zero,
and charge CS1 and CS1 from zero to VC . Considering the
simplified waveforms of iLM1 and iLM2 in Fig. 6, the current
values of LM1 and LM2 at the beginning of intervals 6 and
12 correspond with the negative peak value of iLM1 and iLM2

(−ILM,P
−). Consequently, the ZVS condition in the proposed

converter would be written as follows:

1

2
LM (−ILM,P

−)2 >
1

2
CSLVC

2 +
1

2
CSH(

VH
2

)2. (30)

It worths mentioning that the ZVS condition of (30) is
also valid in buck mode since the current values of LM1 and
LM2 at the beginning of intervals 2 and 8 of buck mode also
correspond with the negative peak value of iLM1 and iLM2

(−ILM,P
−).

By substituting VC from (25) in (30), and by considering an
additional 50% margin for the tolerances of the devices and
losses of parasitics elements, the ZVS condition in both the
boost and buck operation modes would be derived as

−ILM,P
− < −1.5VH

2

√
1

LM
(CSH +

CSL

(N + 1)2
). (31)

It worths mentioning that the value of LM1 and LM2 (LM )
determines the value of −ILM,P

− based on the operating
condition of the converter, which is discussed in Subsection
C.

B. Selection of Snubber Capacitors

The snubber capacitors are responsible for the reduction of
switches turn-OFF losses. It should be noted that using the
larger values for the snubber capacitors causes the reduction
of the switches turn-OFF losses. However, as (31) shows, when
the values of snubber capacitors (CSL and CSH ) are selected
large, the required value of −ILM,P

−, and so, the current
ripple of iLM1 and iLM2 would be increased. This issue causes
increased conduction and core losses. Hence, in the proposed
converter, the selecting the minimum values for the snubber
capacitors is desirable.

C. Design of LM1 and LM2 to Obtain ZVS Condition

The value of magnetizing inductors LM1 and LM2 (LM )
determines the current ripple of iLM , and so the value of
−ILM,P

−. Hence, the value of LM has an important role in
providing ZVS condition in (31). To ensure the ZVS condition
(31) in the entire operating range, the value of LM should be
selected at the worst-case operating point, when, the average
value of iLM1 and iLM2 (ILM ) has the maximum value
(ILM,max). In this operating point, iLM1 and iLM2 has the
maximum level and the value of |−ILM,P

−| is minimized.
Hence, if the value of LM is designed for this operating
point, in the other operating points where the value of ILM is
reduced, the value of |−ILM,P

−| is increased, and the ZVS
condition of (31) would be satisfied. As a result, the ZVS
condition is obtained for the entire operating range of the
converter.

In the proposed converter, since iV L = iLM1 + iLM2,
IV L = Po/VL, and ILM1 = ILM2 = ILM , the average value
of iLM (ILM ) would be equal to Po/2VL. Hence, the value of
ILM is maximized when the converter operates in maximum
output power (Po,max) and VL has the minimum value (VL,min).
Consequently, the maximum average value of iLM1 and iLM2

(ILM,max) would be obtained as:

ILM,max =
Po,max

2VL,min
. (32)

Fig. 9(a) illustrates the simplified waveform of iLM1 at
operating point that the average value has the maximum value
(worst-case condition). In Fig. 9(a), to simplify the analysis,
the value of ∆iLM is considered 2(1+β)ILM,max. Hence, the
value of the negative peak would be −βILM,max. From Fig.
9(a), the value of LM is

LM =
VL,minDmax

2fmin(1 + β)ILM,max
, (33)

where, fmin is the minimum switching frequency, and the value
of ILM,max is obtained from (32). It worths mentioning that
fmin is considered when the converter operates with variable
frequency control. The variable frequency control is discussed
in the next subsection. If the converter operates with the
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Fig. 9. (a) Simplified waveform of iLM1 when its average value (ILM ) has
maximum value. (b) Design process of LM value.

constant switching operation, the switching frequency should
be considered for fmin. Besides, Dmax is the maximum value
of duty cycle in boost mode. From (23), the value of Dmax is
derived as:

Dmax = 1− 2VL,min(1 +N)

VH,max
. (34)

Now, to design of LM from (33), it is important to select the
value of β, such that the value of −ILM,P

