

Design of Approximate High-Radix Dividers

by Inexact Binary Signed-Digit Addition

Linbin Chen
Fabrizio Lombardi

ECE Department
Northeastern University
lombardi@ece.neu.edu

Paolo Montuschi
ECE Department

Polytechnic University of
Turin, Italy

paolo.montuschi@polito.it

Jie Han

ECE Department
University of Alberta

Edmonton, AB, Canada
jhan8@ualberta.ca

Weiqiang Liu

College of EIE.
Nanjing University of Aero

& Astro., China
liuweiqiang@nuaa.edu.cn

ABSTRACT

Approximate high radix dividers (HR-AXDs) are proposed and

investigated in this paper. High-radix division is reviewed and

inexact computing is introduced at different levels. Design

parameters such as number of bits (N) and radix (r) are considered

in the analysis; the replacement schemes with inexact cells and

truncation schemes of exact cells in the binary signed-digit adder

array is introduced. Circuit-level performance and the error

characteristics of the inexact high radix dividers are analyzed for

the proposed designs. The combined assessment of the normal

error distance, power dissipation and delay is investigated and

applications of approximate high-radix dividers are treated in

detail. The simulation results show that the proposed approximate

dividers offer extensive saving in terms of power dissipation,

circuit complexity and delay, while only incurring in a small

degradation in accuracy thus making them possibly suitable and

interesting to some applications and domains such as low

power/mobile computing.

CCS Concepts
• Hardware~Integrated circuits • Hardware~Arithmetic and

datapath circuits • Hardware~Combinational circuits

Keywords

Approximate Divider; High-radix; Normalized Error Distance;

Power Dissipation

1. INTRODUCTION
Most computer arithmetic applications are implemented using

digital logic circuits, thus operating with a high degree of

precision. However, many applications such as multimedia and

image processing can tolerate errors and imprecision in

computation and still produce results that can be useful in which

human senses (such as vision) are involved. Approximate (or

inexact) computing relies on using this property to design

simplified, yet approximate circuits operating at higher

performance and/or lower power consumption compared with

precise (exact) logic circuits.

There are increasing demands for high-speed dividers in today’s

floating point units (FPU) and digital signal processors.

Reductions in delay and power consumption have been studied for

the division operation; different algorithms for division can be

found in the technical literature [1]. Digit-by-digit (digit

recurrence) methods are widely used in hardware design;

implementations can be either sequential, combinational, or a

combination of both. Based on these findings, the combinational

implementations of a divider based on restoring, non-restoring [2]

and SRT algorithms [3] are treated in more detail as they employ

highly modularized structure for inexact designs.

In the previous work by the same authors [4], the designs of

approximate unsigned non-restoring and restoring dividers

(denoted as AXDnr and AXDr) have been proposed. New

approximate AXDnr cells (denoted as AXDCnr) have been

investigated and approximate computing has been applied to

division by considering different schemes by which exact cells are

replaced/truncated in the array divider circuit.

[5] has presented an algorithm for high-radix exact division; this

algorithm is based on a prescaling technique of division by digit

recurrence. In this manuscript we revisit, generalize and extend

the results of [5] and present a novel architecture for approximate

division. The approximate design concept of [4] is explored in

more detail for a high-radix array divider (such as proposed in

[5]). At circuit level, the signed-digit adder cell is simplified;

replacement or truncation is utilized in the divider. The

contribution of this manuscript extends also to an algorithmic

domain as different numbers of bits (N), radix number (r) and the

replacement/truncation depth (d) are also considered. Circuit-level

performance and the error characteristics of these inexact high

radix dividers are analyzed, inclusive of error analysis for image

processing applications.

2. REVIEW OF DESIGN BASIS
In a high-radix division circuit design, Redundant Binary

Representation (RBR) is used to represent the quotient digits

when they are selected at each stage. For example, in the radix-4

divider discussed later, the intermediate quotient 𝑞𝑗 ∈ [−3, +3] is

represented in signed-magnitude form; a Binary Signed-Digit

(BSD) numbering system (as a subcategory of a RBR system [6])

with a digit set of {-1,0,1} is used to represent the partial

remainder at each stage. RBR allows addition without propagating

a carry. When compared to a non-redundant representation, RBR

makes digit-wise logic operations slower, however arithmetic

operations are faster when a large bit width is used [3].

