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ABSTRACT 

Approximate high radix dividers (HR-AXDs) are proposed and 

investigated in this paper. High-radix division is reviewed and 

inexact computing is introduced at different levels. Design 

parameters such as number of bits (N) and radix (r) are considered 

in the analysis; the replacement schemes with inexact cells and 

truncation schemes of exact cells in the binary signed-digit adder 

array is introduced. Circuit-level performance and the error 

characteristics of the inexact high radix dividers are analyzed for 

the proposed designs. The combined assessment of the normal 

error distance, power dissipation and delay is investigated and 

applications of approximate high-radix dividers are treated in 

detail. The simulation results show that the proposed approximate 

dividers offer extensive saving in terms of power dissipation, 

circuit complexity and delay, while only incurring in a small 

degradation in accuracy thus making them possibly suitable and 

interesting to some applications and domains such as low 

power/mobile computing. 

CCS Concepts 
• Hardware~Integrated circuits   • Hardware~Arithmetic and 

datapath circuits   • Hardware~Combinational circuits 
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1. INTRODUCTION 
Most computer arithmetic applications are implemented using 

digital logic circuits, thus operating with a high degree of 

precision. However, many applications such as multimedia and 

image processing can tolerate errors and imprecision in 

computation and still produce results that can be useful in which 

human senses (such as vision) are involved. Approximate (or 

inexact) computing relies on using this property to design 

simplified, yet approximate circuits operating at higher 

performance and/or lower power consumption compared with 

precise (exact) logic circuits. 

There are increasing demands for high-speed dividers in today’s 

floating point units (FPU) and digital signal processors. 

Reductions in delay and power consumption have been studied for 

the division operation; different algorithms for division can be 

found in the technical literature [1]. Digit-by-digit (digit 

recurrence) methods are widely used in hardware design; 

implementations can be either sequential, combinational, or a 

combination of both. Based on these findings, the combinational 

implementations of a divider based on restoring, non-restoring [2] 

and SRT algorithms [3] are treated in more detail as they employ 

highly modularized structure for inexact designs. 

In the previous work by the same authors [4], the designs of 

approximate unsigned non-restoring and restoring dividers 

(denoted as AXDnr and AXDr) have been proposed. New 

approximate AXDnr cells (denoted as AXDCnr) have been 

investigated and approximate computing has been applied to 

division by considering different schemes by which exact cells are 

replaced/truncated in the array divider circuit. 

[5] has presented an algorithm for high-radix exact division; this 

algorithm is based on a prescaling technique of division by digit 

recurrence. In this manuscript we revisit, generalize and extend 

the results of [5] and present a novel architecture for approximate 

division. The approximate design concept of [4] is explored in 

more detail for a high-radix array divider (such as proposed in 

[5]). At circuit level, the signed-digit adder cell is simplified; 

replacement or truncation is utilized in the divider. The 

contribution of this manuscript extends also to an algorithmic 

domain as different numbers of bits (N), radix number (r) and the 

replacement/truncation depth (d) are also considered. Circuit-level 

performance and the error characteristics of these inexact high 

radix dividers are analyzed, inclusive of error analysis for image 

processing applications.  

2. REVIEW OF DESIGN BASIS 
In a high-radix division circuit design, Redundant Binary 

Representation (RBR) is used to represent the quotient digits 

when they are selected at each stage. For example, in the radix-4 

divider discussed later, the intermediate quotient 𝑞𝑗 ∈ [−3, +3] is 

represented in signed-magnitude form; a Binary Signed-Digit 

(BSD) numbering system (as a subcategory of a RBR system [6]) 

with a digit set of {-1,0,1} is used to represent the partial 

remainder at each stage. RBR allows addition without propagating 

a carry. When compared to a non-redundant representation, RBR 

makes digit-wise logic operations slower, however arithmetic 

operations are faster when a large bit width is used [3]. 