− is large enough to
satisfy ZVS condition in (31). Since −ILM,P

− = −βILM,max,
if β > 0, the value of −ILM,P

− would be in the negative
region. By a proper over design, the initial value of β can
be selected equal to one, and so, the values of −ILM,P

−

and ∆iLM would be −ILM,max and 2ILM,max, receptively.
Based on these values and the converter specifications, the
ZVS condition in (31) is checked. If the ZVS condition is
satisfied, the design of LM value is finished. Otherwise, the
value of β should be selected larger (β = β + 0.5), and the
design procedure of LM value is repeated. Fig. 9(b) illustrates
the design process of LM value, as discussed above. Note that
the discussed design procedure of LM is valid in both boost
and buck operation modes.

1LM
i

OFF
T

ON
T

/ /
L M

di dt V L= / ( ) /
C L M

di dt V V L= − −

,max
2( )

LM LM LM
i I I = +

,max
( )

LM LM
I I

, ,maxLM P LM
I I−− = −
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Fig. 10. (a) Waveform of iLM1 at the operating point that ILM < ILM,max
and −ILM,P

− = −βILM,max. (b) Values of f/fmin versus ILM/ILM,max
for a specific values of VL and VH . (c) Overall block diagram of the control
circuit.

D. Variable Frequency Control

Generally, in TCM operation, to achieve the ZVS condition
and reverse recovery cancellation, the main inductors are
designed such that their currents flow in both direction. When
the converter operates at a constant switching frequency, the
current ripple of main inductors is almost constant for different
operating conditions. This issue results in almost constant
conduction and core losses, which drops the light loads’
efficiency. To alleviate this problem, the variable frequency
control (VFC) can be applied such that when the output power
is reduced, the switching frequency is increased to reduce the
current ripple of main inductors.

In the selection of the switching frequency in proportion to
the output power, as discussed in subsection C, it should be
noted that the negative value of iLM1 and iLM2 (−ILM,P

−)
must always be at the desired level to satisfy the ZVS condition
(−ILM,P

− = −βILM,max).
Fig. 10(a) illustrates the waveform of iLM1 at the operating

point that its average value is lower than maximum value
(ILM < ILM,max). Also, its negative value is at the level

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on September 08,2021 at 17:15:43 UTC from IEEE Xplore.  Restrictions apply. 



0885-8993 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2021.3106668, IEEE
Transactions on Power Electronics

IEEE TRANSACTIONS ON POWER ELECTRONICS 11

of −βILM,max, which satisfies the ZVS condition. From Fig.
10(a), considering that f = 1/T = 1/(TON +TOFF), and from
(25), the value of switching frequency f corresponds to this
operating point would be

f =
VL(VH − 2VL(N + 1))

2LMVH(ILM + βILM,max)
. (35)

From (35), and based on measured values of VH , VL, and
ILM , the value of switching frequency can be calculated.
Based on (35), and for a specific values of VL and VH , the
values of f/fmin versus ILM/ILM,max are depicted in Fig.
10(b).

To reduce the variables that need to be measured from the
converter, and by substituting VL or VH from (23) in (35), the
value of switching frequency f can be calculated from

f =
VH(1−D)

4LM (1 +N)(ILM + βILM,max)
, (36)

or,

f =
VLD

2LM (ILM + βILM,max)
, (37)

where, in (36), the variables that need to be measured from
the converter include ILM and VH . Also, the equation (37)
requires ILM and VL. It worths mentioning that the equations
(35), (36), and (37) are valid in both boost and buck operation
modes.

Fig. 10(c) illustrates the overall block diagram of the control
circuit based on the calculation of f from (37). The average
current mode control can be utilized for each phase to control
the current and obtain the current balancing between phases.
The value of IL,ref is determined from an outer control unit,
based on the condition and requirements of the system.

In the proposed converter, the values of iL1 and iL2 are
equal to iLM1 −NiLlk and iLM2 +NiLlk, respectively (See
Fig. 1(b)). Since the average value of iLlk is equal to zero
(ILlk = 0), the equations of IL1 = ILM1 and IL2 = ILM2

are established. Assuming that the current balancing between
phases is established, we have IL1 = IL2 = ILM . Hence, the
measured value of IL1 (or IL2) would be equal to ILM .