2.1 High-radix Division Algorithm
There are two approaches for division by digit recurrence [3]. The

first approach is based on selection tables; the second approach is

based on prescaling. In the first approach, the digits of the

quotient are obtained by inspecting the dividend and the partial

remainder; as per the number of value combinations (as stored in

digit selection tables), the quotient digit is obtained at each

iteration [7]. However, for higher radix the size of these tables

increases, yielding large implementations. Among the techniques

for addressing this negative design feature, prescaling technique

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.

GLSVLSI ‘17, May 10-12, 2017, Banff, AB, Canada

 © 2017 ACM. ISBN 978-1-4503-4972-7/17/05…$15.00.

DOI: http://dx.doi.org/10.1145/3060403.3060404

mailto:Permissions@acm.org

(as proposed in [8, 9]) is widely employed. An efficient and

unified implementation of high-radix array dividers with no

lookup table for quotient digit selection using prescaling has been

presented in [5]. In this algorithm, by doing additional prescaling

and converting the number representation, the quotient digit is

directly obtained from the most significant (integer) part of the

partial remainder at every iteration; this makes possible the

construction of fully combinational high-radix dividers exhibiting

a lower latency compared to a radix-2 divider.

Let the dividend and divisor be denoted by X and D respectively

(normalized as 1/2 ≤ X < D < 1); A standard SRT division

algorithm with n-bit precision is given by the recursive equations:

𝑅(0) = 𝑋

 𝑅(𝑗+1) = 𝑟𝑅(𝑗) − 𝑞𝑗+1𝐷, (1)

where (𝑗 = 0,1,2, … , 𝑛 − 1), r is the radix value (usually 𝑟 =

2𝑚(𝑚 = 1,2,3, …) , j is the iteration step, 𝑅(𝑗) is the partial

remainder at step j, and 𝑞𝑗 is the jth quotient digit selected from {-

(r-1), … -1, 0, 1, …, r-1}. The quotient Q and the final remainder

R are given by

 𝑄 = ∑ 𝑟−𝑗 ⋅ 𝑞𝑗
𝑛

𝑗=1
, (2)

 𝑅 = 𝑟−𝑛 ⋅ 𝑅(𝑛). (3)

The number of iterations in the division process can be reduced by

increasing the radix r, i.e. by selecting r = 2m; this allows the

generation of m quotient bits at each step, such that the number of

steps is reduced to ⌈𝑛/𝑚⌉.

Normally, (1) as a recursive equation is calculated using Signed-

Digit (carry-free) adders based on a redundant BSD

representation. The shifted partial remainder 𝑟𝑅(𝑗) is bounded as

 0 ≤ |𝑟𝑅(𝑗)| < 𝑟𝐷 < 𝑟 = 2𝑚. (4)

So, 𝑟𝑅(𝑗) can be represented by using a BSD numbering system

(denoted as SD2) as

 𝑟𝑅(𝑗) = [𝑎𝑚−1 … 𝑎1𝑎0. 𝑎−1𝑎−2 … 𝑎−𝑘]𝑆𝐷2

 = ∑ 2𝑖𝑎𝑖
𝑚−1

𝑖=−𝑘
, (5)

where 𝑎𝑖 ∈ {−1,0,1}.

The high-radix division algorithm of [5] is based on a SRT digit-

by-digit division; additionally, it requires the following two steps

(or conditions) to be performed (or satisfied): (A) The divisor D

and the dividend X must be prescaled transforming the divisor

range from [1/2,1) to [Dmin, 1) as described later (operand scaling

does not affect the result of division, because X/D = MX/MD,

where M denotes the scale factor. Note that it is well known to

affect the value of the final partial remainder, if necessary,

because its value is multiplied by M. (B) Convert the t most

significant digits 𝑎−1𝑎−2 … 𝑎−𝑡 of the fractional part of 𝑟𝑅(𝑗) to a

non-redundant form, containing only digits from the set {-1, 0} or

{0, 1}. After the second step, (5) is given by

 𝑟𝑅(𝑗) = [𝑐𝑚−1 … 𝑐1𝑐0. 𝑏−1 … 𝑏−𝑡𝑎−𝑡−1 … 𝑎−𝑘]𝑆𝐷2,

where 𝑏𝑖 ∈ {−1,0} or {0,1}, 𝑎𝑖, 𝑐𝑖 ∈ {−1,0,1}. Then, the (𝑗 + 1)𝑡ℎ

quotient digit 𝑞𝑗+1 can be obtained directly from the integer part

of 𝑟𝑅(𝑗),i.e.