2.1 High-radix Division Algorithm 
There are two approaches for division by digit recurrence [3]. The 

first approach is based on selection tables; the second approach is 

based on prescaling. In the first approach, the digits of the 

quotient are obtained by inspecting the dividend and the partial 

remainder; as per the number of value combinations  (as stored in 

digit selection tables), the quotient digit is obtained at each 

iteration [7]. However, for higher radix the size of these tables 

increases, yielding large implementations. Among the techniques 

for addressing this negative design feature, prescaling technique 
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(as proposed in [8, 9]) is widely employed. An efficient and 

unified implementation of high-radix array dividers with no 

lookup table for quotient digit selection using prescaling has been 

presented in [5]. In this algorithm, by doing additional prescaling 

and converting the number representation, the quotient digit is 

directly obtained from the most significant (integer) part of the 

partial remainder at every iteration; this makes possible the 

construction of fully combinational high-radix dividers exhibiting 

a lower latency compared to a radix-2 divider. 

Let the dividend and divisor be denoted by X and D respectively 

(normalized as 1/2 ≤ X < D < 1); A standard SRT division 

algorithm with n-bit precision is given by the recursive equations: 

𝑅(0) = 𝑋 

 𝑅(𝑗+1) = 𝑟𝑅(𝑗) − 𝑞𝑗+1𝐷, (1) 

where (𝑗 = 0,1,2, … , 𝑛 − 1), r is the radix value (usually  𝑟 =

2𝑚(𝑚 = 1,2,3, … )  , j is the iteration step, 𝑅(𝑗)  is the partial 

remainder at step j, and 𝑞𝑗 is the jth quotient digit selected from {-

(r-1), … -1, 0, 1, …, r-1}. The quotient Q and the final remainder 

R are given by 

 𝑄 = ∑ 𝑟−𝑗 ⋅ 𝑞𝑗
𝑛

𝑗=1
, (2) 

 𝑅 = 𝑟−𝑛 ⋅ 𝑅(𝑛). (3) 

The number of iterations in the division process can be reduced by 

increasing the radix r, i.e. by selecting r = 2m; this allows the 

generation of m quotient bits at each step, such that the number of 

steps is reduced to ⌈𝑛/𝑚⌉.  

Normally, (1) as a recursive equation is calculated using Signed-

Digit (carry-free) adders based on a redundant BSD 

representation. The shifted partial remainder 𝑟𝑅(𝑗) is bounded as 

 0 ≤ |𝑟𝑅(𝑗)| < 𝑟𝐷 < 𝑟 = 2𝑚.  (4) 

So, 𝑟𝑅(𝑗) can be represented by using a BSD numbering system 

(denoted as SD2) as 

 𝑟𝑅(𝑗) = [𝑎𝑚−1 … 𝑎1𝑎0. 𝑎−1𝑎−2 … 𝑎−𝑘]𝑆𝐷2  

 = ∑ 2𝑖𝑎𝑖
𝑚−1

𝑖=−𝑘
, (5) 

where 𝑎𝑖 ∈ {−1,0,1}.  

The high-radix division algorithm of [5] is based on a SRT digit-

by-digit division; additionally, it requires the following two steps 

(or conditions) to be performed (or satisfied): (A) The divisor D 

and the dividend X must be prescaled transforming the divisor 

range from [1/2,1) to [Dmin, 1) as described later (operand scaling 

does not affect the result of division, because X/D = MX/MD, 

where M denotes the scale factor. Note that it is well known to 

affect the value of the final partial remainder, if necessary, 

because its value is multiplied by M. (B) Convert the t most 

significant digits 𝑎−1𝑎−2 … 𝑎−𝑡 of the fractional part of 𝑟𝑅(𝑗) to a 

non-redundant form, containing only digits from the set {-1, 0} or 

{0, 1}. After the second step, (5) is given by  

 𝑟𝑅(𝑗) = [𝑐𝑚−1 … 𝑐1𝑐0. 𝑏−1 … 𝑏−𝑡𝑎−𝑡−1 … 𝑎−𝑘]𝑆𝐷2,  

where 𝑏𝑖 ∈ {−1,0} or {0,1}, 𝑎𝑖, 𝑐𝑖 ∈ {−1,0,1}. Then, the (𝑗 + 1)𝑡ℎ 

quotient digit 𝑞𝑗+1 can be obtained directly from the integer part 

of 𝑟𝑅(𝑗),i.e. 

