
Why is Software Engineering so

difficult?

James Miller

Scale and Complexity

• Real Software Engineering problems are:

– Huge …. Vast volumes of code, documentation, ….

– Complex …. Vast volumes of people, many different

objectives,…

• University Software Engineering problems are:

– Small and straight-forward

• This clearly causes a problem in appreciating

– What is really going on; and

– What the problems really are

Scale and Complexity

Windows 7 > 50 million LOC

Expect a staggering number of bugs.

Bugs?

• Well-written C and C++ code contains

some 5 to 10 errors per 100 LOC after a

clean compile, but before inspection and

testing.

• At a 5% rate any 50 MLOC program will

start off with some 2.5 million bugs.

Bug removal

• Testing typically exercises only half the code.

• It’s hard to devise tests that check rarely-invoked

exception handlers, deeply nested IFs and nested

loops.

• So the 50% test coverage number suggests that

Windows 7 shipped with 1.25 million bugs.

Better bug removal?

• “There are better ways to do testing that do produce
fantastic programs.”

• Are we sure about this fact?

– No, its only an opinion!

– In general Software Engineering has ….

NO FACTS!

• Code coverage, for instance, can insure every branch
and conditional has been taken. It’s required by the
FAA’s DO-178B level A standard for safety-critical
avionics.

So why not do this?

• The costs are unbelievable.

• It’s not unusual for the qualification process to
produce a half page of documentation for each line
of code.

• A 50 MLOC program’s doc might be:

– 25 million pages long,

– consuming 50,000 reams of paper

– a stack 2 miles high.

• Will Windows 8 undergo this evaluation? No.

Are embedded systems better?

Programs are gigantic today, and will be

simply unbelievable tomorrow.

Is that the entire story?

No!

Why is Software Engineering so difficult?

Scale and

Complexity

No Universal

laws or

techniques

No physical

Components

Business

Context

Humans and Social

Engineering

Management Workers
Customers and

users

Wicked

Problems

Wicked Problems

Why mathematics can’t solve

everything; and why simple

procedural techniques don’t work!

Problems….

• … can be split into two types

• Tame problems – typically the sort of thing

dealt with in classes.

• Wicked problems – commonly found in

many real-world settings especially within

the IT industry.

• Wicked problems have 6 characteristics.

1. You don’t understand the

problem until you have developed

a solution.
Every solution that is offered exposes new
aspects of the problem, requiring further
adjustments of the potential solutions. Indeed,
there is no definitive statement of “The
Problem.”

The problem is ill structured, an evolving set
of interlocking issues and constraints.

• One cannot understand the problem without

knowing about its context;

• one cannot meaningfully search for

information without ideas about the solution.

• one cannot first understand, then solve.

• Moreover, what “the Problem” is depends on

who you ask – different stakeholders have

different views about what the problem is and

what constitutes an acceptable solution.

2. Wicked problems have no

stopping rule.

• Since there is no definitive “The Problem”, there

is also no definitive “The Solution.”

• The problem solving process ends when you run

out of resources, such as time, money, or energy,

not when some optimal or “final and correct”

solution emerges.

• Herb Simon, Nobel laureate in economics, called

this “satisficing” -- stopping when you have a

solution that is “good enough”

3. Solutions to wicked problems

are not right or wrong.
• They are simply “better,” “worse,” “good

enough,” or “not good enough.”

• With wicked problems, the determination of
solution quality is not objective and cannot be
derived from following a formula.

• Solutions are assessed in a social context in which:
- “many parties are equally equipped, interested,
and/or entitled to judge [them],”

 - and these judgments are likely to vary widely
and depend on the stakeholder’s independent
values and goals.

4. Every wicked problem is

essentially unique and novel.
• There are so many factors and conditions, all embedded in a

dynamic social context, that make no two wicked problems
alike….

• solutions to them will always be custom designed and
fitted.

• “The condition in a city constructing a subway may look
similar to the conditions in Edmonton, … but differences in
commuter habits or residential patterns may far outweigh
similarities in subway layout, downtown layout, etc”

• Over time one acquires wisdom and experience about the
approach to wicked problems, but one is always a beginner
in the specifics of a new wicked problem.

5. Every solution to a wicked

problem is a “one-shot

operation.”
• Every attempt has consequences.

• “One cannot build a freeway to see how it

works.”

• This is the “Catch 22” about wicked problems:

you can’t learn about the problem without trying

solutions, but every solution you try is expensive

and has lasting unintended consequences which

are likely to spawn new wicked problems.

6. Wicked problems have no

given alternative solutions.

• There may be no solutions, or there may be a host of

potential solutions that are devised, and another host

that are never even thought of.

• Thus, it is a matter of creativity to devise potential

solutions,

• and a matter of judgment to determine which are valid,

which should be pursued and implemented.

• These criteria are more descriptive than definitional.