 𝑞𝑗+1 = [𝑐𝑚−1 … 𝑐1𝑐0]𝑆𝐷2 = ∑ 2𝑖𝑐𝑖
𝑚−1

𝑖=−𝑘
, (6)

where 𝑐𝑖 ∈ {−1,0,1} and 𝑞𝑗+1 ∈ {−(𝑟 − 1), … , 0, … , 𝑟 − 1}.

The proof of the algorithm in [5] as well as the derivation of the

scaling range [Dmin,1) are as follows. Since, 𝑟𝑅(𝑗) can be

represented as

 𝑟𝑅(𝑗) = 𝑞𝑗+1 + 𝜖 (7)

where ϵ denotes explicit value of the fractional part digits and it is

given by

𝜖 = [0. 𝑏−1 … 𝑏−𝑡𝑎−𝑡−1 … 𝑎−𝑘]𝑆𝐷2

= Σ𝑖=1
𝑡 2−𝑖𝑏−𝑖 + Σi=t+1

k 2−𝑖𝑎−𝑖

The fractional part ϵ is a function of t and is bounded in the

following rages:

 If 𝑏𝑖 ∈ {−1,0}, then −1 < 𝜖 < 2−𝑡 (8)

 If 𝑏𝑖 ∈ {0,1}, then −2−𝑡 < 𝜖 < 1 (9)

In SRT division using the maximally redundant digit set {−(𝑟 −
1), … , 𝑟 − 1} , 𝑞𝑖+1(∈ {−(𝑟 − 1), … , 𝑟 − 1}) is obtained if 𝑞𝑖+1

satisfies the following conditions:

 𝑟𝑅(𝑗) ≤ (𝑞𝑖+1 + 1)𝐷 (𝑞𝑖+1 ∈ {−(r − 1), … , r − 2}) (10)

 (𝑞𝑖+1 + 1)𝐷 ≤ 𝑟𝑅(𝑗) (𝑞𝑖+1 ∈ {−(r − 2), … , r − 1}) (11)

By substituting (7) in (10) and (11), then

 𝑞𝑖+1 + 𝜖 ≤ (𝑞𝑖+1 + 1)𝐷 (𝑞𝑖+1 ∈ {−(r − 1), … , r − 2}) (12)

 (𝑞𝑖+1 − 1)𝐷 ≤ 𝑞𝑖+1 + 𝜖 (𝑞𝑖+1 ∈ {−(r − 1), … , r − 2}) (13)

Using (12) and (13) and considering the bound of ϵ given by (8)

or (9), the possible scaling range of D must be satisfied for

selecting 𝑞𝑗+1 (as the explicit value of the integer part of 𝑟𝑅(𝑗)) is

derived as in (14). Finally, the process to select 𝑞𝑗+1 is

summarized as following:

 Prescale the operands X and D to satisfy

 𝐷𝑚𝑖𝑛 =
𝑟−2+2−𝑡

𝑟−1
≤ 𝐷 ≤ 1, (14)

where 𝐷𝑚𝑖𝑛 is the lower bound of the scaled D.

 Convert the t most significant digits 𝑎−1𝑎−2 … 𝑎−𝑡 (𝑎𝑖 ∈
{−1,0,1}) of the fractional part of every partial remainder

𝑟𝑅(𝑗) into its non-redundant representation 𝑏−1𝑏−2 … 𝑏−𝑡 as

 𝑏−1𝑏−2 … 𝑏−𝑡 ∈ {−1,0} for 𝑟𝑅(𝑗) > 0 (15)

 𝑏−1𝑏−2 … 𝑏−𝑡 ∈ {0,1} for 𝑟𝑅(𝑗) < 0 (16)

2.2 Exact High-radix Divider (HR-EXD)

Figure 1. Example of HR-EXD for 8-bit radix-4 [5]

The implementation of the HR-EXD for the algorithm reviewed

previously is presented in [5]. The structure of an 8-bit radix-4

divider with r=4, t=2 is shown in Figure 1; it consists of the

following modules as basic blocks.