 𝑞𝑗+1 = [𝑐𝑚−1 … 𝑐1𝑐0]𝑆𝐷2 = ∑ 2𝑖𝑐𝑖
𝑚−1

𝑖=−𝑘
, (6) 

where 𝑐𝑖 ∈ {−1,0,1} and 𝑞𝑗+1 ∈ {−(𝑟 − 1), … , 0, … , 𝑟 − 1}.  

The proof of the algorithm in [5] as well as the derivation of the 

scaling range [Dmin,1) are as follows. Since, 𝑟𝑅(𝑗)  can be 

represented as  

 𝑟𝑅(𝑗) = 𝑞𝑗+1 + 𝜖 (7) 

where ϵ denotes explicit value of the fractional part digits and it is 

given by 

𝜖 = [0. 𝑏−1 … 𝑏−𝑡𝑎−𝑡−1 … 𝑎−𝑘]𝑆𝐷2 

= Σ𝑖=1
𝑡 2−𝑖𝑏−𝑖 + Σi=t+1

k 2−𝑖𝑎−𝑖 

The fractional part ϵ is a function of t and is bounded in the 

following rages: 

 If 𝑏𝑖 ∈ {−1,0}, then −1 < 𝜖 < 2−𝑡 (8) 

 If 𝑏𝑖 ∈ {0,1}, then −2−𝑡 < 𝜖 < 1 (9) 

In SRT division using the maximally redundant digit set {−(𝑟 −
1), … , 𝑟 − 1} , 𝑞𝑖+1(∈ {−(𝑟 − 1), … , 𝑟 − 1})  is obtained if 𝑞𝑖+1 

satisfies the following conditions: 

 𝑟𝑅(𝑗) ≤ (𝑞𝑖+1 + 1)𝐷  (𝑞𝑖+1 ∈  {−(r − 1), … , r − 2}) (10) 

 (𝑞𝑖+1 + 1)𝐷 ≤ 𝑟𝑅(𝑗)  (𝑞𝑖+1 ∈  {−(r − 2), … , r − 1}) (11) 

By substituting (7) in (10) and (11), then 

 𝑞𝑖+1 + 𝜖 ≤ (𝑞𝑖+1 + 1)𝐷  (𝑞𝑖+1 ∈  {−(r − 1), … , r − 2}) (12) 

 (𝑞𝑖+1 − 1)𝐷 ≤ 𝑞𝑖+1 + 𝜖 (𝑞𝑖+1 ∈  {−(r − 1), … , r − 2}) (13) 

Using (12) and (13) and considering the bound of ϵ given by (8) 

or (9), the possible scaling range of D must be satisfied for 

selecting 𝑞𝑗+1 (as the explicit value of the integer part of 𝑟𝑅(𝑗)) is 

derived as in (14). Finally, the process to select 𝑞𝑗+1   is 

summarized as following: 

 Prescale the operands X and D to satisfy 

 𝐷𝑚𝑖𝑛 =
𝑟−2+2−𝑡

𝑟−1
≤ 𝐷 ≤ 1, (14) 

where 𝐷𝑚𝑖𝑛 is the lower bound of the scaled D.  

 Convert the t most significant digits 𝑎−1𝑎−2 … 𝑎−𝑡 (𝑎𝑖 ∈
{−1,0,1}) of the fractional part of every partial remainder 

𝑟𝑅(𝑗) into its non-redundant representation 𝑏−1𝑏−2 … 𝑏−𝑡 as 

 𝑏−1𝑏−2 … 𝑏−𝑡 ∈ {−1,0} for 𝑟𝑅(𝑗) > 0 (15) 

 𝑏−1𝑏−2 … 𝑏−𝑡 ∈ {0,1} for 𝑟𝑅(𝑗) < 0 (16) 

2.2  Exact High-radix Divider (HR-EXD) 

 

Figure 1. Example of HR-EXD for 8-bit radix-4  [5] 

The implementation of the HR-EXD for the algorithm reviewed 

previously is presented in [5]. The structure of an 8-bit radix-4 

divider with r=4, t=2 is shown in Figure 1; it consists of the 

following modules as basic blocks. 

