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Abstract—Estimating the failure probabilities of SRAM mem-
ory cells using Monte Carlo or Importance Sampling techniques
is expensive in the number of SPICE simulations needed. This
paper presents a methodology for estimating the dynamic margin
failure probabilities by building a surrogate model of the dynamic
margin using Gaussian Process regression. Additive kernel func-
tions that can extrapolate the margin values from the simulated
samples are presented. These proposed kernel functions decrease
the out-of-sample error of the surrogate model for a 6T cell
by 32% compared with a six-dimensional universal kernel such
as a Radial-Basis-Function kernel (RBF). Finally, the failure
probability values predicted by a surrogate model built using
1250 SPICE simulations are reported and compared with Monte
Carlo analysis with 106 samples. The results show a relative
error of 30% at 0.4V (predicted value of 4x10−6 for the Monte
Carlo estimate of 3x10−6 ) and a relative error of 172% at
0.3V (predicted value of 3x10−5 for the Monte Carlo estimate of
1.1x10−5) for the dynamic read margin. These accuracy numbers
are similar to those reported in previous proposals while the
reduction in SPICE simulations is between 4x and 23x relative
to these proposals and 800x compared to Monte Carlo method.

I. INTRODUCTION
The need for faster SPICE analysis of SRAM memory cir-

cuits in the presence of process variations has led to the adoption
of advanced statistical sampling methods such as Importance
Sampling based methods (Mixture Importance Sampling [1],
Minimum-Norm Importance Sampling [2]) and extreme value
statistics [3] to estimate the failure probabilities of the memory.
In order to achieve robust memory operation, extremely small
memory failure probabilities (such as < 10−6) are required.
As such, the aforementioned statistical sampling methods still
need tens of thousands of SPICE simulations to estimate the
memory failure probabilities. An alternative approach is to first
build a surrogate model for the memory margins using SPICE
simulations, and then estimate the memory failure probability
using only the predictions of the surrogate model. For instance,
the effectiveness of using “Kriging” surrogate models to reduce
the SPICE simulations was shown in [4] using the spherical
covariance function as the kernel. Importance Sampling from
the surrogate models was used for faster high-sigma yield
analysis of the SRAM cells in [5] where the Radial Basis
Function (RBF) kernel network was used to first build the
surrogate model. Furthermore, the surrogate models (built using
Gaussian process regression) were also shown in [6] to be
effective in reducing the corner simulations by up to 95%
for high-confidence design verification compared to the full-
factorial analysis of the circuit performance corners.

These kernels (such as RBF kernels) provide highly flexible
models and as such are called universal kernels. The difficulty
with the use of these kernels is faced when the number of
variability sources increase. These universal kernels (e.g. RBF
kernels) suffer from the curse of dimensionality [7], that is, the
required number of training samples needed to accurately model
the memory margin increases exponentially with the increase in
variation sources. Consequently the regression becomes slower
and SPICE simulations increase.

This paper investigates the use of Gaussian Process regres-
sion for modeling the dynamic noise margins of the 6T SRAM
bit-cell at sub-threshold voltages under the presence of threshold
voltage variations. At ultra-low voltages, the SRAM bit-cell read
current has exponential dependence on the threshold voltage [8].
Thus, the presence of threshold voltage variations results in a
non-linear response of the dynamic margins to these variations.
Regression using Gaussian Processes [9] can be used to build
flexible non-linear models of memory margins. In this paper,
we present a methodology to build surrogate models of the
non-linear behaviour of SRAM dynamic noise margins at sub-
threshold voltages using additive kernel based Gaussian Process
regression [10].

Our method provides an alternative to the universal kernels
such as RBF. The method aims at achieving higher model
accuracy with smaller out-of-sample error than the RBF kernel.
That is, better extrapolation capability of the memory margin
model at variation values largely different from the SPICE
simulated values.

This paper makes the following contributions:

1) Gaussian Process models with additive kernels are pre-
sented as surrogate models for the SRAM cell’s dynamic
read margin.

2) Read dynamic failure probabilities using these surrogate
models are reported and compared with the traditional
Monte Carlo simulation.