Scaling Unit (SU): as input operands, the divisor D and the

dividend X must be prescaled prior to starting the division

iterations. For example, in a divider with r=4 and t=2, the divisor

and the dividend must be prescaled to transform the divisor range

from [
1

2
, 1) to [

3

4
, 1); prescaling can be done using different scale

factors for 3 different ranges of D (D>=3/4, 5/8<=D<3/4,

1/2<D<=5/8). All these constant-scale multiplications can be

achieved by shift-and-add operations; Figure 2(a) shows the

operand scaling unit using shifters and carry propagation adders

(CPA). In general, as the radix r increases and the number of

digit t increases, a higher complexity is required for operand

scaling and the multiplication at each iteration. Therefore, the

values of r and t must be selected to meet the requirements of

performance and complexity. In this paper, the parameter t=m

(where r=2m) has been selected so the same configuration as in

[5], as it does not lead to a loss of generality of the proposed

method. For radix-8 and a higher radix, the structure of the scaling

unit is also the same and it can be extended based on the radix-4

case (Figure 2(a)).

(a) (b)

Figure 2. (a) SU module for r=4, t=2 (b) QS module for radix

4 (𝒔: 𝐬𝐢𝐠𝐧, 𝒒𝟏𝒒𝟎: 𝐦𝐚𝐠𝐧𝐢𝐭𝐮𝐝𝐞) [5]

Quotient Digit Selector (QS): According to the algorithm in [5],

the real binary value of the integer part of 𝑟𝑅(𝑗) is selected as the

(𝑗 + 1)𝑡ℎ quotient digit 𝑞𝑗+1 . Implementation of this quotient

selection rule does not need a digit selection table; it needs only a

high-speed signed-digit carry propagation adder (SDCPA) for a

limited number of bits (Figure 2(b)). The word length of SDCPA

is 2m+t bits, because the integer part of 𝑟𝑅(𝑗) must also be

converted into a non-redundant form to obtain the explicit value

of 𝑞𝑖+1 . This conversion is performed by adding the positive

digits and the two’s complement of the negative digits of 𝑟𝑅(𝑗) for

𝑟𝑅(𝑗) >= 0 , and by adding the negative digits and the two’s

complement of the positive digits of 𝑟𝑅(𝑗) for 𝑟𝑅(𝑗) <= 0. The

obtained quotient digit 𝑞𝑗+1 is in a sign-magnitude redundant

form; it is then finally transformed into a non-redundant 2’s

complementary representation using the on-the-fly scheme of

[10]. For a higher radix, the design of the QS can be extended

based on the radix-4 case (Figure 2(b)).

On-the-Fly Conversion: The quotient must be converted from a

signed-digit representation to a two’s complement representation.

This is accomplished by an addition after the quotient is

completely computed; however, this addition increases the overall

execution time. So to avoid this step, the on-the-fly algorithm of

[10] is used to perform the conversion in a digit-serial fashion to

generate the digits of the quotient.

Product Generator (PG): The high-radix division algorithm

employs a BSD number representation for partial remainders and

quotient digits, because this representation exploits the hardware

simplicity of a radix-2 scheme; a drawback of high-radix

algorithms is that they require the generation of multiples of the

divisor 𝑞𝐷 (𝑞 ∈ {−(𝑟 − 1), … , 𝑟 + 1}). In the radix-4 divider,

this problem is addressed by designing a qD product generator

(PG). PG represents all multiples of 𝐷 (−3𝐷, … ,3𝐷) as pair of

multiples that are generated by shift operations. The circuit

diagram of a PG is shown in Figure 3(a); to transfer the output

directly to the binary signed digit adder, PG must have the

additional function of complementing the outputs. The PG module

for radix-8 and higher, can be extended from the radix-4 case.