Scaling Unit (SU): as input operands, the divisor D and the 

dividend X must be prescaled prior to starting the division 

iterations. For example, in a divider with r=4 and t=2, the divisor 

and the dividend must be prescaled to transform the divisor range 

from [
1

2
, 1) to [

3

4
, 1); prescaling can be done using different scale 

factors for 3 different ranges of D (D>=3/4, 5/8<=D<3/4, 

1/2<D<=5/8). All these constant-scale multiplications can be 

achieved by shift-and-add operations; Figure 2(a) shows the 



operand scaling unit using shifters and carry propagation adders 

(CPA).  In general, as the radix r increases and the number of 

digit t increases, a higher complexity is required for operand 

scaling and the multiplication at each iteration. Therefore, the 

values of r and t must be selected to meet the requirements of 

performance and complexity. In this paper, the parameter t=m 

(where r=2m) has been selected so the same configuration as in 

[5], as it does not lead to a loss of generality of the proposed 

method. For radix-8 and a higher radix, the structure of the scaling 

unit is also the same and it can be extended based on the radix-4 

case (Figure 2(a)). 

  

(a) (b) 

Figure 2. (a) SU module for r=4, t=2  (b) QS module for radix 

4  (𝒔: 𝐬𝐢𝐠𝐧, 𝒒𝟏𝒒𝟎: 𝐦𝐚𝐠𝐧𝐢𝐭𝐮𝐝𝐞) [5] 

Quotient Digit Selector (QS): According to the algorithm in [5], 

the real binary value of the integer part of 𝑟𝑅(𝑗) is selected as the 

(𝑗 + 1)𝑡ℎ  quotient digit 𝑞𝑗+1 . Implementation of this quotient 

selection rule does not need a digit selection table; it needs only a 

high-speed signed-digit carry propagation adder (SDCPA) for a 

limited number of bits (Figure 2(b)). The word length of SDCPA 

is 2m+t bits, because the integer part of 𝑟𝑅(𝑗)  must also be 

converted into a non-redundant form to obtain the explicit value 

of 𝑞𝑖+1 . This conversion is performed by adding the positive 

digits and the two’s complement of the negative digits of 𝑟𝑅(𝑗) for 

𝑟𝑅(𝑗) >= 0 , and by adding the negative digits and the two’s 

complement of the positive digits of 𝑟𝑅(𝑗) for 𝑟𝑅(𝑗) <=  0. The 

obtained quotient digit 𝑞𝑗+1  is in a sign-magnitude redundant 

form; it is then finally transformed into a non-redundant 2’s 

complementary representation using the on-the-fly scheme of 

[10]. For a higher radix, the design of the QS can be extended 

based on the radix-4 case (Figure 2(b)).  

On-the-Fly Conversion: The quotient must be converted from a 

signed-digit representation to a two’s complement representation. 

This is accomplished by an addition after the quotient is 

completely computed; however, this addition increases the overall 

execution time. So to avoid this step, the on-the-fly algorithm of 

[10] is used to perform the conversion in a digit-serial fashion to 

generate the digits of the quotient. 

Product Generator (PG): The high-radix division algorithm 

employs a BSD number representation for partial remainders and 

quotient digits, because this representation exploits the hardware 

simplicity of a radix-2 scheme; a drawback of high-radix 

algorithms is that they require the generation of multiples of the 

divisor 𝑞𝐷 (𝑞 ∈ {−(𝑟 − 1), … , 𝑟 + 1}).  In the radix-4 divider, 

this problem is addressed by designing a qD product generator 

(PG). PG represents all multiples of 𝐷 (−3𝐷, … ,3𝐷) as pair of 

multiples that are generated by shift operations. The circuit 

diagram of a PG is shown  in Figure 3(a); to transfer the output 

directly to the binary signed digit adder, PG must have the 

additional function of complementing the outputs. The PG module 

for radix-8 and higher, can be extended from the radix-4 case. 

