
Lukáš Sekanina 
Faculty of Information Technology 

Brno University of Technology 
Brno, Czech Republic 
sekanina@fit.vutbr.cz 

Approximate Computing  
with  

Approximate Circuits:  
Methodologies and Applications 

 
ESWEEK 2017 Tutorial 

Jie Han 
Department of Electrical and Computer 

Engineering, University of Alberta 
Edmonton, AB, Canada 

jhan8@ualberta.ca 



Lukáš Sekanina 
Faculty of Information Technology 

Brno University of Technology 
Brno, Czech Republic 
sekanina@fit.vutbr.cz 

Approximate Computing  
with  

Approximate Circuits:  
Methodologies and Applications 

 
Part II: Design automation methods 



• Introduction 
• Design automation methods for approximate circuits 

– Classification and overview 
– Circuit parameter estimation 
– Error computation 
– Relaxed equivalence checking 
– Evaluation methodology 

• Examples of design automation methods for approximate circuits 
– Minterm complements, SASIMI, AIG rewriting, ABACUS, GRATER 

• Evolutionary algorithms, CGP and circuit optimization 
• Applications of CGP-based approximation methods 

– Open-source library of approximate adders and multipliers 
– Approximate TMR 
– Approximate multipliers in neural networks 
– Symbolic error analysis using BDDs/SAT solving in CGP-based tools 
– Approximate image filters 

• Conclusions 
 
 

 

Tutorial Outline – Part II. 

3 



Sensitivity analysis 

4 

• The goal is to identify subsystems suitable for undergoing the approximation. 

• Method: Random/guided modification of the original implementation and 
statistical evaluation of the impact on the quality of result. 

In software 

• precision of number representation 

• data storage strategies 

• code simplification 

• relaxed synchronization 

• unfinished loops 

• skipped function calls 

In hardware 

• bit width reduction 

• intentional disconnecting of 
components 

• timing changes 

• power supply voltage changes 

• fault injection 

Chippa et al., ACSSC 2013 & DAC 2013 



• Arithmetic error metrics 
– The worst-case error  

(error magnitude, error significance) 

– Relative worst-case error 

– The average-case error  
(average error magnitude, mean 
error distance) 

• Generic error metrics 
– Error probability (error rate) 

– Maximum Hamming distance  
(bit-flip error) 

– Average Hamming distance 

• Application-specific error metrics 
– Distance error 

– Accumulated worst-case error and 
accumulated error rate 

Error metrics: Notation 

5 

𝑒𝑤𝑠𝑡 𝑓, 𝑓 = max
∀𝑥∈ℬ𝑛

| int 𝑓 𝑥 − int(𝑓 𝑥 ) | 

 

𝑒𝑟𝑒𝑙 𝑓, 𝑓 = max
∀𝑥∈ℬ𝑛

| int 𝑓 𝑥 − int(𝑓 𝑥 ) |

int(𝑓 𝑥 )
 

 

𝑒𝑎𝑣𝑔 𝑓, 𝑓 =
1

2𝑛
 | int 𝑓 𝑥 − int(𝑓 𝑥 ) 

∀𝑥∈ℬ𝑛

| 

 

𝑒𝑝𝑟𝑜𝑏 𝑓, 𝑓 =
1

2𝑛
 𝑓 𝑥 ≠ 𝑓 (𝑥)

∀𝑥∈ℬ𝑛

 

 

𝑒𝑏𝑓 𝑓, 𝑓 = max
∀𝑥∈ℬ𝑛

 𝑓𝑖 𝑥 ⊕ 𝑓 𝑖(𝑥)

𝑚−1

𝑖=0

 

 

𝑒ℎ𝑑 𝑓, 𝑓 =
1

2𝑛
  𝑓𝑖 𝑥 ⊕ 𝑓 𝑖(𝑥)

𝑚−1

𝑖=0∀𝑥∈ℬ𝑛

 

 

f, 𝑓  – original and approximate solution 

n, m – the number of inputs and outputs 

int – returns a decimal value from m bits 



Approximation techniques - examples 

6 

• precision scaling 

• loop perforation 

• load value approximation 

• memorization 

• task dropping/skipping 

• memory access skipping 

• data sampling 

• using different program 
(circuit) versions 

• etc. 

