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Abstract—Due to technology scaling, lifetime reliability is
becoming one of the major design constraints in the performance
optimization of future many-core systems. Given a lifetime
reliability constraint, the existing lifetime-constrained runtime
mapping schemes often lead to low throughput because of the
requirement to map all applications to compact regions. In this
paper, we propose a runtime application mapping scheme, LBRM,
that exploits a borrowing strategy to improve the throughput of
many-core systems given a lifetime constraint. First, we propose
using different strategies for mapping communication-intensive
applications and computation-intensive applications. The lifetime
reliability constraint can be relaxed in the local time scale when
the communication requirement is high. The throughput is im-
proved because the communication distance of communication-
intensive applications is optimized while the waiting time of
computation-intensive application is reduced. Then, we propose
a method to effectively classify applications depending on the
communication-to-computation ratio. A dynamic threshold is
determined according to the current locations of available cores.
Finally, we propose an improved neighborhood allocation scheme
to reduce the communication cost in the task mapping. The
experimental results show that compared to the state-of-the-
art lifetime-constrained mapping, the proposed mapping scheme
improves the throughput of many-core systems by 26% on
average for synthetic task graphs and by 20% on average for
realistic task graphs while the lifetime reliability is maintained
within a constraint.
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I. INTRODUCTION

Aggressive technology scaling has enabled the integration
of tens to hundreds of cores on a single chip [1], [2],
which is known as many-core processor. The workloads on
many-core systems generally exhibit a dynamic nature, i.e.
applications with different characteristics arrive and leave the
system dynamically. To better utilize the many-core resources,
the resource manager requires an efficient runtime application
mapping scheme, which should be lightweight and provide
high performance under various resource constraints, such as
thermal, power, lifetime reliability, and so forth. Application
runtime mapping on many-core systems is a challenging prob-
lem because it is time consuming to find the optimal solution
given various constraints while the information is available
only when the applications arrive [3]. In addition to resource
constraints, the performance requirements [4], internal and
external congestion [5], [6] and fragmentation issues [7], [8]
also complicate the design of runtime mapping.

Meanwhile, lifetime reliability is emerging as a major
design concern for many-core systems [9]–[12]. The tran-
sistors are affected by various aging mechanisms, which can
eventually result in permanent failures of cores. Mean time
to failure (MTTF), a metric for lifetime reliability, is used
for the expected lifetime of transistors. Dynamic reliability
management (DRM), first proposed in [9], ensures a target
lifetime reliability by controlling the system knobs such as
voltage/frequency [13]–[15], power gating [16], task-to-core
mapping [17], [18], and so forth. One specific feature of
lifetime-constrained design is the borrowing strategy [13],
which allows the lifetime constraint to be locally relaxed
for better performance in the local time window while still
meeting the constraint over the long-term scale. However, most
prior studies exploit the borrowing strategy by DVFS in single-
core or multi-/many-core processors [13]–[15]. Additionally,
the borrowing strategy is less exploited for managing lifetime
reliability through runtime application mapping. Since runtime
application mapping is a different knob from DVFS, if the
borrowing strategy is adopted, the design challenge of the
application mapping is how to consider short-term relaxation
of lifetime constraint when selecting a set of cores to map an
application.

In this paper, we show that it is possible to improve the
throughput by exploiting a borrowing strategy in the lifetime-
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constrained design of many-core systems. We propose a run-
time application mapping scheme named Lifetime Budgeting
Reliability Management (LBRM), which aims to improve the
global throughput of the system given a lifetime reliability
constraint. The key idea of this mapping scheme is that a bor-
rowing strategy is adopted to satisfy the lifetime reliability
constraint in a long-term scale, while the lifetime constraint
can be relaxed in the local time scale when the communica-
tion requirement is high. First, the applications are classified
as communication-intensive applications and computation-
intensive applications. The mapping schemes include two sub-
routines: (1) mapping for communication-intensive applica-
tions and (2) mapping for computation-intensive applications.
The communication-intensive applications are mapped to near-
square regions for a lower communication cost. In contrast,
the computation-intensive applications are allowed to map to
dispersed regions to avoid over-stressed cores. The global
throughput is improved because the communication perfor-
mance of communication-intensive applications is optimized
while the waiting time of computation-intensive applications is
reduced. Second, to satisfy the lifetime constraint, we propose
a two-level controller based on runtime application mapping
strategies. The proposed two-level controller includes a long-
term controller and a short-term controller. The long-term
controller is responsible for managing the lifetime reliability in
a long-term scale while the short-term controller can manage
the performance in a short time scale. Note that the borrowing
strategy and the two-level controller are different from that
in prior work [13] because in this work task mapping is
used as the knob, whereas in [13] per-core DVFS is used
to control the system. Different from per-DVFS which can
control the lifetime reliability of cores separately, the applica-
tion mapping has to select a set of cores with various aging
statuses each time. Third, we propose a method to effectively
classify the applications depending on the communication-
to-computation ratio. To improve the throughput, a dynamic
threshold is determined according to the current locations
of available cores with the objective of achieving a balance
between the communication time and computation time for the
incoming application. Finally, to further reduce the communi-
cation cost, we propose an improved neighborhood allocation
scheme, which considers the communication distance with
predecessors when allocating the task graphs on the cores.
A preliminary work has been presented in [19]. This paper
extends the preliminary work by adding substantial analyses
on the mapping scheme, a novel method to classify appli-
cations, a mapping-based two-level controller to manage the
lifetime reliability and performance, and more experimental
results including evaluations on realistic task graphs. The novel
contributions of this paper include the following:

(1) A runtime mapping scheme exploiting a borrowing strat-
egy for dynamic reliability management in many-core systems.
The mapping scheme can improve the throughput because
the lifetime reliability constraint can be locally relaxed when
the communication requirement is high while the lifetime
reliability constraint is satisfied in the long time scale.

(2) A mapping-based two-level controller that includes a
long-term controller and a short-term controller to manage the

lifetime reliability and performance, which are controlled by
runtime application mapping.

(3) An effective method to classify the applications
as communication-intensive applications and computation-
intensive applications. The threshold is determined dynam-
ically according to the current locations of available cores
to achieve a balance between the communication time and
computation time.

(4) An improved neighborhood allocation scheme that maps
the next task considering the communication distance with all
predecessors. Thus, the communication cost can be effectively
reduced.

The remainder of this paper is organized as follows. Sec-
tion II briefly introduces the related work. Section III discusses
the motivation and design overview. Section IV presents the
proposed runtime mapping scheme. Section V analyzes the
experimental results, and Section VII concludes this paper.