 

 
(a) (b) 

Figure 3. (a) PG module for radix-4 case (b) EXSDAC module 

[5] 

Exact Signed Digit Adder Cell (EXSDAC): Figure 3(b) shows the 

Exact Signed Digit Adder Cell (EXSDAC); it consists of 

XOR/XNOR gates and 2-1 MUXs (each designed by modifying 

4-2 compressors). The EXSDACs implement (1); the adder inputs 

𝑟𝑅(𝑗), −qj+1D and output 𝑅(𝑗+1) are represented in binary signed 

digit form (𝑟𝑅(𝑗)+
, 𝑟𝑅(𝑗)−

), (−𝑞j+1D+, −𝑞j+1D−) and (𝑅(𝑗+1)+
,

𝑅(𝑗+1)−
) respectively. The EXSDAC remains the same for all HR-

EXD at different bit width and radix. The approximate designs 

shown next are based on the approximation of EXSDAC; thus, the 

proposed approximate design methodology is suitable for HR-

EXD with different bit width and radix. 

3. PROPOSED APPROXIMATE DESIGNS 

3.1 Approximate Signed-Digit Adder Cell 

(AXSDAC) 

 

Figure 4. Approximate design of EXSDAC (AXSDAC) 

The EXSDAC computes the subtraction or addition according to 

the quotient selection output. As 𝑅(𝑗+1)+
= Cin

+ , so the input and 

output functions of these two signals can be ignored. The critical 

path of this design has a delay of 3Δ, where Δ is the unitary delay 

through any gate (Figure 4(b)). By observing the truth table of 

EXSDAC, the  𝐶𝑜𝑢𝑡
+  has the same value as the input R(j+1)−

 in 24 

out of 32 state combinations; therefore, an approximate design 

must consider this feature. The approximate design of EXSDAC 

(denoted as AXSDAC) is shown in Figure 4. R(j+1)−
 is simplified 

to be equal to  𝐶𝑜𝑢𝑡
+  by changing the 8 outputs value of 𝐶𝑜𝑢𝑡

+ . This 

design has therefore 8 incorrect outputs out of 32 outputs, so in 

theory its error rate is 25% (assuming that all combinations are 

equally probable). In terms of circuit implementation, pass-

transistor logic design of [4] is utilized to further decrease the 

circuit complexity, the delay and the power consumption. 



3.2 Approximate High Radix Divider (HR-

AXD) 

3.2.1 Replacement Scheme 
When designing the approximate divider, EXSDACs are 

selectively replaced by AXSDACs; hence, approximation is the 

process by which an exact cell is replaced by an approximate cell. 

The extent by which this replacement process is performed in a 

divider, is quantified by the depth d, i.e. the number of rows 

(and/or columns) in the divider with approximate cells. For an N 

bit width of a radix 2^𝑚(𝑚 = 1, 2, 3 … ) divider, the number of 

EXSDACs is given as (𝑁 + 2𝑚) ∗ (𝑁/𝑚) ; m EXSDACs are 

combined together into a replacement element (RE). For example, 

in the 8-bit radix-4 divider, two EXSDACs are treated together as 

a single RE (shown in Figure 5 by the dotted rectangles of 

EXSDACs). The replacement configurations and corresponding 

depth d for an 8-bit radix-4 array divider are shown in Figure 5. 

Four types of replacement are used for approximation:  

Vertical Replacement (VR): The least significant REs in each row 

of the divider are replaced. So, both the remainder and the 

quotient show a small error distance, while taking advantage of 

the power-saving characteristics of the AXSDACs. The depth of 

the vertical replacement can be increased to further decrease the 

power, while tolerating more errors at output. Hence,  𝑚 (
𝑁

𝑚
) 𝑑 =

𝑁𝑑. An example for m=2, d=2 is shown in Figure 5(a). 

