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Abstract—Approximate computing exploits the fact that many
applications are inherently error resilient. In order to reduce
power consumption, approximate circuits such as multipliers
have been employed in these applications. However, most current
approximate multipliers are based on ad hoc circuit structures
and, for automated circuit approximation methods, large efficient
designs are difficult to find due to the increased search space.
Moreover, existing design methods do not typically provide suf-
ficient formal guarantees in terms of error if large approximate
multipliers are constructed. To address these challenges, this
paper introduces a general and efficient method for constructing
large high-quality approximate multipliers with respect to the
objectives formulated in terms of the power-delay product
and a provable error bound. This is demonstrated by means
of a comparative evaluation of approximate 16-bit multipliers
constructed by the proposed method and other methods in the
literature.

I. INTRODUCTION

Energy efficiency is a major challenge for current computer
systems. Among various techniques, approximate computing
exploits the fact that many applications are inherently error
resilient and energy requirements can be traded off for the
quality of results [1]. Much attention has been paid to the
design of approximate arithmetic circuits and in particular,
approximate multipliers, as multiplication is a key operation
in many applications.

Approximate implementations of multipliers are based on
various design principles, see a recent review in [1]. The major
weakness of the manual circuit design approach, which is
clearly dominating in this area, lies in providing only a few
different circuit implementations for a given bit width. Many
interesting and useful design points thus remain unexplored.
Hence, automated search-based design methods have been
developed to provide many approximate designs showing high-
quality tradeoffs between key design parameters [2].

We are primarily interested in approximate circuits be-
longing to the Pareto set which contains the so-called non-
dominated solutions. Consider three objectives to be mini-
mized, for example, the power-delay product (PDP), the worst
case error and the area. Circuit C1 dominates another circuit
C2 if: (1) C1 is no worse than C2 in all objectives, and (2)
C1 is strictly better than C2 in at least one objective.
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Search-based methods, however, usually deliver circuits of
limited complexity, which especially holds for approximate
multipliers. In order to mitigate this issue, an efficient strat-
egy is to compose complex approximate circuits using less
complex but high-quality approximate design modules.

For an approximate circuit, another challenge is to find an
efficient way to determine the quality (or error) of a design.
While small designs can be perfectly evaluated by means
of an exhaustive simulation, this problem is not tractable
for complex circuits. A circuit simulation using a subset of
all input combinations does not, in principle, guarantee an
accurate result. Hence, various formal methods capable of
determining the ‘exact’ error have been developed in recent
years [3], [4], [5].

To address these challenges, this paper presents a gen-
eral and efficient method for constructing high-quality non-
dominated approximate multipliers with the aim to optimize
the power-delay product (PDP) and design quality. A signif-
icant advantage of this method is the ability to analytically
provide formal guarantees in terms of the worst case error
for even complex multipliers. The proposed method exploits
the fact that more than two thousands 8-bit approximate
multipliers are available and they can directly be employed
to construct large approximate multipliers showing various
tradeoffs between the design objectives.

II. EVALUATION OF APPROXIMATE CIRCUITS

Various error metrics have been developed to evaluate the
quality of approximate circuits [2], for example, the worst-
case error (WCE), sometimes denoted as the maximum error
distance, the worst-case relative error (WCRE), the average-
case error, also known as the mean absolute error (MAE), and
the mean relative error (MRE).

The worst-case error of an n-bit approximate multiplier M̃
is defined as the maximum difference between the outputs of
M̃ and a precise multiplier M

WCE
M̃

= max
∀a,b
|M̃(a, b)−M(a, b)|, (1)

where 0 ≤ a, b < 2n and M(a, b) = a × b. The worst-case
error can be important in time-critical and dependable systems
on one hand, but also in image and signal processing on the
other, where low average error but excessive worst-case error
can produce unacceptable results. The worst-case relative error
is defined as

WCRE
M̃

= max
∀a,b

|M̃(a, b)−M(a, b)|
M(a, b)

. (2)
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Test vectors are usually applied to estimate the error (e.g.
107 input vectors were used to evaluate 16-bit multipliers
in [1]). Unfortunately, the accuracy of the simulation-based
error evaluation varies with the number and quality of test
vectors. This is especially noticeable in the case of WCE,
where completely different results may be obtained for a
different subset of input vectors.