• Here are a few examples of wicked
problems:

 - Whether to route the highway through our
city or around it?

 - How to deal with crime and violence in
our schools?

 - What to do when oil resources run out?

 - What should our mission statement be?

 - What features should be in
our new product?

Wicked Problem Example:

A New Car Design
• Let's consider a potentially wicked problem in the

design of a new car.

• Let’s imagine a project team that has formed around
a new assignment:

 the Marketing department is asking for a design
that emphasizes side-impact safety – they want to
promote a new “safe car” to compete with Volvo.

• The problem to be solved is the work of the project.

• There is a deadline, a budget and a senior executive
that the project reports to….

1. You don’t understand the problem

until you have developed a solution.

• One approach to making a safer car would be to add
structural supports in the doors.

• It turns out that the additional door structure:

– doubles the cost of the door,

– makes the doors heavier and harder to open and close,

– changes the fuel mileage and ride,

– and requires an adjustment to the suspension and braking
systems.

• Making the doors stronger leads into other design
problems.

• It also bounces back into marketing problems
such as:

 - “What should the price be?”,

 - “How much do people really care about side
impact survivability?”,

 - “What do customers really want in a car?”

• All of these problems interact with each other.

• And at the senior executive level, the real
question is:

 “Should we continue to produce this new car?”

2. Wicked problems have no

stopping rule.

• When does the car become “safe”?

• There is no natural stopping point in working out

the tradeoffs among safety, performance,

appearance, and cost.

• At some point, the design team will be forced to

make a decision.

• If it were not for project deadlines, the team would

swirl indefinitely in “analysis paralysis”.

3. Solutions to wicked problems

are not right or wrong.

• No amount of study, laboratory experiments, or

market surveys will establish that that project

team’s solution is “correct.”

• Ironically, when the car gets produced:

– there will be reviews pointing out that the doors are

heavy and difficult to open when parking on a hill,

– mixed with law suits from people who were injured in

side-impact accidents despite the stronger doors.

4. Every wicked problem is

essentially unique and novel.
• Even if the project team has several successful car

designs under its belt,

• the “safe door” problem is essentially unique and
novel, because of the configuration of issues and
stakeholders.

• Consider the following external actions which have
just happened….

1. A recent study by a consumer safety organization
suggests that side impact injuries would be reduced
by side air bags, which are not a part of the design.

2. A side-impact injury lawsuit has been filed against
the company

 – if the new design is announced now, it may look
like an acknowledgement of prior unsafe designs.

3. Moreover, federal legislation is emerging that may
put legal constraints on the strength of the doors.

 The design of safer doors is not merely a technical
problem: it is a political and PR problem as well.

5. Every solution to a wicked

problem is a “one-shot

operation”.

• When the new safer car finally reaches the

market, it may be a flop, or it may change

the safety standards for the whole industry.

• The design team can build prototypes of the

car and test them, but there is no way to

anticipate the unintended consequences of

producing and selling the new vehicle.

6. Wicked problems have no

given alternative solutions.

• The safe door problem does not have a few discrete possible

solutions from which to choose.

• There is an immense space of options in terms of structural

reinforcement, materials, cushioning, window design, hinge

placement, and how the door latches and opens.

• The design team cannot select from a few options – it must

collectively exercise creativity and judgment about an

elegant resolution of all of the design priorities.

The design of a new “safe car” is

an example of a wicked problem.

• It cannot be solved by engineers alone,

• nor is there any way of determining that any

given solution is “correct” or even optimal.

• And the perceived quality of the solution

varies from stakeholder to stakeholder.

Why is Software Engineering so

difficult?

Implications

No silver bullet!

• No software engineering tool, technique or approach can
universally solve the entire problem or even a sub-
problem.

• Different contexts demand different approaches.

• Hence, we end up learning lots of different tools,
techniques and approaches which seem to solve the
same problem.

Which is best?

• Is technique A better than technique B?

• A really difficult question to answer.

• Normal answers are

– it depends…. On the context!

– Or “who knows”

“The devil is in the details….”

• Software Engineering approaches are normally

described at a high level.

• Why: to allow a single description.

• A technique is actually a family of techniques

– the details of the technique normally change with the

context.

– Commonly, the Software Engineer has to create the

details of the technique during its usage.

Linear approaches don’t work

Sequencing is often fatal!

• In class we learned apply techniques:

 A -> B -> C -> D

• So when I use A, this means I always do

 B -> C -> D

• Wrong!

– If use are using A, its because you think the
context demands it.

– The context says nothing about B,C, and D

The Software Engineer learns

• A big bag of tricks or a quiver full of arrows.

• The context, or problem, is the target.

• Given a specific target, the software engineer tries to
select their best arrows from their quiver to maximize
their score at shooting at this target.

• Unfortunately, remember, nobody is really sure about
how to calculate scores in this game!