II. RELATED WORK

A. Dynamic Reliability Management Approaches

DRM, first proposed in [9], ensures a target lifetime re-
liability by adapting the processor to dynamic workloads
for higher performance. DVFS has been widely used for
lifetime reliability management by dynamically controlling the
voltage and frequency of transistors. In [15], the researchers
implement a DRM system that includes a lifetime prediction
model and a control system to make a trade-off between
performance and remaining lifetime reliability. The supply
voltage is allowed to boost beyond the nominal voltage for
critical computational demands, but the lifetime budget is also
satisfied. In [13], a DRM policy is proposed for multicore
platforms considering lifetime reliability and user experience.
The DRM policy incorporates a two-level controller, which
consists of a long-term controller for lifetime management in
a long time scale and a short-term controller for satisfying
performance requirements in a short time scale. They propose
a borrowing strategy, which locally relaxes reliability-induced
operating point constraints while still satisfying them over the
large time windows. In [16], the researchers propose a DRM
by exploiting dark silicon in many-core processors. In addition
to DVFS, power gating of cores is also used as a knob to
control the lifetime reliability, energy and performance.

In summary, DRM allows increasing performance in a
short term scale while meeting the lifetime constraint in a
long term scale. This strategy is also named the borrowing
strategy. Most prior studies exploit the borrowing strategy by
DVFS. However, the borrowing strategy is less exploited for
managing lifetime reliability by runtime application mapping.

B. Runtime Mapping

Runtime mapping is very challenging since the arrival
time and execution time of the applications are unknown
at design time [3], [20]. The mapping algorithm should be
lightweight to immediately react to the varying requests for
resource allocation. Researchers have proposed various effi-
cient heuristics to assign incoming applications to platform
resources. Chou et al. [20] propose an incremental mapping
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to minimize the communication energy consumption. A near-
convex region is first selected as the mapping area to minimize
the average Manhattan distance regardless of the application.
Then, a heuristic is proposed to map the application to the
selected area. In contrast to [20], the recent runtime application
mapping algorithms proposed in [5], [6], [21] consist of two
steps: (1) the first node is selected considering fragmentation,
spatial availability and congestion, and (2) the application is
mapped to a near-convex continuous region around the first
node. In [21], two metrics AMD and mapped region dispersion
(MRD) are defined to measure the communication cost and
compactness of a mapping area. In [5], it is stated that a
near-square area is preferred due to fragmentation. In [6],
the researchers propose a more advanced first node selection
method, which quantitatively incorporates spatial availability
and dispersion into a single value. Then the neighborhood
allocation method in [21] is employed to select a near-convex
area to minimize dispersion and external congestion. Fattah
et al. [22] propose an approach for non-continuous mapping,
in which a parameter α named allowed level of dispersion
is defined. They show that when 0 < α < 1, higher
throughput can be achieved because of less waiting time.
However, the allowed level of dispersion remains constant
for all applications. All these runtime application mapping
approaches are lifetime agnostic. It was shown in [18] that
lifetime-agnostic approaches can aggravate lifetime reliability
issues despite performance improvement and energy savings.

C. Lifetime-Aware Mapping

Lifetime-aware mapping problems in multi-/many-core sys-
tems have been extensively studied. Huang et al. [11] define
an aging effect for multi-core system, and they propose a task
mapping algorithm to maximize MTTF of multi-core system
given performance constraints. Hartman et al. [23] propose a
lifetime-aware runtime mapping heuristic for NoC-based chip
multiprocessors. Their heuristic minimizes the accumulated
aging effects of the cores and extends the lifetime. Sun et
al. [24] propose a workload balancing scheme for multi-core
systems to mitigate NBTI-induced aging issues. All these
approaches address the lifetime reliability issues by optimizing
the MTTF given performance constraints.

With a much shorter MTTF due to technology scaling, an
increasing number of studies on many-core systems focus
on optimizing the performance given a lifetime reliability
constraint. Huang et al. [17] propose a lifetime-constrained
mapping algorithm to minimize the energy consumption under
a lifetime constraint on multi-core system. The optimization
problem is solved by simulated annealing at design time. Liu
et al. [25] propose a design-time mapping and scheduling
approach for multi-core systems given lifetime reliability and
thermal constraints. Incorporated with DVFS, the mapping and
scheduling problem is formulated as a mixed integer linear
programming (MILP) problem, which minimizes the total en-
ergy consumption with both thermal threshold constraint and
system lifetime reliability constraint satisfied. Gnad et al. [26]
propose a runtime lifetime management system that harnesses
dark silicon to decelerate aging and improves the overall
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Fig. 1. Application mapping overview. (a) Applications are represented as
task graphs. (b) The aging status of the cores is monitored and stored in
an aging map. (c) The resource manager is responsible for the application
mapping. (d) The applications are mapped on the many-core platform.

system performance for a given MTTF. However, their method
targets malleable applications that have varying degrees of
parallelism [27], i.e., the applications can expand or shrink
the mapping regions at runtime according to the performance
requirements. The runtime mapping in [18] extends the method
in [6] to take the aging information into consideration when
selecting the first node. Based on the first node selection
method, a runtime mapping given a lifetime constraint is
proposed. However, the method does not exploit the borrowing
strategy feature of DRM. In other words, the fact that the
lifetime constraint can be temporally locally relaxed for higher
performance requirements is neglected.

III. MOTIVATION AND DESIGN OVERVIEW

A. Design Overview

Fig. 1 presents an overview of the runtime mapping design.
This paper considers multiple applications coexisting on the
many-core system. The arrival time and leaving time of the
applications are unknown in advance. At runtime, when there
is an incoming application, the application mapping scheme
needs to determine a set of cores for the application consider-
ing the lifetime reliability of the cores, performance require-
ments of the application, internal and external congestion of
the mapping region, and so forth. The application mapping
and resource management are controlled by a centralized
resource manager. The resource manager takes the application
information, platform aging map and current resource status
as the inputs of the mapping algorithm. The output of the
algorithm specifies how the tasks of the incoming applications
are mapped to the many-core system. The models of lifetime
reliability, applications and many-core platform are presented
in detail in the following section.

B. Models

1) Lifetime Reliability: The aging mechanisms for lifetime
reliability include electro-migration (EM), time-dependent di-
electric breakdown (TDDB), stress migration (SM), nega-
tive bias temperature instability (NBTI), hot carrier injection
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(HCI), and so forth. In this paper, we only consider the
EM-induced aging mechanism. Other aging mechanisms can
easily be incorporated using the Sum-of-Failure-Rate (SOFR)
model [17].

The lifetime reliability can be modeled according to Weibull
distribution [11]. The MTTF is given as

MTTF = αΓ(1 +
1

β
) (1)

where α is related to operating conditions such as temperature,
switching activity, frequency, etc. Γ is the gamma function. β
is the slope parameter for the Weibull distribution. The scale
parameter is

α =
M0(J − Jcrit)−ne

Ea
kT

Γ(1 + 1
β )

(2)

where M0 is a material-related constant; J is the current
density which is related to voltage, frequency and switching
activity; Jcrit is the critical current density; and T is the
operating temperature.

Considering the runtime variation in the operating condi-
tions, an aging effect for a processor is also defined in [11],
as shown in Equation 3.