(a) (b)

Figure 3. (a) PG module for radix-4 case (b) EXSDAC module

[5]

Exact Signed Digit Adder Cell (EXSDAC): Figure 3(b) shows the

Exact Signed Digit Adder Cell (EXSDAC); it consists of

XOR/XNOR gates and 2-1 MUXs (each designed by modifying

4-2 compressors). The EXSDACs implement (1); the adder inputs

𝑟𝑅(𝑗), −qj+1D and output 𝑅(𝑗+1) are represented in binary signed

digit form (𝑟𝑅(𝑗)+
, 𝑟𝑅(𝑗)−

), (−𝑞j+1D+, −𝑞j+1D−) and (𝑅(𝑗+1)+
,

𝑅(𝑗+1)−
) respectively. The EXSDAC remains the same for all HR-

EXD at different bit width and radix. The approximate designs

shown next are based on the approximation of EXSDAC; thus, the

proposed approximate design methodology is suitable for HR-

EXD with different bit width and radix.

3. PROPOSED APPROXIMATE DESIGNS

3.1 Approximate Signed-Digit Adder Cell

(AXSDAC)

Figure 4. Approximate design of EXSDAC (AXSDAC)

The EXSDAC computes the subtraction or addition according to

the quotient selection output. As 𝑅(𝑗+1)+
= Cin

+ , so the input and

output functions of these two signals can be ignored. The critical

path of this design has a delay of 3Δ, where Δ is the unitary delay

through any gate (Figure 4(b)). By observing the truth table of

EXSDAC, the 𝐶𝑜𝑢𝑡
+ has the same value as the input R(j+1)−

 in 24

out of 32 state combinations; therefore, an approximate design

must consider this feature. The approximate design of EXSDAC

(denoted as AXSDAC) is shown in Figure 4. R(j+1)−
 is simplified

to be equal to 𝐶𝑜𝑢𝑡
+ by changing the 8 outputs value of 𝐶𝑜𝑢𝑡

+ . This

design has therefore 8 incorrect outputs out of 32 outputs, so in

theory its error rate is 25% (assuming that all combinations are

equally probable). In terms of circuit implementation, pass-

transistor logic design of [4] is utilized to further decrease the

circuit complexity, the delay and the power consumption.

3.2 Approximate High Radix Divider (HR-

AXD)

3.2.1 Replacement Scheme
When designing the approximate divider, EXSDACs are

selectively replaced by AXSDACs; hence, approximation is the

process by which an exact cell is replaced by an approximate cell.

The extent by which this replacement process is performed in a

divider, is quantified by the depth d, i.e. the number of rows

(and/or columns) in the divider with approximate cells. For an N

bit width of a radix 2^𝑚(𝑚 = 1, 2, 3 …) divider, the number of

EXSDACs is given as (𝑁 + 2𝑚) ∗ (𝑁/𝑚) ; m EXSDACs are

combined together into a replacement element (RE). For example,

in the 8-bit radix-4 divider, two EXSDACs are treated together as

a single RE (shown in Figure 5 by the dotted rectangles of

EXSDACs). The replacement configurations and corresponding

depth d for an 8-bit radix-4 array divider are shown in Figure 5.

Four types of replacement are used for approximation:

Vertical Replacement (VR): The least significant REs in each row

of the divider are replaced. So, both the remainder and the

quotient show a small error distance, while taking advantage of

the power-saving characteristics of the AXSDACs. The depth of

the vertical replacement can be increased to further decrease the

power, while tolerating more errors at output. Hence, 𝑚 (
𝑁

𝑚
) 𝑑 =

𝑁𝑑. An example for m=2, d=2 is shown in Figure 5(a).

Horizontal Replacement (HR): In a divider, the value of the

quotient is mostly related to the carry signal of each cell in a

single row. For example, consider the last row corresponding to

the LSB of Q; if the final value of reminder R is not of significant

concern, then all EXSDACs in the last row can be replaced with

AXSDACs at no significant loss of accuracy in Q. If an error can

be tolerated in Q, then an increase in the depth of the horizontal

replacement up to the dth LSB of Q is possible. An example of a

horizontal replacement divider of depth d=2 is shown in Figure

5(b). (𝑁 + 2𝑚)𝑑 EXSDACs are replaced with AXSDACs in an

approximate divider with a horizontal replacement of depth d.

Square Replacement (SR): the so-called square configuration is

generated by combining the vertical and horizontal replacements.