It worths mentioning that to implement the VFC unit, as
illustrated in Fig. 10(c), an additional processor is required
to calculate the corresponding switching frequency. This way,
compared to constant switching operation, the switching losses
at light loads are reduced, resulting in improved efficiency at
light loads. On the other hand, to implement the control unit in
constant switching frequency, the frequency calculation unit is
eliminated, and only the sawtooth wave with constant switch-
ing can be applied. Hence, in constant frequency operation,
the converter control would be more simple, albeit with the
cost of reduced efficiency.

V. EXPERIMENTAL RESULTS

To verify the theoretical analysis, a prototype of the pro-
posed converter is implemented. Table I presents the prototype
specifications and values/part numbers of the components.

TABLE I
PROTOTYPE SPECIFICATIONS AND VALUES/PART NUMBERS OF UTILIZED

COMPONENTS.

  

 

Symbol Parameter Value/Part Number 

𝑃𝑜 Output Power 400 W 

𝑉𝐻  HVS Voltage 400 V 

𝑉𝐿 LVS Voltage 48 V 

𝑓min Minimum Switching Frequency 100 kHz 

𝑆1 , 𝑆2  LVS Switches IRF200P223 
(200 V / 100 A) 

𝑆3 , 𝑆4 HVS Switches IPW65R041CFD 
(650 V / 68.5 A) 

- Magnetic Cores High Flux C058110A2 

𝐿𝑀   Magnetizing Inductance 17.3 µH 

𝑁  Turn Ratio 0.67 

𝐿𝑙𝑘 Equivalent Leakage Inductance 2.8 µH 

𝐶𝐶  Clamp Capacitor MKT1820547165  

(4.7 µF / 160V) 

𝐶𝐻1 , 𝐶𝐻2 HVS Capacitors B32526R3686K000  

(68 µF / 250V) 
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Fig. 11. Operating frequency (f ) of the prototype converter versus output
power (Po) in the variable frequency operation.

A. Design Procedure

Based on the values of VL and VH , considering the op-
erating duty cycle of 0.6 in the boost mode (D = 0.6),
from (23), the value of turn ratio (N ) is obtained 0.67.
From (25), the voltage stress of S1 and S2 is 120 V. Also,
the voltage stress of S3 is 400 V (VH ), and from (26),
the voltage stress of S4 would be 280 V. For S1 and S2,
IRF200P223 (VDS = 200 V, RDS(ON) = 9.5 mΩ, Coss =
628 pF) is utilized. Also, IPW65R041CFD (VDS = 650 V,
RDS(ON) = 37 mΩ, Coss = 400 pF) is used for S3 and S4.
The output capacitors of switches are utilized as the snubber
capacitors. Hence, we have CS1 = CS2 = CSL = 628 pF and
CS3 = CS4 = CSH = 400 pF.

To select the inductance value of LM , based on the design
process in Fig. 9(b), values of ILM,max and Dmax are obtained
4.17 A and 0.6, respectively. Moreover, from Fig. 9(b) and
considering β = 1, the values of ∆iLM , −ILM,P

− and LM

would be obtained 16.7 A, –4.17 A and 17.3 µH, respectively.
Finally, from ZVS condition, the valid equation of −4.17 A <
−1.80 A would be obtained. Hence, the design process is
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Fig. 12. Experimental waveforms (time scale is 4 µS/div) at full-load (400 W) (f=100 kHz) in (a) boost mode. (b) buck mode.
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Fig. 13. Experimental waveforms (time scale is 4 µS/div) at 25% of full-load (100 W) (f=100 kHz) under constant frequency operation in (a) boost mode.
(b) buck mode.

finished with the obtained values. For the magnetic cores, high
flux toroid C058110A2 (Ve = 20.7 cm3, Ae = 144 mm2) is
utilized. The number of windings turns of the primary and
secondary sides is 15 and 11, respectively.

Based on the converter specifications, the voltage of capaci-
tors CH1 and CH2 is 200 V (VH/2), and the voltage of clamp
capacitor (VC) would be 120 V. For the capacitors CH1 and
CH2, Film Capacitor B32526R3686K000 (68 µF / 250 V) is
utilized. Also, Film Capacitor MKT1820547165 (4.7 µF / 160
V) is applied for the clamp capacitor CC .