Current computers only require a few minutes to exactly de-
termine the quality of arithmetic circuits with 16-bit operands.
For higher bit-widths, a more sophisticated, typically formal,
approach has to be involved. The main advantage of the
formal approach is that an ‘exact’ error or error bound can
be obtained. Checking the worst-case error can be done
using Boolean satisfiability (SAT) solvers as demonstrated
in [6]. Determining the error probability using binary decision
diagrams (BDDs) is a relatively straightforward task. For
example, Ciesielsky et al. described a method based on BDDs
that is able to establish the error probability even for large
64-bit adders [3]. Chandrasekharan et al. [4] employed BDDs
to determine the worst-case arithmetic error. Vasicek et al. [5]
proposed a method for determining the average-case arithmetic
error.

III. APPROXIMATE MULTIPLIERS

Three stages can be identified in a multiplier: partial product
generation, partial product reduction, and final addition. Four
main methods are used for the design of approximate mul-
tipliers [1]: (1) Approximation in generating partial products
based on a simpler structure. (2) Approximation in the partial
product tree by ignoring some partial products (truncation),
dividing the partial products into several modules and applying
an approximation in the less significant modules, or composing
complex approximate multipliers from simple approximate
multipliers. (3) Using approximate adders, counters or com-
pressors in the partial product tree to reduce partial products.
(4) Using search-based methods to perform approximation on
the gate level or in more complex cells. In the sequel, we
briefly introduce the state-of-the-art approximate multipliers
that provide the best trade-off between quality and other design
parameters such as power, delay and area.

For truncated multipliers (TMs), the key idea is to remove
k least significant bits of the input operands. As a result, a
smaller (n−k)-bit multiplier is utilized instead of an accurate
n-bit multiplier. A 5-bit approximate multiplier is implemented
as a truncated carry-save adder array in Fig. 1(a). In general, an
array multiplier consists of n×n cells (i.e. the carry-save adder
array) used to reduce partial products, followed by a single
n-bit merging adder (a ripple-carry adder in our example) for
the final summation. Due to the truncation, the cells associated
with k least significant bits of the first operand (i.e. the cells in
the first k rows) and the cells associated with k least significant
bits of the second operand (i.e. the k rightmost cells of each
row) are omitted. As a result, 2k least significant bits of the
final product are always zero.

The accuracy of a TM depends on the bit-width (n) and
the number of truncated bits (k), where 0 ≤ k < n. The

Fig. 1. Hardware architectures of two 5-bit approximate multipliers. a)
Truncated multiplier TM(5,2) and b) broken-array multiplier BAM(5,4,2).
Omitted cells are shown using dotted cells. Note the inputs of the cells situated
in the first row that are not shown are implicitly connected to zero.

maximum difference between the output of TM(n, k) and a
precise multiplier is equal to

WCETM(n,k) = (2k − 1)(2n+1 − 2k − 1). (3)

In the broken-array multiplier (BAM), some of the carry-
save adders are removed from an array multiplier [7]. The
omitted cells are specified using two parameters: the horizontal
break level (h) and vertical break level (v), where 0 ≤ h < n
and h ≤ v < 2n. An example of a 5-bit BAM is shown
in Fig. 1(b). In the case that the vertical break level is
2× of the horizontal break level (i.e. v = 2h), a structure
similar to TM with k = v is obtained. As shown in our
example, however, BAM preserves more carry-save adder
cells. Since the reduction of carry-save adders can be done in
both directions, the accuracy of BAM(n, h, v) depends on the
three parameters. According to [7], the maximum difference
is given by

WCEBAM(n,h,v) = (2n − 1)

h−1∑
i=0

2i + 2h
v−h−1∑
i=0

(2v−h − 2i).

(4)
The maximum relative error is WCREBAM = 1. The mean
relative error significantly increases with increasing v [7].

Recently, a rich library of approximate 8-bit adders and 8-bit
multipliers containing hundreds of alternative implementations
was introduced [2]. The authors employed a general-purpose
approximation method for combinational circuits based on a
multi-objective genetic programming. The goal was to simul-
taneously minimize delay, power consumption and error to
discover a set of approximate circuits along a Pareto front.
The basic version of the library contains 471 annotated non-
dominated 8-bit approximate multipliers that are available for
download. Compared to other design methods, a search-based
method explores a larger design space, so it is likely to produce
approximate multipliers with better hardware characteristics.