Horizontal Replacement (HR): In a divider, the value of the 

quotient is mostly related to the carry signal of each cell in a 

single row. For example, consider the last row corresponding to 

the LSB of Q; if the final value of reminder R is not of significant 

concern, then all EXSDACs in the last row can be replaced with 

AXSDACs at no significant loss of accuracy in Q. If an error can 

be tolerated in Q, then an increase in the depth of the horizontal 

replacement up to the dth LSB of Q is possible. An example of a 

horizontal replacement divider of depth d=2 is shown in Figure 

5(b). (𝑁 + 2𝑚)𝑑 EXSDACs are replaced with AXSDACs in an 

approximate divider with a horizontal replacement of depth d. 

Square Replacement (SR): the so-called square configuration is 

generated by combining the vertical and horizontal replacements. 

So, 𝑚𝑑2 EXSDACs are replaced with AXSDACs; an example of 

a square replacement of depth d=2 is shown in Figure 5(c). 

Triangle Replacement (TR): Consider the integer pair (x,y) as 

coordinates of each individual RE in a divider. For the 

replacement of an exact RE (i,j) (i<d or j<d) with an inexact RE 

in a triangle approximation divider with depth d (d≥1), 𝑚𝑑(𝑑 +
1)/2 EXSDACs are replaced with AXSDACs. An example of a 

triangle replacement divider with d=2 is shown in Figure 5(d). 

 
 

(a) (b) 

  
(c) (d) 

Figure 5. Different approximate configurations and 

replacement depths for 8-bit radix-4 divider (a) VR d=2 (b) 

HR d=2 (c) SR d=2 (d) TR d=2 

3.2.2 Truncation Scheme 
Truncation is different from replacement, because the EXSDACs 

are not changed to AXSDACs, instead, are completely eliminated. 

Same as replacement, four types of truncation are used as 

approximation in the divider design: Vertical Truncation (VT), 

Horizontal Truncation (HT), Squared Truncation (ST) and 

Triangle Truncation (TT). 

4. SIMULATION RESULTS 

4.1 AXSDAC 
Predictive technology models at 45nm feature size are utilized in 

the HSPICE simulation. AXSDAC and EXSDAC are simulated at 

a 1GHz frequency; a fan-out of 4 is utilized in all simulations. The 

simulation results for the delay, power consumption and the 

power-delay product (PDP) are given in Table 1. As expected, the 

proposed inexact design shows significant improvements in delay, 

power consumption and PDP. As a measure of circuit complexity; 

the approximate designs incur in a reduction of 18% in the 

number of transistors. 

Table 1. Simulation results of EXSDAC and AXSDAC  

Design Num. of Transistors Delay (ps) Power (µW) PDP (aJ) 

EXSDAC 22 6.36 2.98 18 

AXSDAC 18 4.35 1.14 5 

4.2 HR-AXD 

4.2.1 NED 
The Normalized Error distance (NED) is defined as the Mean 

Error Distance (MED) normalized by the maximum ED [11]. The 

maximum value of the ED is 1, so in this case the NED is equal to 

the MED. Only the 8-bit radix-2 and radix-4, 12-bit radix-2, radix 

-4 and radix 8 divider are evaluated (the trend and conclusions for 

these dividers are applicable also to a higher radix divider). The 

NED simulation results are shown in Figure 6 and Figure 7 for 

different bit width, radix, and approximation configurations. 

  
(a)  (b) 

  
(c) (d) 

Figure 6 Q NED of 8-bit HR-AXD (a) (c) Radix-2 (b) (d) 

Radix-4 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 7. Q NED of 12-bit HR-AXD with (a)(d) Radix-2 (b)(e) 

Radix-4 (c)(f) Radix-8 

As expected, the divider with a higher depth d has a larger NED. 