Finally, to implement the variable frequency control for
improving the efficiency at light loads, based on the oper-
ating condition and parameters of the converter, the operating
switching frequency is calculated from (37). For the operating
point of VL = 48V and VH = 400V, the operating frequency
of the prototype converter versus output power (Po) in the
variable frequency operation is depicted in Fig. 11.

B. Experimental Waveforms

Here, the prototype converter’s experimental waveforms are
presented. Fig. 12 shows the proposed converter’s experimen-
tal waveforms at full-load condition (400 W). Moreover, the
experimental waveforms at 25% of full load (100 W) with
constant frequency operation (100 kHz) are shown in Fig. 13.
It worths mentioning that in both constant frequency operation
and variable frequency control, the converter operates with the
switching frequency of 100 kHz at the full-load condition.

As seen in Figs. 12 and 13, the experimental waveforms
are in accordance with the theoretical analysis, including all
the switches voltage stresses. The main switches’ waveforms
clearly show the ZVS condition as their voltages drop to zero
completely before the main switches’ turn-ON instants. As
observed from the synchronous switches’ current waveforms,
the current direction is changed through the switch before the
switch’s turn-OFF instant. Hence, the synchronous switches’
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Fig. 14. Experimental waveforms (time scale is 4 µS/div) at 25% of full-load (100 W) (f=160 kHz) under variable frequency control in (a) boost mode. (b)
buck mode.
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Fig. 15. Prototype’s loss breakdown at different output power conditions
under (a) Constant frequency operation. (b) Variable frequency control.

body diodes do not conduct in this region, and the reverse
recovery losses of the synchronous switches body diodes are
eliminated. According to current waveforms of LVS (iV L in
boost mode and −iV L in buck mode), the LVS current benefits
from the continuous-non-pulsating state.
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Note: The losses of utilized laboratory circuits for control and gate drive are included. 

Fig. 16. Calculated and measured efficiency curves of the prototype con-
verter versus output power under constant frequency operation and variable
frequency control.

Fig. 14 shows the experimental waveforms of the proposed
converter at 25% of full load (100 W) under variable frequency
control. According to Fig. 11, in the prototype converter, when
the output power (Po) is 100 W, the switching frequency would
be equal to 160 kHz. As seen in Fig. 14, the proposed converter
features, including voltage stresses, ZVS, elimination of diode
reverse recovery, and continuous-non-pulsating state of LVS
current, are still well established. Besides, compared to the
experimental waveforms of 100 W under the constant switch-
ing frequency of 100 kHz shown Fig. 13, the current-ripples
of the magnetic elements as well as switches are reduced
significantly. This feature causes reduced conduction losses
and core losses, which is clarified in the next subsection.

C. Power Losses Analysis and Comparison

Fig. 15 presents the prototype’s loss breakdown at different
output power conditions under constant frequency operation
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TABLE II
COMPARISON BETWEEN THE PROPOSED CONVERTER AND PREVIOUS COUNTERPART CONVERTERS.
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No. of Switches 6 5 4 4 4 4 4 4 4 4 

No. of Mag. Cores 3 1 1 1 3 1 2 3 1 2 

No. of Capacitors 3 3 2 3 5 3 3 4 3 3 

LVS Cur. Ripple Very Low Low High High Very Low High Low Very Low High Low 

Continuous LVS Cur. Yes No No No Yes No Yes Yes No Yes 

Switching Cond. ZVS ZVS ZVS ZVS Hard ZVS ZVS ZCS ZVS ZVS 

Prototype Peak Power 500 W 200 W 300 W 200 W 400 W 1 kW 1 kW 600 W 400 W 400 W 

Exp. Peak Eff. 97.1% 97.3% 96. 4% 96.8% 94.2% 96% 95.8% Not Reported 96.5% 96.6%1 

Design Scalability No No No No No No No No Yes No 

Control Approach 
Volt. Matching 

 Control 
Not Reported 

Voltage-Mode 
Control 

Not Reported 
Voltage-Mode 

Control 
Volt. Matching 

 Control 
PWM-PPS 

Control 
Current-Mode 

Control 
PWM-PPS 

Control 
Current-Mode 

Control2 

Volt. Stress of LVS 
Switches3 

𝑉𝐻

2𝑁 + 1

𝑉𝐻

1 + 𝑁(2 − 𝐷)