• using inexact or faulty 
hardware 

• voltage scaling 

• refresh rate reducing 

• inexact read/write 

• reducing divergence in 
GPUs 

• lossy compression 

• use of neural networks. 

Mittal S., ACM Computing Surveys, 2016 



• Principle: Given F(x), implement a different function F’(x) that 
minimizes power, area and other circuit parameters, but satisfies 
the requirements on the quality of output. 

 

 

 

 

Functional approximation 

7 

F(x) F’(x) 

Power: 193 uW  
Delay: 10 ns 
Area: 35um2 

Power: 100 uW  
Delay: 5 ns 
Area: 20 um2 
 
Error: 5% 

Traditional view Approximate computing 

Functional equivalence 
is requested between the specification 

and implementation at all levels. 
Error as a design metric! 

Relaxed functional equivalence 

A complex multi-objective design/optimization problem! 

Example: 



• Introduction 
• Design automation methods for approximate circuits 

– Classification and overview 
– Circuit parameter estimation 
– Error computation 
– Relaxed equivalence checking 
– Evaluation methodology 

• Examples of design automation methods for approximate circuits 
– Minterm complements, SASIMI, AIG rewriting, ABACUS, GRATER 

• Evolutionary algorithms, CGP and circuit optimization 
• Applications of CGP-based approximation methods 

– Open-source library of approximate adders and multipliers 
– Approximate TMR 
– Approximate multipliers in neural networks 
– Symbolic error analysis using BDDs/SAT solving in CGP-based tools 
– Approximate image filters 

• Conclusions 
 
 

 

Tutorial Outline – Part II. 

8 



Languages supporting approximate computing 

9 

• EnerJ [Sampson et al., PLDI 2011] 
– An extension to Java that adds approximate data types. Approximate operations introduced by generating 

code with cheaper approximate instructions. The system can statically guarantee isolation of the precise 
program component from the approximate component. 

• Rely [Carbin et al., OOPSLA 2013] 
– Programmer can mark both variables and operations as approximate.  Rely works at the granularity of 

instructions and symbolically verifies whether the quality-of-result requirements are satisfied for each 
function. Rely requires programmer to provide preconditions on the reliability and range of the data. 

• Axilog [Yazdanbakhsh et al., DATE 2015] 
– A set of language annotations that provide the necessary syntax and semantics for approximate hardware 

design and reuse in Verilog. Axilog’s language semantics and the Relaxability Inference Analysis are 
independent of the approximate synthesis, i.e. Axilog can be used with virtually any approximate synthesis 
tool. 

• ExpAX [Tech. Report GT-CS-14-05, Georgia Tech., 2014] 
– A static safety analysis is performed that uses the high-level (error) expectations to automatically infer a 

safe-to-approximate set of program operations  

• Others: Chisel, … 
• They require a hardware (CPU) supporting approximate computing.  

 
 



Functional approximation of digital circuits 

10 

Functional 
approximation 

Original design: 
gate level / RTL / behavioral 

Approximate circuit 𝑒𝑎𝑣𝑔 𝑓, 𝑓 =
1

2𝑛
 | int 𝑓 𝑥 − int(𝑓 𝑥 ) 

∀𝑥∈ℬ𝑛

| 

 

Quality metrics,  
constraints, data 

• Design methodology 
• Manual [Kulkarni et al.: J. Low Power Electronic 2011 and others] 

• Design automation methods (= some heuristics used) 

• SALSA (DAC 2012), SASIMI (DATE 2013), ABACUS (DATE 2014), ASLAN 
(DATE 2014), AIG-Rewriting (ICCAD 2016) … 

• CGP (ICES 2013, DDECS 2014, EuroGP 2015, IEEE Tr. on EC 2015, FPL 
2016, GENP 2016, ICCAD 2017), ABACUS with NSGA-II (2017) 

• Voltage over-scaling not covered in this tutorial. 