So, 𝑚𝑑2 EXSDACs are replaced with AXSDACs; an example of

a square replacement of depth d=2 is shown in Figure 5(c).

Triangle Replacement (TR): Consider the integer pair (x,y) as

coordinates of each individual RE in a divider. For the

replacement of an exact RE (i,j) (i<d or j<d) with an inexact RE

in a triangle approximation divider with depth d (d≥1), 𝑚𝑑(𝑑 +
1)/2 EXSDACs are replaced with AXSDACs. An example of a

triangle replacement divider with d=2 is shown in Figure 5(d).

(a) (b)

(c) (d)

Figure 5. Different approximate configurations and

replacement depths for 8-bit radix-4 divider (a) VR d=2 (b)

HR d=2 (c) SR d=2 (d) TR d=2

3.2.2 Truncation Scheme
Truncation is different from replacement, because the EXSDACs

are not changed to AXSDACs, instead, are completely eliminated.

Same as replacement, four types of truncation are used as

approximation in the divider design: Vertical Truncation (VT),

Horizontal Truncation (HT), Squared Truncation (ST) and

Triangle Truncation (TT).

4. SIMULATION RESULTS

4.1 AXSDAC
Predictive technology models at 45nm feature size are utilized in

the HSPICE simulation. AXSDAC and EXSDAC are simulated at

a 1GHz frequency; a fan-out of 4 is utilized in all simulations. The

simulation results for the delay, power consumption and the

power-delay product (PDP) are given in Table 1. As expected, the

proposed inexact design shows significant improvements in delay,

power consumption and PDP. As a measure of circuit complexity;

the approximate designs incur in a reduction of 18% in the

number of transistors.

Table 1. Simulation results of EXSDAC and AXSDAC

Design Num. of Transistors Delay (ps) Power (µW) PDP (aJ)

EXSDAC 22 6.36 2.98 18

AXSDAC 18 4.35 1.14 5

4.2 HR-AXD

4.2.1 NED
The Normalized Error distance (NED) is defined as the Mean

Error Distance (MED) normalized by the maximum ED [11]. The

maximum value of the ED is 1, so in this case the NED is equal to

the MED. Only the 8-bit radix-2 and radix-4, 12-bit radix-2, radix

-4 and radix 8 divider are evaluated (the trend and conclusions for

these dividers are applicable also to a higher radix divider). The

NED simulation results are shown in Figure 6 and Figure 7 for

different bit width, radix, and approximation configurations.

(a) (b)

(c) (d)

Figure 6 Q NED of 8-bit HR-AXD (a) (c) Radix-2 (b) (d)

Radix-4

(a) (b) (c)

(d) (e) (f)

Figure 7. Q NED of 12-bit HR-AXD with (a)(d) Radix-2 (b)(e)

Radix-4 (c)(f) Radix-8

As expected, the divider with a higher depth d has a larger NED.

The horizontal configurations have the worst NED among all

different bit width, radix and schemes, while the triangle

configurations are the best. All dividers employing truncation

have the worst NED compared to the other two inexact schemes.

So a truncation scheme has a higher NED than a replacement

scheme; Compare the 8-bit Radix-4 divider and the 12-bit Radix-4

divider. A larger bit width provides a higher precision for the

divider; hence, the NED decreases as the bit width increases.

When considering the three different radix schemes of a 12-bit

divider, it is observed that a higher radix results in a higher NED;

this occurs because a higher radix makes the quotient digit 𝑞𝑗 (as

generated at each iteration of the divider) to a larger weight for

generating the final Q result. Therefore, the error introduced at

each iteration by these approximated configuration has a larger

weight and is reflected in the NED of the output Q.

(a) (b) (c)

(d) (e) (f)

Figure 8. Power Consumption of 12-bit HR-AXD with (a)(d)

Radix-2 (b)(e) Radix-4 (c)(f) Radix-8

4.2.2 Power
One of the primary goals of an approximate design is to decrease

the power consumption by tolerating a computational error. The

power simulation results are shown as Figure 8.