The horizontal configurations have the worst NED among all 



different bit width, radix and schemes, while the triangle 

configurations are the best. All dividers employing truncation 

have the worst NED compared to the other two inexact schemes. 

So a truncation scheme has a higher NED than a replacement 

scheme; Compare the 8-bit Radix-4 divider and the 12-bit Radix-4 

divider. A larger bit width provides a higher precision for the 

divider; hence, the NED decreases as the bit width increases. 

When considering the three different radix schemes of a 12-bit 

divider, it is observed that a higher radix results in a higher NED; 

this occurs because a higher radix makes the quotient digit 𝑞𝑗 (as 

generated at each iteration of the divider) to a larger weight for 

generating the final Q result. Therefore, the error introduced at 

each iteration by these approximated configuration has a larger 

weight and is reflected in the NED of the output Q. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 8. Power Consumption of 12-bit HR-AXD with (a)(d) 

Radix-2 (b)(e) Radix-4 (c)(f) Radix-8 

4.2.2 Power 
One of the primary goals of an approximate design is to decrease 

the power consumption by tolerating a computational error. The 

power simulation results are shown as Figure 8. 

As expected, the divider with a higher depth d has the smaller 

power consumption. By increasing d, the power consumption for 

a horizontal configuration decreases faster than for the other types 

of configuration, so the square and triangle configurations 

decrease their power consumption at a lower rate than the 

horizontal and vertical configurations. All truncated dividers save 

more power than the replacement scheme counterpart. When 

comparing the 8-bit radix-4 and the 12-bit radix-4 divider, a larger 

bit width divider consumes more power as expected; when the 

three 12-bit dividers (at different radix) are compared, the radix-4 

and radix-8 dividers consume a lower power than the radix-2 

divider, because a high radix divider can reduce the number of 

iterations in the division process, thus significantly decreasing the 

circuit complexity of the sign-digit adder array. Moreover, the 

radix-8 divider consumes more power than radix-4 divider, 

because, as the radix increases, the implementation of the SU 

module, the PG module and the On-the-Fly conversion module 

are more complex, so becoming dominated in the whole divider. 

4.2.3 Delay 
The delays of the SU and QS are proportional to the bit width and 

the radix. The delay of the PG for each stage is not related to the 

bit width, but it is proportional to the radix. Each binary signed 

digit adder row has a constant delay. The critical path of the 

whole divider starts from the SU through each stage of the PG and 

the row of the signed digit adder; it finally passes through the QS 

and On-the-fly conversion module.  

For a divider with an approximate configuration, (either 

replacement or truncation), the approximation takes place at the 

adder array, so the delay of the inexact divider is almost the same 

as the exact counterpart; the only exception is the horizontal 

configuration. For the horizontal configuration, the replacement 

scheme has a smaller delay because a number of stages (equal to 

the value of the replacement depth) are designed using AXSDACs, 

that have a smaller delay than EXSDACs. A truncation scheme 

has even a lower delay than the replacement scheme, because 

cells are removed. The average delays of the different 

approximate schemes versus bit width and radix are plotted in 

Figure 9; as the radix increases, the delay decreases, because a 

high radix divider requires a fewer number of add-subtract 

iterations, hence the critical path delay is also shorter. However, 

the delay of the radix-8 divider is higher than for radix-4; as the 

radix increases, the SU, QS and PG are more complex and the 

delay is dominated by QS and PG at each iteration stage. The 

advantage of fewer number of iteration stages is therefore not of a 

significant impact. A pipelined version of the high-radix divider 

can be realized by inserting flip-flops at the output of each adder 

stage to increase the overall computation throughput. 

 

Figure 9. Average Delay with different radix 

4.2.4 Trade-off between NED and Power 
An approximate arithmetic design always must balance accuracy 

and energy dissipation. As shown previously as the depth 

changes, the power dissipation increases while the NED 

decreases. To further evaluate this trade-off, the MED Power 

Product (MPP) has been introduced in [4]. In this paper the NPP 

(NED power product) is used as more relevant than the MPP. 