𝑉𝐻

𝑁 + 2

𝑉𝐻

𝑁 + 2

𝑉𝐻

𝑁 + 2

𝑉𝐻

𝑁 + 1

𝑉𝐻

𝑁 + 1

𝑉𝐻

𝑁(𝑁 + 1) + 1

𝑉𝐻

𝑁 + 2

𝑉𝐻

2(1 + 𝑁)

Volt. Stress of HVS 
Switches3 

𝑁𝑉𝐻

2𝑁 + 1

𝑁𝑉𝐻

1 + 𝑁(2 − 𝐷)
(𝑁 + 1)𝑉𝐻

𝑁 + 2

(𝑁 + 1)𝑉𝐻

𝑁 + 2
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𝑁 + 1

(1 + 2𝑁(1 + 𝑁))𝑉𝐻

𝑁 + 1

(𝑁 + 1)𝑉𝐻

𝑁 + 2
𝑉𝐻 , 

(2𝑁 + 1)𝑉𝐻

2(𝑁 + 1)

Voltage Gain3 
2𝑁 + 1
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1 + 𝑁(2 − 𝐷)
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𝑁 + 2

1 − 𝐷

𝑁 + 2
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𝑁 + 1
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𝑁(𝑁 + 1) + 1

1 − 𝐷
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1 − 𝐷

2(1 + 𝑁)

1 − 𝐷

1 The losses of utilized circuits for control and gate drive are ignored.  
2 In both constant frequency operation and variable frequency control.  
3 In boost mode (D is the converter duty-cycle in boost mode) and in the ideal case (k = 1). 

and variable frequency control.

The conduction losses of the switches and windings are
calculated from RDS(on)I

2
RMS,Switch and RDC,CoilI

2
RMS,Coil,

respectively, where the currents’ RMS values have been
measured from the experimental waveforms. Based on the
specifications of the selected switches and at the junction
temperature (Tj) of 75°C, RDS(ON) for the LVS switches
S1 and S2 is 14 mΩ, and for the HVS switches S3 and
S4 is 56 mΩ. Also, RDC,Coil for the primary and secondary
windings of the coupled inductors are 18 mΩ and 13 mΩ,
respectively. It is worth mentioning that the conduction losses
of the converter capacitors CH1, CH2 and CC are calculated
from RESRI

2
RMS,Cap, where RESR is the equivalent series

resistance of the capacitors. Due to low values of RESR of
the capacitors, the calculated values of capacitors’ conduction
losses are obtained below 50 mW. Hence, the capacitors’
conduction losses are neglected in loss analysis.

The clamp circuit losses include the conduction losses
of diodes DC1, DC2 and DC3 that is calculated from
VD,ONIavg,D. Based on the specifications of the selected diodes
and at the junction temperature (Tj) of 75°C, VD,ON is
considered equal to 1 V. Moreover, the currents’ average values
have been measured from the experimental waveforms.

The core losses are obtained from the manufacturer’s core
loss density curves. According to the manufacture information,
the curves of core loss density are theoretically obtained from
Steinmetz equation PC = aBbf c, where PC is the core loss
density in mW/cm3, B is the peak flux density in Tesla (T),
and f is the switching frequency in kilohertz (kHz). Besides,
a, b, and c are the Steinmetz coefficient provided by the
manufacturer. For the selected core, the Steinmetz coefficients
are a = 246.54, b = 2.218, and c = 1.311. In the end,
a constant loss of 3 W is considered as ”other losses” for
the losses of the control and gate drive circuits, based on the

utilized laboratory circuits.
As seen in Fig. 15, in variable frequency control, compared

to constant frequency operation, the conduction losses of the
converter have a significant reduction at light loads. The reason
is that, in variable frequency control, as the output power
is reduced, the switching frequency is increased; hence, the
current ripple of the switches and inductors is reduced. It
worths mentioning that, based on the theoretical Steinmetz
equation PC = aBbf c for calculating the core loss density,
when the output power is reduced, the current ripple and the
peak flux density B is reduced, but on the other hand, the
switching frequency f is increased. Hence, as shown in Fig.
15, the core losses in variable frequency control compared to
constant frequency operation do not significantly reduce.