As expected, the divider with a higher depth d has the smaller

power consumption. By increasing d, the power consumption for

a horizontal configuration decreases faster than for the other types

of configuration, so the square and triangle configurations

decrease their power consumption at a lower rate than the

horizontal and vertical configurations. All truncated dividers save

more power than the replacement scheme counterpart. When

comparing the 8-bit radix-4 and the 12-bit radix-4 divider, a larger

bit width divider consumes more power as expected; when the

three 12-bit dividers (at different radix) are compared, the radix-4

and radix-8 dividers consume a lower power than the radix-2

divider, because a high radix divider can reduce the number of

iterations in the division process, thus significantly decreasing the

circuit complexity of the sign-digit adder array. Moreover, the

radix-8 divider consumes more power than radix-4 divider,

because, as the radix increases, the implementation of the SU

module, the PG module and the On-the-Fly conversion module

are more complex, so becoming dominated in the whole divider.

4.2.3 Delay
The delays of the SU and QS are proportional to the bit width and

the radix. The delay of the PG for each stage is not related to the

bit width, but it is proportional to the radix. Each binary signed

digit adder row has a constant delay. The critical path of the

whole divider starts from the SU through each stage of the PG and

the row of the signed digit adder; it finally passes through the QS

and On-the-fly conversion module.

For a divider with an approximate configuration, (either

replacement or truncation), the approximation takes place at the

adder array, so the delay of the inexact divider is almost the same

as the exact counterpart; the only exception is the horizontal

configuration. For the horizontal configuration, the replacement

scheme has a smaller delay because a number of stages (equal to

the value of the replacement depth) are designed using AXSDACs,

that have a smaller delay than EXSDACs. A truncation scheme

has even a lower delay than the replacement scheme, because

cells are removed. The average delays of the different

approximate schemes versus bit width and radix are plotted in

Figure 9; as the radix increases, the delay decreases, because a

high radix divider requires a fewer number of add-subtract

iterations, hence the critical path delay is also shorter. However,

the delay of the radix-8 divider is higher than for radix-4; as the

radix increases, the SU, QS and PG are more complex and the

delay is dominated by QS and PG at each iteration stage. The

advantage of fewer number of iteration stages is therefore not of a

significant impact. A pipelined version of the high-radix divider

can be realized by inserting flip-flops at the output of each adder

stage to increase the overall computation throughput.

Figure 9. Average Delay with different radix

4.2.4 Trade-off between NED and Power
An approximate arithmetic design always must balance accuracy

and energy dissipation. As shown previously as the depth

changes, the power dissipation increases while the NED

decreases. To further evaluate this trade-off, the MED Power

Product (MPP) has been introduced in [4]. In this paper the NPP

(NED power product) is used as more relevant than the MPP.

Figure 10 show the NPP of the 12-bit radix-2, radix-4 and radix-8

dividers using different approximation schemes; the replacement

scheme has the lowest NPP compared to the other two schemes.

(a) (b) (c)

(d) (e) (f)

Figure 10. NPP of 12-bit HR-AXD with (a)(d) Radix-2 (b)(e)

Radix-4 (c)(f) Radix-8

5. APPLICATIONS
In this section, the approximate schemes for high radix division

are evaluated using different applications involving image

analysis (on a pixel basis). The proposed high-radix dividers are

assessed for pixel division applications. For image analysis, the

input gray scale images are normalized in the range [1/2, 1). 12-

bit approximate dividers with different configurations are utilized;

the approximations used in these applications are shown in Table

2; these configurations are chosen such that the power dissipation

of these dividers is nearly the same.

Table 2. Approximation depth d configurations of 12-bit HR-

AXD Used for Application Analysis

 VR/VT HR/HT SR/ST TR/TT

Radix-2 2 2 5 7

Radix-4 3 2 4 5

Radix-8 4 2 4 3

Change detection: The fractional change or ratio between two

frames of a sequence of images is used for change detection. If

there is no movement in the scene, then the output image mostly

consists of one value pixels. However, when there is a movement,

then the pixels in the regions of the image in which the intensity

spatially changes, exhibit significant differences between the two

frames. After calculating the pixel division, the resulting pixels

are scaled up and rounded to the integer range [0,255] to display

the resulting images. Figure 11 shows an example of the results

for change detection of a sequence of two frames X and Y.