Functional circuit approximation: Classification 

11 

• Where is the approximation conducted? 
– Component (e.g. adder) / module (e.g. DCT) / application (e.g. video compression) 

• What is the level of abstraction? 
– transistor, gate, RTL, behavioral, abstract representation (e.g. SoP, BDD, AIG …) 

• How is the circuit approximated? 
– truncation 
– pruning 
– component replacement (using a library of approximate components) 
– re-synthesis 
– others 

• How are candidate approximate circuits evaluated? 
– quality (at different levels of the application) 

• simulation/probabilistic/formal-based methods 

– electrical parameters 
• power, delay, area, … 

• How is the approximation method evaluated? 
– The approximation methods are often heuristics! A proper statistical evaluation is 

requested (the best vs median value out of several independent runs). 



12 

Functional circuit approximation: Design automation 
First Auth., Conf/Journal, Tool Method, description Error comp. Benchmarks 

Shin, DATE10 Elimination in SoP Exhaustive sim. <16 inputs: rd73, sym10, rd73, clip, sao2, 5xp1, t481 

Shin, DATE11 Greedy, fault injection Simulation c880, c1908, c3540, c5315, c7552 

Venkataramani, DAC12, SALSA Don’t care simplification SAT 32-bit+, 8-bit *, 8-bit MAC, SAD, BUT, FIR, IIR, DCT 

Venkataramani,DATE13,SASIMI Similar signal detection Simulation ISCAS85, 32-bit +, 8-bit *, MAC, SAD, … 

Ranjan, DATE14, ASLAN Sequential/heuristics SAT FIR, IIR, MAC, DCT, Sobel, SAD, BUT … 

Nepal, DATE14, ABACUS Greedy over AST Simulation FIR, FFT, perceptron, block matcher, … 

Venkataraman, DATE15 Probabilistic pruning Simulation Filters, QRS in ECG 

Li, DAC15 Replacement in HLS Probabilistic MediaBench, IIR, FIR, … 

Soeken, ASPDAC16, ABM Heuristics over BDD BDD 6 ISCAS-85 

Chandrasekharan, ICCAD16 Greedy, rewriting, AIG BDD, SAT LGSynth91, 8/16-bit +, 8 bit *, MAC, parity  

Jain, DATE16 Logic isolation Probabilistic 32-bit +, 12-bit *, 8-bit DCT, FFT, FIR, … 

Lofti, DATE16, GRATER Truncation, OpenCL Simulation Sobel,  DCT, recurs. Gaussian, n-body, convolution 

Sekanina, SSCI-ICES13 CGP Exhaustive sim. 4 ISCAS85 circuits, adders 

Vašíček, IEEE Tr. on EC, 2015 CGP Simulation Multipliers, 9/25-input median 

Vašíček, GPEM, 2016 CGP BDD Selected circuits from LGSynth, ITC and ISCAS 

Češka, ICCAD17  CGP SAT 32-bit *, 128-bit + 



Search-based synthesis of approximate circuits 

13 

candidate circuit 3 
HD 18.75% | EP 3/16 

candidate circuit 1 
HD 81.25% | EP 13/16 

• The optimization engine applies various transformation rules on a given circuit 
and gradually modifies the circuit with the aim to obtain its approximate 
version which satisfies a given condition (e.g. maximal error). 

• See the CGP-based approximation in this Tutorial. 