A =
∑
i

∆ti
αi

(3)

where ∆ti is the duration of the i-th time interval. αi is the
scale parameter in the i-th time interval. The aging effect rep-
resents aggregate operating conditions including temperature,
voltage, frequency and utilization.

To satisfy the predefined lifetime constraint, the aging effect
should be less than the target aging effect. We define a lifetime
budget in Equation 4.

∆A(t) = Atarget(t)−A(t) > 0 (4)

A positive lifetime budget value means that the lifetime
constraint is satisfied and vice versa. For lifetime reliability
management, the lifetime can be regarded as a resource
consumed over time. Atarget(t) indicates the given resource,
and A(t) indicates the consumed resource. As soon as the
consumed resource is less than the given resource, the lifetime
constraint is satisfied. Equation 3 and Equation 4 also indicate
that if a healthy core is over-stressed for a period, then the
lifetime budget decreases and even the lifetime constraint is
violated. Conversely, if a high-aged core (∆A < 0) is less
stressed for a period, then it can recover from its high-aged
status.

2) Application Model: Each application can be modeled as
a directed task graph AG = (T,E), where T is the set of
tasks and E is the set of directed edges. Each task ti ∈ T
has a worst-case execution time when mapped to a core. Each
edge ei,j ∈ E represents data dependency between the source
task ti and destination task tj . The weight wi,j represents the
communication volume from task ti to task tj . The execution
time of an application or the makespan of a task graph is
determined by both task execution time and communication
time. Fig. 1(a) shows a set of applications. At runtime, the
applications arrive and leave the system dynamically. The

arrival time and execution time are unknown in advance.
Therefore, the information of an application and the resource
status are available when the application arrives. This requires
the design of a low-complexity and highly efficient runtime
mapping algorithm.

3) Platform Description: The many-core system consists of
a set of homogeneous cores that are connected by a 2D-mesh
on-chip interconnect network. The platform is represented as
a directed graph G(P,L), where P represents the set of cores
ni and li,j ∈ L represents the physical channel between two
cores ni and nj . Fig. 1(d) shows the many cores that are
interconnected by the on-chip network.

Each core is associated with a lifetime budget ∆A. It is
assumed that a software-based aging monitoring framework
is adopted. The framework estimates the aging status of each
core periodically according to the operating conditions. The
resource management manager maintains an aging map, which
contains the ∆A values of all cores. If the size of the many-
core system is M×N , then the aging map can be represented
by a matrix in Equation 5.

AM =


∆A1,1 · · · ∆A1,N

...
. . .

...
∆AM,1 · · · ∆AM,N

 (5)

As demonstrated in Fig. 1(b), an aging map is used to keep
the lifetime budgets ∆A of the cores in the many-core system.

C. Motivation Example

We observe that state-of-the-art lifetime-constrained map-
ping [18] can possibly lead to low throughput of many-core
systems if all applications are required to map to near-square
regions. Fig. 2 presents an example of an application with 4
tasks that are mapped to a 3×3 many-core system1, in which
the core in the central region is a high-aged core and the others
are less-aged cores. It is assumed that the high-aged core has
violated the predefined lifetime constraint. If the application
is mapped to a near-square region as in Fig. 2(a), then the
application has to wait until the core recovers from the high-
aged status. This situation would possibly lead to low through-
put due to a long application waiting time. However, the
applications can have various communication characteristics,
i.e., some applications are more computation-intensive than
others. For those applications, it is not necessary to map to a
near-square region because the communication distance is less
important. As shown in Fig. 2(b), the application is mapped to
a non-square region without occupying the high-aged core. De-
spite a slight increase in the average communication distance,
the system throughput can be improved because of a shorter
waiting time. Therefore, Fig. 2 indicates that higher throughput
can be achieved by mapping the applications with different
strategies. In Section IV, a detailed runtime mapping scheme
that includes two different mapping strategies is presented to
improve the throughput.

1It is assumed that the maximum number of tasks running on each core is
one.



WANG et al.: A LIFETIME RELIABILITY-CONSTRAINED RUNTIME MAPPING FOR THROUGHPUT OPTIMIZATION IN MANY-CORE SYSTEMS 5

Application 

mapping area

Runtime 

Mapping

An incoming 

application

Low-aged core

High-aged core

An incoming 

application

(a) Mapping scheme 1 (b) Mapping scheme 2

Runtime 

Mapping

Application 

mapping area

 

Fig. 2. Motivation example. (a) The application is mapped to a square region
for low communication cost, but the aging effect of the high-aged core is
aggravated. (b) The application is mapped to a non-square region for a low
waiting time, and the lifetime constraint of the high-aged core is satisfied.

D. Problem Statement

At runtime, N applications arrive. To improve the through-
put, the resource manager should allocate resources to the N
applications such that all N applications can finish as early as
possible. The constraint is the lifetime reliability constraint.
The decision variables are (1) choosing if mapping or waiting
for the next application and (2) task-to-core mapping of each
application.

maximize Throughput(ts, tf ) =
N

tf − ts
(6)

subject to

Atargetj (tf )−Aj(tf ) ≥ 0, ∀nj ∈ P (7)

Aj(tf ) = Aj(ts) +

∫ tf

ts

1

αj(t)
dt, ∀nj ∈ P (8)

Atargetj =

∫ tf

0

1

αnominalj

dt (9)

where ts is the arrival time of the first application and tf is the
completion time of all N applications. At time tf , the lifetime
reliability constraint should be met. In this paper, we use the
aging effect as the lifetime constraint.

Equation 6 defines the objective as maximizing the through-
put. Since N is constant, the objective is to minimize tf
such that at time tf all applications have finished and the
lifetime budgets of all cores are positive (Equation 7). The
total time includes waiting time and running time. The running
time of each application consists of the execution time of the
tasks and the communication time, which is related to the
communication distance of the mapped tasks. Therefore, the
mapping decisions should attempt to minimize the waiting
time of the applications and the communication distance of
the mapping region. Equation 8 and Equation 9 present the
calculation of the aging effect at time tf and the target aging
effect according to Equation 3. The aging effect at time tf is
associated with α(t), which integrates the operating conditions
between ts and tf . If a core is allocated a task, then the core
will experience higher workload and temperature, causing a
higher aging effect during this period. The target aging effect is
associated with the accumulated nominal operating condition
which is constant and represented as αnominal. This comes
from the user-defined lifetime constraint.
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Fig. 3. Flow of the proposed application mapping scheme.