X Y HR-EXD TR

Figure 11. An example of TR HR-AXD for change detection

Background removal: In this case, background variations in

illumination are divided from a scene, such that the foreground

objects can be better viewed. For example, the image X in Figure

12 shows some text that has been badly illuminated during capture

(i.e. there is a strong illumination gradient across the image). If a

blank page Y is divided from the poorly illuminated image X, the

output has a relatively constant illumination. Following this

operation, a simple step for the threshold can be used to produce a

high-contrast text image. Figure 12 shows an example of the

results.

X Y HR-EXD TR

Figure 12. An example of TR HR-AXD for background

removal

(a) (b)

(c) (d)

Figure 13. PSNR of 12-bit HR-AXD for image application

Change detection with replacement (a) and truncation (b);

Background removal with replacement (c) and truncation (d)

Figure 13 shows the Peak Signal-to-Noise Ratio (PSNR) for

change detection and background removal. In both cases, the

triangle approximations have the best PSNRs; moreover, the

PSNR is lower for higher radix dividers. A truncated scheme has a

lower PSNR than the corresponding replacement scheme.

6. CONCLUSION
This paper has presented a detailed analysis, design and

evaluation of high radix parallel dividers that utilize approximate

criteria in their operation. The following conclusions can be

drawn: A larger value for d provides a larger NED; among all

schemes, the triangle replacement divider has the best NED

among the replacement schemes. A truncated scheme introduces

more error. The power consumption reduces rapidly as the depth

increases, i.e. the higher the depth is, more pronounced is the

power reduction. A truncation scheme provides a significant

power reduction compared to a replacement scheme. The

approximation schemes have only a small impact on the delay of

the divider; the delay is reduced for higher radix dividers, because

it takes only 𝑁/𝑚 stages to complete the division. This advantage

is reduced when the radix is higher than 8. Compared to radix-2

division, a high radix approximate divider is faster; its power

dissipation is lower for radix-4 and radix-8, although it increases

for radix values greater than 8. In conclusion, when designing an

approximate array divider, metrics (and related design parameters)

have to be considered and met as per the application. This paper

has shown that a triangle-based replacement scheme at a moderate

radix value (not higher than 8) is the best approximate divider

scheme to achieve low power consumption, high speed and a

small error for an application such as image division.

REFERENCES
[1] S. F. Oberman and M. Flynn, “Division algorithms and

implementations,” Computers, IEEE Transactions on, vol.

46, pp. 833-854, 1997.

[2] B. Parhami, Computer Arithmetic: Algorithms and Hardware

Designs: Oxford University Press, 2000.

[3] M. D. Ercegovac and T. Lang, Digital Arithmetic: Morgan

Kaufmann, 2004.

[4] L. Chen, J. Han, W. Liu, and F. Lombardi, “On the Design of

Approximate Restoring Dividers for Error-Tolerant

Applications,” Computers, IEEE Transactions on, vol. PP,

pp. 1-1, 2015.

[5] T. Aoki, K. Nakazawa, and T. Higuchi, “High-radix parallel

VLSI dividers without using quotient digit selection tables,”

in Proc. 30th IEEE International Symposium on Multiple-

Valued Logic, 2000, pp. 345-352.

[6] A. Avizienis, “Signed-Digit Number Representations for Fast

Parallel Arithmetic,” IRE Transactions on Electronic

Computers, vol. EC-10, pp. 389-400, 1961.

[7] S. F. Oberman and M. Flynn, “Division algorithms and

implementations,” IEEE Trans. Comput., vol. 46, pp. 833-

854, 1997.

[8] M. D. Ercegovac, T. Lang, and P. Montuschi, “Very-high

radix division with prescaling and selection by rounding,”

IEEE Trans. Comput., vol. 43, pp. 909-918, 1994.

[9] P. Montuschi and T. Lang, “Boosting very-high radix

division with prescaling and selection by rounding,” IEEE

Trans. Comput., vol. 50, pp. 13-27, 2001.

[10] M. D. Ercegovac and T. Lang, “On-the-Fly Conversion of

Redundant into Conventional Representations,” IEEE Trans.

Comput., vol. C-36, pp. 895-897, 1987.

[11] L. Jinghang, H. Jie, and F. Lombardi, “New Metrics for the

Reliability of Approximate and Probabilistic Adders,” IEEE

Trans. Comput., vol. 62, pp. 1760-1771, 2013.