Vasicek, Sekanina. Evolutionary Approach to Approximate Digital Circuits Design. IEEE Transactions on Evolutionary Computation. 2015 

original (accurate) circuit 
5 GATES 

HD 0% | EP 0 

candidate circuit 2 
 

candidate circuit 4 
HD 18.75% | EP 3/16 

2 GATES 

 

GOAL: approx. ~ 20% error 
RESULT:              error 18.8% 

reduction: 60% 



Circuit parameter estimation 

14 

• Basic circuit parameters: delay, area, power, … 

• Professional CAD tools 

– Good quality 

– Slow if thousands of candidate approximate circuits have to be evaluated 

• Simple methods 

– Fast, but could be inaccurate 

• Area = sum of the areas of the gates involved 

• Delay = delay along the longest path; the capacitive output load not 
ignored 

• Power = static (leakage) + dynamic (switching activity simulation) 

• Calibration is needed! 

– They are used during the approximation process. 

– The resulting approximate circuits have to be validated using professional 
tools. 

 
 

 

Hrbacek, Mrazek, Vasicek. Automatic Design of Approximate Circuits by Means of Multi-Objective Evolutionary Algorithms. In: DTIS 2016, IEEE, 
2016, pp. 239-244 



How to determine the error? 
 

15 

x3 x2 x1 F1 F2 

0 0 0 1 1 

0 0 1 1 1 

0 1 0 1 1 

0 1 1 1 1 

1 0 0 0 0 

1 0 1 1 1 

1 1 0 0 0 

1 1 1 0 0 

• Functional equivalence checking methods have been developed for decades. 

‒ They exploit the model canonicity, SAT solving, algebraic approaches, … 

• Relaxed functional equivalence checking is a new topic! 

‒ How to prove the equivalence up to some bound? 

• Scalability problem of (relaxed) equivalence checking! 

𝐹2 = ¬ ¬(𝑥1 ∧ ¬𝑥2) ∧ 𝑥3  

𝐹1 = (𝑥1 ∧ ¬𝑥2) ∨ ¬𝑥3 

Are F1 and F2 functionally equivalent? 



How to determine the error? 

16 

Error “estimation” 
• (Functional) circuit simulation 

• Probabilistic models, e.g. Li at al., DAC 2015 

 

All possible 
input vectors 

Approximate  
circuit 

1.3% 4.5% 

Error = 3.1% 

Exact error calculation  
• Exhaustive simulation – small problem instances only 

• Analysis of Binary decision diagrams 

• Average error, worst case, error rate …  

• M. Soeken et al., ASP-DAC 2016 

• Average Hamming distance: 

• Z. Vasicek and L. Sekanina. Gen. Prog. Evol. Mach., 17(2), 2016 

• Not scalable for some circuits such as multipliers 

• Transforming to SAT problem 

• Worst case error 

• S. Venkataramani et al. : DAC 2012 (SALSA), A. Chandrasekharan et 
al. DAC 2016, M. Ceska et al., ICCAD 2017 

• Not suitable if counting the number of solutions is requested. 



Error computation: Probabilistic methods 

17 

• For a given approximate circuit and the input data distribution, a 
probabilistic model is constructed and the error statistics are derived. 

• Examples 
– The error statistics can be expressed as functions of the number of input 

bits, carry-chain length, number of overlapping prediction bits and 
number of sub-adders in the case of approximate adders [Mazahir et al. IEEE 
TC 66(3), 2017] 

– In the context of approximate HLS, an error of approximate adders and 
multipliers was characterized by its mean and variance. The mean is 
systematic and can be compensated. The overall computation precision is 
then determined by the variance which, after the constant compensation 
corresponds, to the Mean Squared Error [Li et al. DAC 2015]. 

• Advantages 
– Fast error computation 

• Disadvantages 
– An error model has to be derived for all components which is time 

consuming and impractical for circuits different to adders and multipliers. 
– It is hard to provide formal guarantees in terms of the error bound. 