IV. PROPOSED APPROACH FOR LIFETIME CONSTRAINT
MAPPING

In this section, we propose a lifetime-constrained mapping
scheme. Fig. 3 presents the flow for the application mapping
scheme. First, the centralized manager periodically updates the
aging map of the many-core system. When a new application
arrives, the mapping algorithm is called to map the application
onto the many-core system. The mapping algorithm includes
two steps: (1) first node selection and (2) mapping other tasks
around the first node. To satisfy the lifetime constraint, an
application mapping-based two-level controller is presented to
control if the incoming application is mapped or placed in
the waiting queue. Finally, we present a method to determine
the threshold to efficiently classify the applications for higher
throughput. To incorporate the borrowing strategy in the
application mapping, two challenges need to be addressed: (1)
how to maintain the target lifetime constraint in a long-term
scale and (2) when and how to relax the lifetime constraint
in a short-term scale. These two challenges are effectively
addressed in Section IV-C and Section IV-D.

A. Runtime Aging Monitoring and Aging Map Update

For runtime lifetime management, a runtime aging mon-
itoring framework is required to make decisions based on
the runtime aging status. In this paper, we adopt a similar
method as [28], in which the aging effect is estimated based
on aggregate operating conditions, including the temperature,
switching activity, voltage, frequency, and so forth.

Given a target aging effect, the lifetime budget ∆A is
calculated for each core. If ∆A > 0, then it indicates that
the aging effect is less than the target aging effect, i.e. the
lifetime constraint of the core is satisfied, and vice versa. The
aging map is updated periodically.

B. First Node Selection

In this paper, we adopt the state-of-the-art approach [6],
[18] for first node selection. The reason is that the first
node selection in the mapping framework considers external
congestion and fragmentation issues, which are two important
factors that affect the mapping performance. Thus external
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Fig. 4. Diagram for neighborhood node allocation, which includes two
subroutines: (1) communication-biased mapping for communication-intensive
applications and (2) computation-biased mapping for computation-intensive
applications.

congestion and fragmentation are beyond the scope of this
paper. Moreover, the first node selection in [18] can also
balance the aging effect of cores. In this paper, we use the
lifetime budget ∆A as the lifetime reliability metric in the
first node selection to balance the aging effect. For each core
(m,n) in the many-core system, a reliability factor RFm,n is
evaluated based on the status of the neighborhood cores. The
reliability factor is represented as follows,

RFm,n =

m+r∑
i=m−r

n+r∑
j=n−r

Wi,j ×∆Ai,j × (r − d+ 1) (10)

where Wi,j = 0 if (i, j) is occupied and Wi,j = 1 if core (i, j)
is unoccupied. r is the radius of the square and d is the distance
from the center. RFm,n incorporates lifetime reliability metric,
status of the cores and the range of the square into a single
value. Additionally, the closer core around (m,n) is given
a higher weight. A higher RFm,n indicates that there are
more free cores and more lifetime budgets around the core
(m,n). The first node is the core with the highest reliability
factor. Note that the reliability factor values of all cores are
calculated at runtime proactively. Thus, the calculation of
the reliability factor does not affect the running time of the
mapping algorithm.

C. Neighborhood Node Allocation

After the first node is selected, the tasks of the application
are allocated to the first node and the neighborhood cores
around the first node. Because the applications have various
characteristics, it poses different requirements of communica-
tion performance on the resource allocation. In this paper, we
classify applications as communication-intensive applications
and computation-intensive applications. Because communica-
tion is more dominant in communication-intensive applica-
tions, the communication-intensive applications are mapped to
more compact regions. Meanwhile, the computation-intensive
applications are mapped to more dispersed regions.

In this paper, the applications are classified according to
their communication-to-computation ratio (CCR), which is de-

Algorithm 1 Pseudocode of Lifetime-aware Neighborhood
Allocation (LNA)
Input nf : First node;

∆Ai,j , i ∈ [1, N ], j ∈ [1,M ]: Aging map;
AG(T,E): the application to be mapped.

Output Mapping function T → P
Definition Ω: the tasks that are not mapped;

1: Ω← T . Tasks that are not mapped in AG(T,E).
2: r ← 1 . Radius of square around the first node
3: Take the first task tf from Ω in breadth-first order of AG
4: Map tf on nf
5: Sr ← The set of unoccupied cores that are within current

square, which is with radius r around nf
6: while Ω 6= ∅ do
7: Take the next task tn in Ω in breadth-first order
8: if Sr = ∅ then
9: r ← r + 1

10: Sr is updated
11: end if
12: if communication-biased mapping then:
13: nm ← the core within Sr and with the minimum

number of weighted hops with all predecessors of task tn
14: else if computation-biased mapping then:
15: nm ← the core with ∆Am > 0 and within Sr

and with the minimum number of weighted hops with all
predecessors of task tn

16: end if
17: Map tn on nm
18: end while

fined as the average communication time to be sent in one ap-
plication divided by the average computation time. Therefore,
a higher CCR value indicates that the application performance
is more dominated by the communication, whereas a lower
CCR value indicates that the application performance is more
dominated by the computation. The method to classify the
applications is detailed in Section IV-E.

In the mapping process, the borrowing strategy is adopted
to relax the lifetime constraint in a short-term scale when
there is a high communication requirement from the ap-
plication. Specifically, the mapping algorithm includes two
subroutines as shown in Fig. 4, communication-biased map-
ping and computation-biased mapping. If the incoming ap-
plication is a communication-intensive application, then the
communication-biased mapping is called to map the appli-
cation to a near-square area with the lifetime constraint lo-
cally relaxed. This is because the communication performance
requirement in the local time window is higher, and the
performance is the first priority to optimize.

1) Communication-biased Mapping: If the application is
a communication-intensive application, then it has a higher
requirement on the communication performance. Hence, the
communication distance is more important. The widely
adopted method for neighborhood allocation is CONA [21].
With the objective of selecting a near-square region to mitigate
the internal and external congestion [5], CONA selects the
node that fits the smallest square when mapping the next task.
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However, the communication distance with predecessors of the
current task is not considered, which possibly leads to a high
communication cost.

In this paper, we propose an improved method for neigh-
borhood node allocation named lifetime-aware neighborhood
allocation (LNA), which takes both the task communication
overhead and aging information into consideration. The al-
gorithm for the method is presented in Algorithm 1. Given
the first node of an application, the next task to map is
taken from AGi in breadth-first order (line 3 and line 7).
The first task is mapped on the first node (line 4). Sr is
expanded if there is no available core in the current square
(lines 8-11). If the application is communication intensive,
then the next core is selected as the core with minimum
weighted hops with all predecessors of tn (lines 12-13).
Finally, the task tn is mapped on nm (line 17). Compared to
CONA, the major improvement is that the proposed method
maps the next task to the core that is with the minimum
weighted communication distance with predecessors of the
task. The weighted hops with all predecessors of task tn can
be represented as

∑
wi,nMD(map(ti),map(tn)),∀ei,n ∈ E,

where MD(map(ti),map(tn)) denotes the Manhattan dis-
tance between map(ti) and map(tn) in the many-core system.

Assuming the maximum number of predecessors in the task
graph is D, the complexity of the algorithm is O(|T ||P |D),
where |P | is the number of cores and |T | is the number of
tasks. For comparison, the complexity of CONA is O(|T ||P |),
which is slightly lower than that of LNA because LNA consid-
ers the weighted communication distance with predecessors.
The computation overhead is further analyzed in Section V-F.