Many other approximate multipliers have been proposed.
A recent survey of existing implementations can be found,
for example, in [1]. Unfortunately, the majority of these
multipliers was optimized for a single quality parameter only.
When multiple quality metrics such as the WCE, MAE, and
MRE are considered, they typically show little advantage in
the overall performance over a truncated design [1].
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IV. CONSTRUCTION OF LARGER APPROXIMATE
MULTIPLIERS

In order to avoid the time-consuming design loop inher-
ently related with the search-based techniques, we propose to
recursively construct complex approximate multipliers, using
smaller multipliers.

We employ a divide-and-conquer strategy for synthesizing a
2n-bit multiplier from four n-bit multipliers (see Fig. 2). The
operands are divided into four n-bit chunks (each operand has
a lower and higher part) that are independently processed using
four multipliers whose outputs are reduced using two adders
with one n-bit and one 2n-bit operand each.

Fig. 2. Construction of a 2n × 2n multiplier from four n × n multipliers
denoted as M1, M2, M3 and M4. The principle is illustrated for n = 8.

The key advantage of this method is that each constructed
multiplier M has the following properties. (1) In the case that
all four n-bit multipliers (let us denote them M1 to M4) and
adders are accurate, an accurate multiplier is obtained. (2) If
accurate adders are employed and some of the multipliers are
replaced with an approximate multiplier M̃ , the worst-case
error is equal to

WCEM = 22nWCEM4 + 2nWCEM3 +
2nWCEM2 + WCEM1,

(5)

where WCEMi
= WCE

M̃
iff Mi is replaced with M̃ and

WCEMi = 0 otherwise. (3) If accurate adders are employed
and some of the multipliers are replaced with different ap-
proximate multipliers, Eq. 5 gives us the upper bound since
the approximate multipliers can have dependent inputs.

Clearly, the exact value of WCE
M̃

can easily be obtained
for a reasonable n (in our case n = 8) using exhaustive
simulation. The question is, how to efficiently determine
which multiplier Mi should be replaced with an approximate
multiplier and what approximate multipliers should be used to
obtain the best trade-offs without compiling and synthesizing
all the possible design points. In general, (na +ne)

4 possible
solutions exist provided that na denotes the number of non-
dominated approximate n-bit multipliers and ne is the number
of exact n-bit multipliers. As more than 2,200 different non-
dominated 8-bit multipliers are available at the extended
version of EvoApprox8 library and more than 60 different
implementations can be obtained using the approaches pro-
posed in the literature, it is practically infeasible to synthesize
all possible implementations (more than 1.4 × 1011 potential
solutions exist).

Hence, we propose the following two strategies. In the
first strategy, a single approximate multiplier M̃ is chosen
and M1 to M4 are successively replaced with M̃ (see A1
– A4 in Table I). The advantage of this approach is that it

TABLE I
PROPOSED ARCHITECTURES OF 2n-BIT APPROXIMATE MULTIPLIERS

Architecture M1 M2 M3 M4

A1 M̃ accurate accurate accurate
A2 M̃ M̃ accurate accurate
A3 M̃ M̃ M̃ accurate
A4 M̃ M̃ M̃ M̃

A5 M̃1 M̃2 M̃2 M̃3

A6 M̃1 M̃2 M̃3 M̃4

* Note that M̃i may represent approximate or accurate multiplier.

produces a relatively small number of implementations that
can easily be synthesized and evaluated. Due to its simplicity,
a similar scenario (i.e., some submodules are replaced with
a single approximate circuit) is typically employed in quality
configurable multipliers such as AWTM [8] or lpAClib [9].

Eq. 5 suggests that much better results could be potentially
obtained when up to four different approximate 8-bit multipli-
ers are utilized in the 16-bit multiplier. Intuitively, M4 should
produce the lowest error since it has the largest impact on the
quality of the obtained multiplier. In order to reduce a huge
number of design alternatives that have to be synthesized,
the second strategy is proposed. In its first phase, we filter
out all approximate 16-bit multipliers that are dominated by
some other multipliers. This can be done relatively quickly
and without using a professional design tool if pre-computed
circuit parameters (WCE calculated according to Eq. 5, power
consumption calculated as the sum of power consumption
of all 8-bit multipliers Mi, and estimated area calculated as
the sum of the multipliers’ areas) are used instead of ‘exact’
values. In the second phase, only the circuits identified in the
first phase are synthesized and thoroughly evaluated.