The paper is organized as follows. In section II the relevant
background material is presented. In section III, the proposed
method is discussed for modeling the dynamic read margin of
a 6T SRAM cell. Probability failure results are given in section
IV. Finally, conclusions are given in section V.

II. BACKGROUND
A. Gaussian Process Regression

A Gaussian Process (GP) used for non-parametric regression
[9] is a distribution over random functions “f(·)”. Here, a ran-
dom function “f(·)” is defined to be a function chosen randomly



from the set of functions Ω each of which maps an infinite set
X to a set Y . As such “f(·)” is an infinite collection of random
variables. For instance, when the domain X = N , i.e. the set of
Natural numbers, then the random function “f(·)” is the collec-
tion of infinite random variables {f(1), f(2), f(3), ...} sampled
according to some probability distribution. In particular, when
its value at a finite set of locations Xn = {x1, x2, x3, ..., xn}
i.e, Fn = {f(x1), f(x1), f(x2), f(x3), ..., f(xn)} has a joint
Gaussian distribution, Fn ∼ N(µH(Xn),KH(Xn, Xn)), then
the random function “f(·)” has a Gaussian Process distribution.
Here, µH is the mean function and KH is the covariance
function (kernel) of the Gaussian Process distribution which
are parametrized by the set of hyper-parameters “H”.
The parametrized kernel KH defines the function space “Ω”
from which the random function “f(·)” is randomly selected
according to a Gaussian Process (GP) distribution. When a
GP is used for regression, then this function space “Ω” is the
hypothesis space for the regression functions. For instance,

1) Hypothesis space of constant functions: Using a constant
kernel function KH(X,X∗) = σ where σ is a constant
and H = {σ}

2) Hypothesis space of linear functions: Using a linear kernel
function KH(X,X∗) = σ2‖X −X∗‖ and H = {σ}

3) Hypothesis space of periodic func-
tions: Using a periodic kernel functions
KH(X,X∗) = σ2exp((−2Sin2(π‖X −X∗‖/P ))/L)
and H = {σ, P, L}

4) Hypothesis space of smooth functions (that is,
functions having continuous higher-order derivatives):
Using a Radial Basis Function kernel (RBF)
KH(X,X∗) = σ2 ∗ exp((−‖X−X

∗‖2
L )) and H = {σ, L}

The functions in the hypothesis function space “Ω” are the
prior functions for GP regression. As an example, all linear
functions are prior functions when the linear kernel is used.
Comparison of the marginal likelihood of data from these prior
functions provides the set of posterior functions that best explain
the observed data. The collection of predictions from these
posterior functions at a test point {x∗} gives a distribution of
predicted values at this test point by the random variable f(x∗).
The mean of these predicted values is the mean prediction of
the GP regression at test point {x∗}.

B. Composite Kernels
Composite kernels are created by adding kernels or by

taking the product of kernels. The product kernels provide more
flexible prior functions, while the additive kernels have higher
extrapolation capacity [11]. For instance, the extrapolation
capability of the product kernels is compared with the additive
kernels for data sampled from a quadratic function in Figure
1. When the functional form of a kernel matches the trend in
the data, the posterior functions fit the data exactly. This is
indeed the case for the “Linear x Linear” kernel. Otherwise,
the additive kernels can extrapolate an increasing trend in the
observed data farther than the product kernels as is illustrated by
the posterior functions of “Linear + RBF” vs. “Linear x RBF”.
Thus the sum of product kernels provides the extrapolation
capability of the additive kernels and also flexible priors from
the product kernels.
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Fig. 1: Three posterior functions for the composite kernels with
input data points sampled from a quadratic function. Linear x
Linear best captures the quadratic trend.
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Fig. 2: Schematic of 6T SRAM Cell

III.MODELING 6T SRAM DYNAMIC MARGINS AT
SUB-THRESHOLD VOLTAGE

A. Methodology
The schematic of the 6T SRAM bitcell is shown in Figure

2. The dynamic read margin for this analysis is defined as the
voltage difference between the nodes storing logic value “1”
and logic value “0” at the end of 20ns read word-line pulse
width. HSPICE simulation of the bitcell netlist is done using
the Predictive Technology model (PTM) for the 65nm bulk
technology node at the sub-threshold supply voltages of 0.3V
and 0.4V. The variations in the threshold voltages, Vth, of the
six transistors due to the random dopant fluctuations (RDF) are
considered to be six independent Gaussian random variables,
assuming 5% Vth variation in the smallest size transistor. Only,
the effect of RDF on the threshold voltages is considered
because it was shown to be the dominant component of the
variations in sub-threshold operation in [12].