2) Computation-biased Mapping: Compared to a
communication-intensive application, the performance of
a computation-intensive application is less affected by the
communication distance. This creates opportunities to map
the application to a more dispersed area to avoid high-
aged cores. The over-stressed cores can also recover from
high-aged status. We propose a method that combines the
high-aged cores (∆A < 0) with other allocated cores to form
a compact shape. The mapping algorithm for computation-
intensive application is also presented in Algorithm 1 (lines
14-16). The high-aged cores are avoided when mapping
the application, but the communication distance is still
considered. Compared to mapping for communication-
intensive applications, the communication distance increases
because more cores are avoided and the mapping area is
more dispersed.

D. Lifetime Constraint Satisfaction

In addition to short-term relaxation of the lifetime con-
straint, the runtime mapping that adopts the borrowing strategy
should also satisfy the lifetime constraint of the many-core
system in a long-term scale. The implementation of the
borrowing strategy is an application mapping-based two-level
controller that controls the lifetime reliability and performance
by making mapping decisions and choosing to queue or map
the incoming application. If the lifetime reliability constraint
is not satisfied, then the incoming application is placed in the

Algorithm 2 Lifetime Constraint Satisfaction
Input AGi: the arrival application;

AM : ∆A of all cores;
nf : First node.

Output Choose Queue() or Map().
1: r ← (

√
(AppSize)− 1)/2 . Radius around the first

node;
2: Sr ← The square region with radius r around nf
3: ∆A(Sr) =

∑
i ∆Ai, i ∈ Sr

4: C ← number of free cores
5: |T | ← the number of tasks in AGi
6: if C < |T | then
7: Queue(AGi)
8: else if ∆A(Sr) < 0 then
9: Queue(AGi)

10: else
11: Map(AGi)
12: end if

waiting queue until there is enough lifetime budget. Therefore,
similar to [13], the two-level controller includes a long-term
controller and a short-term controller. The long-term controller
maintains the lifetime budget, while the short term controller
attempts to optimize the performance. In contrast to the
method in [13] which controls the lifetime reliability of cores
via per-core DVFS, the proposed two-level controller is based
on application mapping that selects a set of cores each time
for an incoming application.

1) Long-term Controller: The long-term controller groups
the applications in batches. Each batch contains at most N
applications. When a new application arrives, the application is
placed in the current batch if the number of applications in the
current batch has not reached N . Otherwise, it is placed in the
next batch. In the mapping process, only when the minimum
lifetime budget of the system becomes positive after mapping
all applications in the previous batch, can the application of
next batch be mapped.

2) Short-term Controller: Within each batch, the short-term
controller decides when and how to map the next application.
An algorithm is presented in 2. In the algorithm, if there are
not enough free cores for the incoming application, then the
application is placed in the waiting queue until a running
application leaves (line 6). The total amount of lifetime budget
of the cores around the first node is also calculated and denoted
as ∆A(Sr)(lines 1-3). If ∆A(Sr) is positive, then it indicates
that the communication-intensive applications can be mapped
around the first node even though some cores are over-stressed.
In other words, the lifetime constraint is relaxed in short time
scale. Therefore, when ∆A(Sr) > 0 and there are enough free
cores, the application can be mapped (line 11). If the incoming
application is computation intensive, then it is mapped around
the first without occupying the over-stressed core.

In this paper, the thermal and power constraints, such
as thermal design power (TDP) are not considered for two
reasons. (1) TDP-constrained optimization problems in many-
core systems have been extensively studied in prior research
papers [29]–[31]. TDP-constrained design can easily be incor-
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porated in the proposed two-level controller. (2) The lifetime
reliability is closely associated with power consumption since
high power leads to high temperature and increasing temper-
ature can exponentially aggravate aging effect.

E. Threshold for Application Classification

As presented in the previous section, the runtime map-
ping scheme includes different strategies for communication-
intensive applications and computation-intensive applications.
Determining the optimal threshold to classify the applications
still remains unsolved. A suboptimal threshold may lead to the
following two scenarios:

(1) If the threshold is too low, then most applications would
be classified as communication-intensive applications which
are mapped in compact regions. This situation possibly leads
to long waiting time, such as the example shown in Fig. 2;

(2) If the threshold is too high, then most applications
are classified as computation-intensive applications, which
are mapped in dispersed regions. A possible scenario is that
some applications with a high CCR are mapped to dispersed
regions, leading to a long communication time and high
communication overhead. The high communication time also
results from low throughput.

Ultimately, an inappropriate threshold can possibly lead to
low throughput of the system. It is essential to determine an
appropriate threshold to effectively improve the throughput of
the system.

In this paper, the applications are classified as
communication-intensive applications and computation-
intensive applications according to their CCR. CCR is defined
as comm/comp, which indicates the average communication
time divided by the average computation time in one
application. To avoid the aforementioned 2 scenarios, the
threshold should make a balance between the communication
time and computation time. Since the threshold should be
defined before the mapping process starts, the mapping area
and the communication time are unknown. Therefore, it is
assumed that all available cores are possibly mapped. The
average distance of all available cores is calculated and
represented as MRDfree in Equation 11

MRDfree =

∑
ni,nj∈DMD(ni, nj)(|D|

2

) (11)

where |D| denotes the number of all remaining available cores.
MD(ni, nj) denotes the Manhattan distance between cores ni
and nj . The threshold is defined in Equation 12.

Threshold =
1

MRDfree
(12)

The Threshold value indicates that if the CCR of an in-
coming application is equal to the critical value, it is expected
that the communication time and computation time can be
balanced if the application is randomly mapped to all remain-
ing nodes of the many-core system. It is known that the actual
communication time is determined by both the communication
volume and communication distance of an application. If the
CCR of an incoming application is higher than the Threshold

MRD = 2.56

6 x 6

 

(a) 6 × 6 many-core
system

MRD = 5.19

10 x 10

Area of 

free cores

 

(b) 10× 10 many-core system

Fig. 5. Average distance of remaining nodes. MRD is the average distance.
Grayed blocks represent unavailable cores. The MRD value of the remaining
cores increases with the size of the many-core system.

value, then the application is classified as communication
intensive and can only be allowed to map to a compact region
with the communication distance minimized. Otherwise, the
application is classified as computation intensive and allowed
to map to a dispersed region.

The rationale behind the Threshold value is that the
average distance of the tasks is approximately equal to
MRDfree when the tasks are randomly mapped. In Equa-
tion 12, MRDfree depends on the locations of the remaining
available cores. Fig. 5 presents a comparison in 6×6 and 8×8
topologies. The comparison shows that with the same number
of occupied cores, MRDfree is much higher in a larger topol-
ogy. In other words, the computation-intensive application is
more likely to be mapped to a highly dispersed region in
a large topology. Hence, the threshold should be lower in a
larger topology such that more applications are classified as
communication-intensive applications and mapped to compact
regions to avoid a high communication distance.