Based on the loss breakdown in Fig. 15, the calculated
efficiency curves of the prototype converter are illustrated in
Fig. 16. Besides, to confirm the validity of the loss analysis,
the measured efficiency curves of the prototype converter
are illustrated in Fig. 16. As seen, the experimental peak
efficiencies of 95.6% and 95.9% are respectively obtained for
boost and buck modes at full-load (400 W) by considering
the losses of utilized circuits for control and gate drive.
Furthermore, regardless of control and gate drive circuits
losses, the experimental peak efficiencies at full-load in boost
and buck modes are obtained 96.3% and 96.6%, respectively.

The key specifications comparison between the proposed
converter and previous counterpart converters are presented
in Table II. For better comparisons and based on Table II,
the curves of the voltage-gains and voltage stresses of the
converters versus windings turn ratio (N ) for the operating
duty cycle of 0.6 in boost mode (D = 0.6) are plotted in Fig.
17.

It can be seen that compared to other topologies, the HVS
voltage stress of the proposed converter is higher. However, as
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Fig. 17. Comparison between the proposed converter and previous counterpart
converters in boost mode (D = 0.6). (a) Voltage-gains. (b) Voltage stresses
of LVS switches. (c) Voltage stresses of HVS switches.

seen in the loss analysis, despite using typical switches with
high voltage rating for HVS switches, the overall conduction
losses are small due to the low current levels of HVS switches.
As a result, this drawback has no significant effect on the
converter efficiency.

VI. CONCLUSION

A high step-up/step-down converter is introduced provides
features such as bidirectional power-flow ability, excellent

voltage-gain, very low voltage stress of LVS switches, current
sharing, current ripple cancellation, zero voltage switching,
elimination of diodes reverse recovery, reduced values of
inductors and leakage inductors, and simple clamp circuit.
The converter’s operation in both boost and buck modes was
comprehensively discussed. Besides, the converter specifica-
tions were presented, including the voltage-gains in both the
ideal and non-ideal cases, the voltage stresses of switches in
the ideal case, and current ripple cancellation feasibility. The
design considerations were presented considering ZVS in the
converter’s entire operating region. To improve the light-load
efficiency, the variable frequency control was investigated,
including all the required equations. Finally, to verify the
analysis, the experimental results of a 48 V–400 V, 400
W prototype converter were presented. Due to the proposed
converter’s superior voltage-gain, the mentioned voltage con-
version was obtained with reasonable duty-cycle of 0.6 (in
boost mode) and windings turn ratio of about 0.7. Moreover,
the voltage stress of 120 V was achieved for LVS switches,
and the voltage stresses of upper and lower HVS switches
were respectively obtained 400V and 280V. The prototype
converter’s experimental waveforms were all matched with the
theoretical analysis. The experimental efficiencies of 95.6%
and 95.9% were obtained for boost and buck modes at full-
load (400 W), respectively. Furthermore, regardless of control
and gate drive circuits losses, the experimental peak efficien-
cies at full-load in boost and buck modes were respectively
achieved 96.3% and 96.6%. Besides, the measured efficiencies
of variable frequency control compared to constant frequency
operation at 25% of full-load (100 W) show the improvement
of 3% and 2.4% in boost and buck modes, respectively.

APPENDIX A

Here, the parameters of the utilized model for coupled-
inductors are obtained. From Fig. 18(a), v1 and v2 are:

v1 = L1
di1
dt

+ k
√
L1L2

di2
dt
, (38)

v2 = k
√
L1L2

di1
dt

+ L2
di2
dt
. (39)

From the equivalent circuit of the coupled inductor in Fig.
18(b), v∗1 and v∗2 are:

v∗1 = LM
di∗1
dt

+NLM
di∗2
dt
, (40)

v∗2 = NLM
di∗1
dt

+ (Llk +N2LM )
di∗2
dt
. (41)

From (38), (39), (40), and (41), considering v1 = v∗1 , v2 = v∗2 ,
i1 = i∗1 and i2 = i∗2, the parameters of the equivalent circuit
would be:

LM = L1, (42)

Llk = (1− k2)L2, (43)

N = k

√
L2

L1
. (44)
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Fig. 18. Equivalent circuit of coupled inductors. (a) Coupled inductors. (b)
Equivalent circuit.
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