The baseline model for the comparison is a six-dimensional
RBF kernel which can learn any continuous six dimensional
function given enough data.

kbaseline = RBF ([x1, x2, x3, x4, x5, x6],

[x∗1, x
∗
2, x
∗
3, x
∗
4, x
∗
5, x
∗
6])

(1)

Here {x1, x2, x3, x4, x5, x6} is a vector in the six-dimensional
space of Vth variations in transistors {PMOS1, NMOS1,
Access1, PMOS2, NMOS2, Access2}. During the training
of the surrogate model, the training set is increased up to 1000
samples. The out-of-sample error of the trained model is then
estimated using 106 test samples. Mean of the in-sample error
and out-sample error are taken from 20 iterations. Lastly, Monte



Carlo simulation is done using 106 samples so that the failure
probabilities higher than 10−6 can be compared.
B. Results

The sensitivity analysis of the dynamic read margin for
the 6T SRAM cell showed that the sensitivity of the read
dynamic margin is non-linear with respect to {PMOS1, NMOS1,
NMOS2, Access2} Vth variations. However, it is linear with
respect to {Access1, PMOS2} Vth variations. In order to
minimize the model complexity, only the interaction terms
between transistors that are in the same inverter structure are
considered. Each constituent kernel in this proposed additive
model is a one-dimensional kernel.

kproposed = //Sum of kernels for main effect//
RBF (x1, x

∗
1) +RBF (x2, x

∗
2) + Linear(x3, x

∗
3)

+Linear(x4, x
∗
4) +RBF (x5, x

∗
5) +RBF (x6, x

∗
6)

//Sum of product kernels for interactions in Inverter-1//
+RBF (x1, x

∗
1) ∗RBF (x2, x

∗
2)

+RBF (x2, x
∗
2) ∗ Linear(x3, x

∗
3)

+Linear(x3, x
∗
3) ∗RBF (x1, x

∗
1)

//Sum of product kernels for interactions in Inverter-2//
+Linear(x4, x

∗
4) ∗RBF (x5, x

∗
5)

+RBF (x5, x
∗
5) ∗RBF (x6, x

∗
6)

+RBF (x6, x
∗
6) ∗ Linear(x4, x

∗
4)

(2)

The proposed additive model achieves a lower out-sample
error compared to the baseline RBF kernel and the other additive
kernels as seen in Figure 3(1). After training the models on
400 samples, the out-sample error of the proposed additive
model reaches 2.3x10−2 while for the baseline RBF model the
Out-sample error at 400 simulations is 3.6x10−2.
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Fig. 3: Mean out-sample prediction error and mean in-sample
error for dynamic read margin modeling of 6T SRAM at 0.3V
for 20 iterations of GP regression. The proposed model has the
minimum out-sample error. (R = RBF kernel and L = Linear
kernel)

IV.DYNAMIC MARGIN FAILURE PROBABILITY
The additive kernel described in the previous section was

used to model the 6T SRAM cell’s dynamic read margin. Since
the model’s learning rate (decrease in its out-sample error) for
the proposed additive model does not increase significantly after
around 1000 training samples, as seen in Figure 3, the initial
sampling stage randomly samples 1000 training samples using
the Latin Hyper-cube Sampling (LHS) method to ensure that
each sampling space dimension is uniformly sampled. Figure
4a compares the predicted margin values by the additive model
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Fig. 4: Read dynamic margin values at 0.3V predicted by the
additive kernel model compared with the SPICE simulated
margin values for 106 samples. Both the predicted and SPICE
simulated margin values are sorted in increasing order.