F. Thermal Considerations
It is known that the lifetime reliability is closely related to

temperature hotspots. It is stated in [32], [33] that if the tasks
are mapped onto a compact region, then the communication
cost can be minimized but a thermal hotspot possibly occurs.
However, if the tasks are mapped in a dispersed region, then
the peak temperature is lower but with a higher communication
distance. Therefore, the proposed computation-biased mapping
not only mitigates the aging issues by freeing high-aged cores,
but also achieves a more balanced temperature distribution
that indirectly mitigates the lifetime reliability issues. Since it
requires complicated thermal models to calculate the predicted
temperature for all possible mapping decisions, the considera-
tion of thermal hotspots would greatly increase the complexity
of the runtime mapping algorithm. Therefore, our proposed
application mapping algorithm does not consider the thermal
distribution for simplicity. However, this will not significantly
affect the effectiveness of the proposed approach, because
our approach still considers the impact of temperature on the
lifetime reliability and the thermal hotspots would negatively
aggravate the aging effects, while the aging issues are directly
mitigated by the proposed application mapping algorithm. The
runtime application mapping algorithms that consider both
thermal hotspots and lifetime reliability are left as a possible
future work.
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TABLE I
CONFIGURATIONS OF SYNTHETIC APPLICATIONS AND PLATFORM.

Synthetic graph parameters
Number of tasks [10, 20], [20, 30]
Task execution time [100, 400] (cycles)
Power of task [50, 100] (mW)
CCR [0, 0.5], [0, 2]

Network parameters
Size & Topology 8× 8, 12× 12 2D mesh
Routing algorithm XY routing
Latency 2 cycles per hop

TABLE II
CONFIGURATIONS FOR EVALUATION.

8× 8 many-core A1 A2 A3 A4
Application size [10, 20] [30, 40]

CCR [0, 2] [0, 0.5] [0, 2] [0, 0.5]

V. EXPERIMENTAL RESULTS

A. Experimental Setup

In this paper, the experiments are performed in an in-
house many-core simulator. McPat [34] is integrated to model
the power consumption. Hotspot [35] is used to model the
temperature, assuming that thermal sensors are integrated to
monitor the temperature of cores. CALIPER [36] is used to
calculate the aging rate. The specifications of cores are adopted
from Niagara2 processors in McPat [34]. Both synthetic and
realistic task graphs are adopted to evaluate the proposed
mapping schemes in the experiments. The synthetic task
graphs are generated by DAGGEN [37] with the configu-
rations shown in Table I. Other configurations to generate
the synthetic graphs are adopted from the default parame-
ters in DAGGEN. Moreover, we also evaluate the mapping
scheme using realistic task graphs that are extracted from
video processing applications [38]. The proposed lifetime-
constrained mapping schemes, which incorporate CONA and
LNA neighborhood allocation methods, are named LBRM-
CONA and LBRM-LNA, respectively. The mapping scheme
is also compared with the state-of-the-art lifetime-constrained
scheme named DSRM [18]. The lifetime-agnostic runtime
mapping named MAPPRO [6] is also compared.

B. Evaluations on Synthetic Applications

The proposed mapping algorithm is evaluated in terms of
throughput and communication cost under various lifetime
constraints. There are a total of 106 applications generated
in the simulation, and the arrival rate of applications is 0.001
applications per cycle. Since the proposed two-level controller
groups the applications into batches, each batch contains 103

applications in the evaluation.
1) Throughput Comparisons: We adopt aging effect as the

lifetime reliability constraint. Since aging effect reflects the
accumulated aging status with time (shown in Equation 3),
we set the lifetime constraint from 1M to 0.4M , where M is
a reference aging effect value without any lifetime constraints.
In other words, the initial lifetime budget is set from 1M to
0.4M , among which 0.4M is the tightest constraint imposed
on the many-core system.

Fig. 6 and Fig. 7 show comparisons of normalized through-
put in 8 × 8 and 12 × 12 many-core systems respectively.
A1-A4 and B1-B4 correspond to configurations with various
application sizes and CCR values, as shown in Table II.
The throughput is normalized to DSRM for comparison. In
Fig. 6, when the initial lifetime budget is 1M , the average
throughput improvement of LBRM over DSRM is 19.5%. The
improvement comes from the proposed new neighborhood
allocation scheme LNA. When the initial lifetime budget is
0.4M , the average throughput improvement of LBRM-LNA
over DSRM reaches 26.5% because of both the borrowing
strategy and LNA. By using the borrowing strategy, LBRM
maps computation-intensive applications in dispersed regions
without occupying high-aged cores. The throughput is im-
proved due to less waiting time of computation-intensive
applications. LBRM-CONA, which combines the borrowing
strategy with CONA, shows at most 4.5% and 0.5% throughput
improvements for A1 and A3, respectively, and at most
13.7% and 10.5% throughput improvements for A2 and A4,
respectively. The reason for the higher improvements for A2
and A4 is that more applications are classified as computation-
intensive applications when the CCR range is [0, 0.5]. Fig. 7
presents similar results in a 12 × 12 topology size. When
the lifetime constraint is 0.4M , the average throughput im-
provement of LBRM-LNA over DSRM reaches 20.6%, which
is less than that of the 8 × 8 topology size. This result is
because the relative size of the applications is smaller when
in a larger topology, thus creating less opportunities to avoid
high-aged cores. Similar to the 8× 8 topology, LBRM-CONA
has no significant throughput improvement when the CCR
value is [0, 2] (A1 and A3), but it has at most 9.6% and 12.5%
throughput improvements when the CCR value is [0, 0.5] (A2
and A4).

2) Comparisons of Communication Cost: Average
weighted Manhattan distance (AWMD) is a widely used
metric to evaluate the communication cost. As defined
in [21], AWMD is the sum product of communication
distance and all edges’ weights of the mapped application,
averaged by the total communication weights. To evaluation
the communication cost of all mapped applications, AWMD
as defined in this paper considers all mapped applications
rather than a single application. AWMD is defined as follows,

AWMD =

∑
n

∑
ei,j∈En

wi,j ×MD(ei,j)∑
n

∑
ei,j∈En

wi,j
(13)

where n is the total number of mapped applications, En is the
set of edges of the n-th application, wi,j is the weight of the
edge ei,j and MD(ei,j) is the Manhattan distance of tasks ti
and tj . A lower AWMD value indicates lower communication
cost in terms of communication time and communication
energy.