In the multiplier denoted as A6 in Table I, four different
approximate multiplier modules are utilized. For example, if
there are 258 different 8-bit approximate multipliers, there
exist 2584 = 4, 430, 766, 096 different 16-bit approximate
multipliers using the A6 architecture. However, most of the
16-bit approximate multipliers are dominated by others and
can be filtered out. As a result, only 6,753 multipliers remain
for further evaluation. To significantly reduce the number of
16-bit multipliers that have to be investigated in the first phase,
we also consider the architecture A5 that contains only three
different approximate 8-bit multipliers (see Table I).

V. EXPERIMENTS AND SIMULATION RESULTS

Although the proposed method is applicable to an arbitrary
bit-width, the construction of 16-bit multipliers is investigated
because the 16-bit multipliers can be evaluated by simulation
that enables to thoroughly evaluate the proposed method and
compare the obtained circuits with existing designs.

A. Evaluation of 8-bit approximate multipliers

Firstly, we implemented all relevant 8-bit multipliers in
VHDL and synthesized them together with multipliers from
the EvoApprox8b library. Synopsys Design Compiler with
45nm PDK was employed for synthesis. Each VHDL model
was converted to an equivalent C code that was utilized for
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Fig. 3. Measurements of various 8-bit multipliers synthesized using 45nm
technology. The multipliers forming a Pareto set considering power, area and
WCE are highlighted using filled markers. Normalized WCE is calculated as
NWCE = WCE/22n, where n is equal to 8. Measurements of five different
exact multipliers are provided as the points at WCE=0.

quality analysis. Exact values of WCE, WCRE, ER, MAE
and MRE were determined by using all 216 input vectors.
In this phase, more than 2,210 implementations were syn-
thesized and analyzed. The obtained results are shown in
Fig. 3. The naming of the multipliers corresponds with [1].
Only non-dominated solutions are shown for each architecture
for clarity. The results show the advantages of TM, BAM
and EvoApprox8b over the other designs when WCE and
circuit area or power consumption are considered. Considering
WCE, MAE and MRE, EvoApprox8b designs outperform the
other ones. In addition to that, they fill the missing spaces
that are unreachable by truncation. Fig. 3 also contains the
measurements of an accurate multiplier implemented using
the star operator in VHDL (see the triangle at WCE=0).
Interestingly, many approximate multipliers (some instances
of AM1, AM2, UDM) require a larger area compared to the
accurate multipliers.

B. Synthesis of 16-bit approximate multipliers

From the previous results, 258 non-dominating design
points were identified (by considering WCE, power-delay
product (PDP) and area only) and employed as M̃ or M̃i.
This yields 4 × 258 = 1, 032 different implementations of
A1–A4. In addition to that, 4,449 different implementations of
A5 and 6,753 different implementations of A6 were produced
in the first phase. Then, the 16-bit implementations were
synthesized using Synopsys Design Compiler and analyzed
using a simulator with 232 input vectors to obtain exact
values of WCE, WCRE, MAE and MRE. The accurate carry
lookahead adder (CLA) was employed in all designs. The
runtimes for filtration, synthesis and analysis are given in
Table II. After synthesis and analysis, 192 (resp. 158, 158,
142, 810, and 1,257) non-dominated solutions1 were identified

1Power, area, delay, WCE and MRE were considered.

Fig. 4. Measurements of 16-bit approximate multipliers consisting of four 8-
bit multipliers using the proposed approaches A1–A6. The implementations
lying on the Pareto set, determined for each method and each plot separately,
are shown using a line.

for A1 (resp. A2, A3, A4, A5 and A6). Measurements of the
non-dominated designs are shown in Fig. 4. For illustration,
we also included dominated solutions.