with the SPICE results for 106 test samples. The predicted
margin values and the SPICE simulated margin values are
sorted in increasing order to make the comparison easier to
visualize. The proposed additive model fails to predict margin
values below 0 (i.e., no Failure points). The reason is the lack
of enough failure points in the training set of 1000 samples
which results in the set of posterior functions containing mostly
functions with no failure regions. Thus, in order to improve
the failure region prediction of the model, the training set is
increased with an 250 more points (1000/4). The ratio (1/4) was
empirically found for this specific case-study to be the ratio that
least over-estimated the predicted dynamic read margin failure
probability. This ratio will change for different supply voltages
and range of variation in threshold voltages. These points are
sampled from a normal distribution centered at the minimum
norm failure point (MPFP), which is the “failure point” in the
training set with the highest probability to be sampled under the
distribution of threshold voltage variations. Addition of these
samples to the training set increases the prediction accuracy near



TABLE I: Predicted dynamic read margin and write margin
failure probabilities

Method Dynamic Margin #SPICE Simulations
Estimated
Failure
Probability

Monte Carlo Read Margin @ 0.3V 106 1.1x10−5

Proposal Read Margin @ 0.3V 1250 3x10−5

Monte Carlo Read Margin @ 0.4V 106 3x10−6

Proposal Read Margin @ 0.4V 1250 4x10−6

the failure boundary. Note that in our case-study of 6T bitcell at
ultra-low voltages of 0.3 and 0.4V, the initial set of 1000 training
samples gave failure samples among which the MPFP could be
selected. However if there are no failure samples in the initial
training set, then additional LHS sampling will be required.
Figure 4b compares the predicted dynamic read margin values
after sampling near MPFP. This additive model of memory
margin is used as a surrogate model for Monte Carlo analysis
to estimate margin failure probability. This step can also be
performed using Importance Sampling on the surrogate model.
Since sampling from surrogate model is not computationally
as expensive as SPICE simulation, the focus of this paper is
on reducing SPICE simulations to generate a surrogate model
and then traditional Monte Carlo sampling from the surrogate
model is used to estimate the failure probability. Table I shows
that the relative error of the predicted dynamic read margin
at 0.4V supply voltage is 30% compared to its Monte Carlo
estimate, while the relative error at 0.3V is 172%. The relative
error is larger for higher failure probability values because the
same number of 250 points are sampled near MPFP in step 4
in both the cases. The fraction of these samples that are failure
points is higher in the case 1.1x10−5 (Monte Carlo) failure
probability for 0.3V. As such the method overestimates the
failure probability to 3x10−5. This approach can be improved by
using the generalized Pareto distribution (GPD) to accurately fit
the tail of the dynamic margin distribution, as proposed in [13].
The failure regions can be classified using proposed additive
kernels for Gaussian Processes instead of using the Gaussian
Radial Basis kernel (GRBF) based state vector machine (SVM)
[13].

The comparison of accuracy given in [14] for predicting
the Monte Carlo estimate of 2.3x10−4 with REscope [13] and
recursive statistical blockade [3] shows a relative error between
20% and 64% for estimating failure (Figure 5). Thus the
proposed method provides similar accuracy numbers (minimum
relative error of 30%) with speed-up in computation between
4x and 23x compared to these previous methods.

Fig. 5: Accuracy numbers for similar approaches reported in
[14]

V. CONCLUSION
In this paper, we show that for modeling SRAM dynamic

margins, the extrapolation error (out-sample error) can be
decreased with a smaller training set by using additive kernels
that encode the structure present in the sensitivity analysis
of the dynamic margin functions. We present the case study

of modeling the dynamic read margin as an example for the
efficacy of additive models made by using one-dimensional
kernels and their interactions as sum of product kernels. The
response surface generated by Gaussian Process using these
proposed models is then used to estimate failure probabilities
with 1250 simulations. These predicted failure probability
values are then compared with Monte Carlo analysis with 106

samples and they show a relative error of 172% for dynamic
read margin at 0.3V supply voltage.
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