Table III shows partial comparisons of the AWMD values
with respect to Fig. 6 and Fig. 7. Due to space limitations,
only the AWMD values of 1M and 0.6M are shown. It
shows that on average LBRM-CONA leads to a slight increase
in AWMD compared to DSRM. This is because for LBRM-
CONA, the computation-intensive applications are allowed to
map to dispersed regions, which increases the communication
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Fig. 6. Many-core platform size: 8 × 8. (a)-(d) are the results under various application sizes and CCR values. The results are normalized throughput
under various lifetime constraints. 1M , 0.8M , 0.6M , and 0.4M denote various lifetime constraints. M is a reference aging effect value of the system for
LBRM-LNA when there is no lifetime constraint. The configurations of A1-A4 are presented in Table II.
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Fig. 7. Many-core platform size: 12×12. (a)-(d) are the results under various application sizes and CCR values. The results are normalized throughput under
various lifetime constraints.

distance. However, because only low-communication applica-
tions are mapped to dispersed regions, the AWMD is less
affected. It can also be concluded that LBRM-CONA can
effectively improve the throughput without a significant impact
on the communication cost. LBRM-LNA has a considerably
smaller AWMD value because an improved neighborhood
allocation scheme is adopted, which significantly reduces the
communication distance.

C. Throughput Improvement vs. CCR range

In this section, we characterize the throughput improvement
over DSRM given different CCR ranges. The CCR range is
between 0 and the maximum CCR. The maximum CCR is
chosen from 0.05 to 5. Fig. 8 presents the results for different
topology sizes and application sizes.

When the CCR is low, it can be observed that LBRM-CONA
can effectively improve the throughput for all configurations.
This is because when the CCR is low, nearly all appli-
cations are classified as computation-intensive applications
which can only be mapped to a compact area for DSRM.
However, LBRM-CONA relaxes the requirement of compact
area and reduces the waiting time of applications. Hence, the
throughput is improved. The improvement is even greater than
50% when the topology size is 8× 8 and the application size
is [30, 40]. The reason is that the application sizes of most
applications even exceed half of the topology size, making it
more difficult to find a compact area for DSRM. The waiting
time can be greatly reduced if they are mapped to dispersed
regions. When the CCR is high, the improvement of LBRM-
CONA is much less obvious because most applications are with
high CCR values and classified as communication-intensive
applications. Therefore, LBRM-CONA maps more applica-
tions to a compact area as DSRM, showing less advantages
over DSRM.

LBRM-CONA improves the throughput mainly due to
the borrowing strategy. In addition to the borrowing strategy,

the improvement of LBRM-LNA also comes from the improved
neighborhood allocation scheme LNA. When the CCR is high,
it shows that LNA provides an additional 20%-40% throughput
improvement. However, when the CCR is low, LBRM-LNA is
close to LBRM-CONA. This is because LNA mainly improves
the task allocation by considering the communication with all
predecessors. If there is less communication, LNA becomes
closer to LBRM-CONA. Fig. 8(b) also shows a quite different
curve from the others because the throughput improvement
of LBRM reaches more than 50% at low CCR ranges and
relatively large application sizes.

D. Advantages of Proposed Classification Method

To show the advantages of the proposed classification
method, we compare it with a naive method that determines
the threshold according to the average CCR of all applications.
For example, the threshold for the CCR range [0, 0.5] is 0.25.
In contrast, the proposed method determines the threshold
dynamically, which depends on the current locations of all
available cores and topology size.

As shown in Fig. 9, the proposed LBRM-LNA mapping
schemes that incorporate the proposed classification method
and the naive method are named MRD and AVG, respectively.
Additionally, CP and CM indicate that all applications are
classified into computation-intensive applications (CP) and
communication-intensive applications (CM), respectively. In
Fig. 9, A1-A4 correspond to the configurations in Table II, and
the lifetime constraint is 0.6M . It shows that when the CCR
is [0, 0.5], MRD has more than 10% throughput improvement
than AVG. However, when the CCR is [0, 2], the improvement
is not significant. It can be concluded that the advantages of
MRD depend on the CCR range. The threshold determined
by the proposed method is more appropriate when the CCR
is [0, 0.5]. Overall, MRD outperforms AVG in most cases.
Moreover, it also shows that when there is no classification, the
throughputs of CP and CM are much lower than MRD, except
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TABLE III
AVERAGE WEIGHTED MANHATTAN DISTANCE (AWMD).

Many-core size 8× 8 12× 12
Configurations A1 A2 A3 A4 A1 A2 A3 A4
Constraints 1M 0.6M 1M 0.6M 1M 0.6M 1M 0.6M 1M 0.6M 1M 0.6M 1M 0.6M 1M 0.6M
MAPPRO 2.98 2.89 2.97 2.88 4.35 4.35 4.35 4.34 3.05 2.90 3.01 2.92 4.48 4.43 4.49 4.42
DSRM 2.95 2.95 2.93 2.92 4.47 4.45 4.46 4.44 3.07 3.00 3.03 3.04 4.47 4.47 4.48 4.45
LBRM-CONA 2.91 2.91 3.08 3.00 4.42 4.12 4.42 4.10 2.92 2.91 3.06 2.98 4.44 4.34 4.42 4.28
LBRM-LNA 1.96 1.94 2.24 2.19 2.74 2.74 2.78 2.79 1.99 1.93 2.16 2.08 2.86 2.86 2.95 2.87
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(b) 8× 8, app. size: [30, 40]
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(c) 12× 12, app. size: [10, 20]

 

0%

10%

20%

30%

40%

50%

60%

0.05 0.1 0.3 0.5 0.7 1 2 5

LBRM-CONA

LBRM-LNA

T
h

ro
u

g
h

p
u

t 
im

p
ro

v
e

m
e

n
t 
o

v
e

r 
D

S
R

M
 

Maximum CCR 

(d) 12× 12, app. size: [30, 40]

Fig. 8. Throughput improvement over DSRM vs. CCR range for various topology sizes and application sizes. The CCR range is between 0 and maximum
CCR. The CCR values of the applications are uniformly distributed within the given range.
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Fig. 9. Comparisons of the classification methods.

for the case A3 in Fig. 9(a), in which the relative size of an
application is larger while CP allows the applications to map in
dispersed regions without a long waiting time. In other words,
the throughput is lower when all applications are classified as
either computation-intensive applications or communication-
intensive applications. This also proves the effectiveness of
the classification method.

E. Evaluations on Realistic Task Graphs

In this paper, the proposed mapping scheme is also evalu-
ated using realistic task graphs, including video object plane
decoder (VOPD), picture-in-picture application (PIP), and
multi window display application (MWD), triple video ob-
ject plane decoder (TVOPD), MPEG4, MP3 encoder, H.263
encoder and H.263 decoder [38], [39]. Since only the commu-
nication profiles of these applications are provided, we assume
that the computation time of the tasks is identical and that
the CCR value of VOPD is 1. The CCR values of the other
applications are normalized accordingly, as shown in Table IV.
In the simulation, there are a total of 106 applications in which
the 8 task graphs are uniformly distributed.

1) Throughput Comparisons: Fig. 10 shows the compar-
isons of throughput for realistic task graphs. This figure shows
that in the 8 × 8 topology size, LBRM-CONA and LBRM-
LNA have at most 17.4% and 22.7% throughput improvements
respectively. When the topology size is 12×12, LBRM-CONA

TABLE IV
INFORMATION OF REALISTIC TASK GRAPHS.