The results validate our assumption regarding the quality
of approximate multipliers using the proposed architecture
A6 compared to the basic construction mechanisms A1–A4.
Interestingly, there is no significant difference between the
multipliers using A5 and A6. Considering this fact, A5 is a
very efficient architecture for constructing multipliers of higher
bit-widths. Compared to A6, it requires approximately 2x
smaller computational power as shown in Table II. Although
only exact WCE is plotted due to the limited space, this
observation is valid for MAE and MRE too (see Fig. 5). The
remaining results can be found at our website2.

For some instances, Eq. 5 provides the upper bound and the
exact WCE may be lower than the estimated one. Although
this can not have a negative impact on a real application, the
knowledge of the exact and estimated WCE offers an opportu-
nity for a more detailed analysis. Considering 6,753 different
implementations of A6, the non-zero difference occurs in 85%.
The mean (resp. median, maximum) difference is 2.8% (resp.
2.2%, 16.6%). Difference greater than 5% occurs in 13%.

TABLE II
THE NUMBER OF NON-DOMINATED MULTIPLIERS (ndom) IDENTIFIED IN

THE FIRST / SECOND PHASE AND THE CORRESPONDING RUNTIME
(FILTRATION tfilt , SYNTHESIS tsyn , AND ANALYSIS tev ) IN MINUTES

Arch. First phase (filtration) Second phase Total
runtimentotal ndom tfilt ndom tsyn tev

A1 258 258 - 192 10 42 52
A2 258 258 - 158 10 42 52
A3 258 258 - 158 10 42 52
A4 258 258 - 142 10 42 52
A5 1.7 · 107 4,449 2 810 180 720 902
A6 4.4 · 109 6,753 469 1,257 273 1,093 1,846

2http://www.fit.vutbr.cz/research/groups/ehw/approxlib/
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Fig. 5. Comparison of the proposed 16-bit approximate multipliers (using
the A5 architecture) with multipliers from the literature across various quality
indicators. The multipliers on a Pareto set, determined for each plot separately,
are highlighted using filled markers. Parameters of exact multipliers are
provided as the points at WCE=0.

C. Comparison with the state-of-the-art approaches

The detailed comparison of the proposed method with the
state-of-the-art designs is shown in Fig. 5. For evaluation with
the typical error metrics, we reimplemented the approximate
multipliers that are believed to provide the best results accord-
ing to the latest review [1]. In total, 244 different 16-bit designs
were created, synthesized and evaluated. For configurable
architectures (AM, BAM, TAM, ACM, and lpAClib), all
meaningful configurations were considered. The error metrics
are evaluated accurately using all test vectors for all considered
designs.

The results are mostly consistent with the review [1], al-
though some multipliers exhibit lower quality, see e.g. TAM1.
The differences are probably caused by the fact that a different

technology node generation is considered with a different cell
library. We also determine the errors exactly, whereas only
a small fraction (0.2%) of all possible input combinations
is employed in the review to assess the quality of the ap-
proximate multipliers. While the quality of particular designs
varies depending on the chosen error criteria, the truncated
multipliers (TM and BAM) exhibit stable performance and
achieve excellent design tradeoffs.

The multipliers constructed using the proposed method
provide the best tradeoffs except for the Area vs. WCE result,
whereas BAMs occupy smaller area. Despite the fact that only
the worst-case error, power and area were considered to obtain
non-dominated designs, the obtained multipliers perform well
even under MAE and MRE. In fact, it is shown that MAE
strongly correlates with WCE.

In order to construct a database of 810 annotated 16-bit
multipliers, 15 hours (including quality evaluation taking more
than 80% of the total runtime) were required on an eight-core
Intel Xeon CPU @ 2.4GHz

VI. CONCLUSIONS

In this paper, a scalable recursive method for the con-
struction of large approximate multipliers with guaranteed
worst-case error was proposed. We demonstrated how to
relatively quickly construct a high-quality Pareto set of non-
dominated 2n-bit approximate multipliers provided that we
have a reasonable database of n-bit approximate multipliers.

We show that it is sufficient to construct a 2n-bit multiplier
using three different n-bit multipliers (in the architecture
A5) without sacrificing much quality of the obtained 2n-bit
multipliers. This method enables to reduce the design time to
nearly one half of the A6 architecture, in which four different
8-bit multipliers are selected. The constructed designs show
worst case errors limited by a maximum error bound that can
be analytically obtained due to the proposed design approach.
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