Figure 10 show the NPP of the 12-bit radix-2, radix-4 and radix-8 

dividers using different approximation schemes; the replacement 

scheme has the lowest NPP compared to the other two schemes.  
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(d) (e) (f) 

Figure 10. NPP of 12-bit HR-AXD with (a)(d) Radix-2 (b)(e) 

Radix-4 (c)(f) Radix-8 

5. APPLICATIONS 
In this section, the approximate schemes for high radix division 

are evaluated using different applications involving image 

analysis (on a pixel basis). The proposed high-radix dividers are 

assessed for pixel division applications. For image analysis, the 

input gray scale images are normalized in the range [1/2, 1). 12-

bit approximate dividers with different configurations are utilized; 



the approximations used in these applications are shown in Table 

2; these configurations are chosen such that the power dissipation 

of these dividers is nearly the same. 

Table 2. Approximation depth d configurations of 12-bit HR-

AXD Used for Application Analysis 

 VR/VT HR/HT SR/ST TR/TT 

Radix-2 2 2 5 7 

Radix-4 3 2 4 5 

Radix-8 4 2 4 3 

Change detection: The fractional change or ratio between two 

frames of a sequence of images is used for change detection. If 

there is no movement in the scene, then the output image mostly 

consists of one value pixels. However, when there is a movement, 

then the pixels in the regions of the image in which the intensity 

spatially changes, exhibit significant differences between the two 

frames. After calculating the pixel division, the resulting pixels 

are scaled up and rounded to the integer range [0,255] to display 

the resulting images. Figure 11 shows an example of the results 

for change detection of a sequence of two frames X and Y. 

    
X Y HR-EXD TR 

Figure 11. An example of TR HR-AXD for change detection  

Background removal: In this case, background variations in 

illumination are divided from a scene, such that the foreground 

objects can be better viewed. For example, the image X in Figure 

12 shows some text that has been badly illuminated during capture 

(i.e. there is a strong illumination gradient across the image). If a 

blank page Y is divided from the poorly illuminated image X, the 

output has a relatively constant illumination. Following this 

operation, a simple step for the threshold can be used to produce a 

high-contrast text image. Figure 12 shows an example of the 

results. 

    
X Y HR-EXD TR 

Figure 12. An example of TR HR-AXD for background 

removal 
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Figure 13. PSNR of 12-bit HR-AXD for image application 

Change detection with replacement (a) and truncation (b); 

Background removal with replacement (c) and truncation (d) 

Figure 13 shows the Peak Signal-to-Noise Ratio (PSNR) for 

change detection and background removal. In both cases, the 

triangle approximations have the best PSNRs; moreover, the 

PSNR is lower for higher radix dividers. A truncated scheme has a 

lower PSNR than the corresponding replacement scheme. 

6. CONCLUSION 
This paper has presented a detailed analysis, design and 

evaluation of high radix parallel dividers that utilize approximate 

criteria in their operation. The following conclusions can be 

drawn: A larger value for d provides a larger NED; among all 

schemes, the triangle replacement divider has the best NED 

among the replacement schemes. A truncated scheme introduces 

more error. The power consumption reduces rapidly as the depth 

increases, i.e. the higher the depth is, more pronounced is the 

power reduction. A truncation scheme provides a significant 

power reduction compared to a replacement scheme. The 

approximation schemes have only a small impact on the delay of 

the divider; the delay is reduced for higher radix dividers, because 

it takes only 𝑁/𝑚 stages to complete the division. This advantage 

is reduced when the radix is higher than 8. Compared to radix-2 

division, a high radix approximate divider is faster; its power 

dissipation is lower for radix-4 and radix-8, although it increases 

for radix values greater than 8. In conclusion, when designing an 

approximate array divider, metrics (and related design parameters) 

have to be considered and met as per the application. This paper 

has shown that a triangle-based replacement scheme at a moderate 

radix value (not higher than 8) is the best approximate divider 

scheme to achieve low power consumption, high speed and a 

small error for an application such as image division. 
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