Name Size CCR Name Size CCR
MP3 Encoder 13 0.008 H.263 Decoder 14 0.008
H.263 Encoder 12 0.093 VOPD 16 1
MWD 12 0.256 MPEG4 12 0.256
PIP 8 0.608 TVOPD 38 0.724
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Fig. 10. Throughput comparison for realistic benchmarks.

and LBRM-LNA have at most 13.4% and 16.9% throughput
improvements, respectively. LBRM-LNA has higher throughput
because the borrowing strategy is also adopted in addition to
LNA neighborhood allocation. The improvement is less in the
12×12 topology size because the relative size of an application
is smaller compared to the platform, creating less chances for
avoiding high-aged cores. The results also show that LBRM is
also effective in terms of throughput improvement for realistic
task graphs.

2) AWMD Comparisons: Fig. 11 shows the comparisons of
communication distance for realistic task graphs. The results
show that although LBRM-CONA and LBRM-LNA allow dis-
persed mapping of some applications, the AWMD does not
increase significantly. The main reason for this result is that
most of the dispersed applications have low communication.
We can conclude that LBRM can effectively increase the
throughput with only a slight penalty on the communication
cost. In addition, LBRM-LNA has a lower AWMD than LBRM-
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Fig. 11. AWMD Comparisons for realistic benchmarks.

TABLE V
COMMUNICATION OVERHEAD VS. MANY-CORE SIZE.

Many-core size 8× 8 16× 16 24× 24 32× 32
Communication (bits) 17,472 157,440 569,664 1,364,992

CONA because of the LNA neighborhood allocation method.

F. Overhead Analysis of the Runtime Mapping

In this paper, the runtime mapping is performed by a central-
ized resource manager, which is responsible for monitoring the
status of the cores and making mapping decisions. According
to [20], the overhead of the runtime mapping includes the
message transmissions in the control network and the online
mapping algorithms.

1) Communication Overhead: For a mesh-based on-chip
interconnect, the communication energy is nearly proportional
to the total communication volume [40]. Assuming that the 32
bits are used to represent the lifetime budget, Table V presents
the communication volume vs. the many-core size according
to the method in [20]. When the many-core size is 8 × 8,
the energy overhead for transmitting the control messages
is negligible compared to realistic applications (usually in
the megabit range) [20]. However, when the size increases
to 32 × 32, the high communication volume poses a higher
communication bandwidth requirement around the centralized
resource manager. Therefore, it can be concluded that a
distributed resource management method is more preferable
in a larger many-core system, which is beyond the scope of
this paper and left as a future work.

2) Computational Overhead of the Reliability Factor and
Neighborhood Allocation: The mapping includes neighbor-
hood allocation algorithm, the calculation of Threshold param-
eter, and the calculations of reliability factor. We evaluate the
computational overhead of these three calculations on an ARM
processor (1 GHz) in gem5 simulator. It is assumed that the
application size is 30, and the topology size is 8×8 or 12×12.
(1) The results show that the proposed neighborhood allocation
algorithm LNA takes 34µs and 36µs for 8×8 and 12×12 topol-
ogy sizes, respectively. For comparison, CONA takes 30µs
and 31µs for 8× 8 and 12× 12 topology sizes, respectively.
This is reasonable because LNA has higher complexity than
CONA. (2) The calculations of reliability factor takes 272µs
and 483µs for 8× 8 and 12× 12 topology sizes, respectively.
However, they are calculated proactively, e.g., the calculations
are performed after last application mapping, and the results
are ready when the next application mapping arrives. Thus it

would not affect the running time of the algorithm if the time
interval of arrival time is long enough.

3) Computational Overhead of Threshold Parameter:
Eq. 11 needs to calculate

∑
ni,nj∈DMD(ni, nj), which is

the all-to-all Manhattan distance of all the remaining cores.
Therefore, the calculation of the Threshold parameter involves
a high complexity and possibly incurs too long running time at
runtime. We propose an algorithm to simplify this calculation.
The main idea is to calculate the horizontal distance and
the vertical distance from other nodes separately, and some
calculations are judiciously reused. For each node ni, the total
horizontal distances to all the nodes on the left side, on the
right side, on the upside and on the down side are denoted
as LD(ni), RD(ni), UD(ni) and DD(ni), respectively.
Therefore, the total distance from ni to all the other nodes
is calculated as

∑
nj∈DMD(ni, nj) = LD(ni) + UD(ni) +

RD(ni)+DD(ni). We use L(k) to denote the total horizontal
distance from column k to all the nodes on the left of column
k, and (xi, yi) denotes the coordinate of ni in the mesh. It
can be derived that LD(ni) = L(xi). Because the horizontal
distance to each node on the left side increases by 1 when
moving 1 hop to the right column, L(k) can be represented
in a recursive manner as follows,

L(k + 1) = L(k) +M(k + 1),∀k ∈ [0, N − 2] (14)

where M(k) is the total number of nodes on the left side
of column k. Since L(0) = 0, L(1) to L(N − 1) can be
calculated recursively. Then LD(ni) of all the nodes can be
easily obtained from L(k). Similarly, RD(ni), UD(ni) and
DD(ni) can be calculated. Finally, the total distance of each
node to all the other nodes is calculated. Using this method,
the Threshold parameter can be calculated with a much shorter
runtime.

The experimental results show that the method reduces
the computational overhead of the Threshold parameter from
138µs to 10µs for 8 × 8 topology size, from 972µs to
31µs for 12 × 12 topology size, and from 2207µs to 63µs
for 16 × 16 topology size. Besides, the calculation of the
Threshold parameter is also performed proactively similar as
the calculation of reliability factor. Therefore, the Threshold
parameter has low computational complexity and has little
impact on the running time of the mapping algorithm.
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VII. CONCLUSIONS

In this paper, we propose a lifetime-constrained runtime
mapping scheme, which can dynamically map the incoming
applications on the many-core system under a lifetime con-
straint. Compared to existing lifetime reliability-constrained
mapping schemes, the proposed mapping algorithm adopts
the borrowing strategy to manage the many-core resources in
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multiple scales. In other words, the lifetime is managed in a
long-term scale but is locally relaxed to satisfy performance
requirements in a short-term scale. An application mapping-
based two-level controller is presented to control the lifetime
reliability and performance by runtime application mapping.
The applications are classified into communication-intensive
and computation-intensive applications, and they are mapped
with different strategies. We also propose a method to classify
the applications as communication-intensive and computation-
intensive applications depending on the current locations of
available cores such that the throughput can be effectively im-
proved. The simulation results show that compared to the state-
of-the-art lifetime-constrained mapping scheme, the proposed
runtime mapping can effectively improve the throughput of
many-core systems given a lifetime reliability constraint.
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