 

 
 

 



Example [Li et al. DAC 2015] 

18 

• Assumptions 
• Error can be modeled as a random variable described by its 

mean and variance: 𝑀𝑒𝑎𝑛(𝜀), 𝑉𝑎𝑟(𝜀) 

• Mean value of the error can be canceled out by a constant bias 

• First order model is sufficient 

• Basic operations error model 

• 𝑦 = 𝑎 + 𝑏 → 𝑦 + 𝜀𝑦 = 𝑎 + 𝜀𝑎 + 𝑏 + 𝜀𝑏 + 𝜀+ 

• 𝑦 = 𝑎 ∗ 𝑏 → 𝑦 + 𝜀𝑦 = 𝑎𝑏 + 𝑎𝜀𝑏 + 𝑏𝜀𝑎 + 𝜀∗ + 𝜀𝑎𝜀𝑏 

• Pre-processing 

• Compute the error sensitivity (𝐸𝑆𝑂𝑖,𝑌
) of output 𝑂𝑖 to an error 

introduced by node Y. 

• Searching all paths from 𝑂𝑖 to Y, using modified DFS traversal. 

• Error evaluation 

• 𝑉𝑎𝑟(𝜀𝑂𝑖
) =  𝐸𝑆𝑂𝑖,𝑦 ∗ 𝑉𝑎𝑟(𝜀𝑦)𝑦𝜖𝑁𝑜𝑑𝑒𝑠  

• In this case 

• 𝑉𝑎𝑟(𝜀𝑂0
) = 1 ∗ 𝑉𝑎𝑟 𝜀𝐷 + 1 ∗ 𝑉𝑎𝑟 𝜀𝐵 + 1 ∗ 𝑉𝑎𝑟(𝜀𝐶) 

– (the impact of component A is eliminated) 

 
 

 

I1 I2

A+

B+

I0

D+

C*

O0

-1



Binary Decision Diagrams 

19 

1 edge 

0 edge 

a  b  c    f  
0  0  0   0 
0  0  1   0 
0  1  0   0 
0  1  1   1 
1  0  0   0 
1  0  1   1 
1  1  0   0 
1  1  1   1 

Truth table 

f = ac + bc 

Decision tree 

1 0 0 0 1 0 1 0 

a 

b 

c 

b 

c c c 

f 

1 0 

a 

b 

c 

f= (a+b)c 

Reduced Ordered 
BDD (ROBDD) 
(canonical form) 

Operations over (RO)BDDs implemented by many libraries, e.g. Buddy. 



• Variable ordering is important, may result in a more complex (or 
simple) BDD. 

Pitfalls of Binary Decision Diagrams 

20 

x1 

x3 

x4 

0 1 

x2 

x1x2 + x3x4 

x1<x2<x3<x4  
(optimal) 

x1<x3<x2<x4 

x1 

x3 

x4 

0 1 

x2 

x3 

x2 



The decision procedure is 
trivial and reduces to 
pointer comparison. 

Equivalence checking using ROBDDs 

21 

F1 

F2 

G1 

G2 

4 

6 

7 

8 
9 

10 

5 

ROBDD construction:  

Apply (op, a, b) – creates ROBDD representing 
logic function op over two ROBDDs a and b 

Are circuits C1 and C2 
functionally equivalent? 



• Many logic operations can be performed efficiently on BDDs 
– usually in linear time  

– tautology and complement are constant time 

 

Other operations on ROBDDs 

22 

Bryant R.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE Trans. on Comp. 1986 



Average Hamming distance using BDDs 

23 

• Create ROBDD for CA, CB and the XOR gates.  

• Average Hamming distance:  

 

SatCount(z1) = 2 

SatCount(z2) = 0 

SatCount (f) – gives the 
number of input 
assignments for which f is 
‘1’. 

 

x1 x2 x3 x4 # combinations 

0 0 0 0 1 

0 1 1 0 1 

𝑒𝐻𝐷 =
1

2𝑖𝑛𝑝𝑢𝑡𝑠
 𝑆𝑎𝑡𝐶𝑜𝑢𝑛𝑡(𝑧𝑖)

𝑜𝑢𝑡𝑝𝑢𝑡𝑠

𝑖=1

 

Vasicek Z., Sekanina L.: Evolutionary Design of Complex Approximate Combinational Circuits. Gen. Prog. and Evol. Mach. 17(2), 2016 



Average-case and worst-case error analysis 

24 

• Let 𝑓: ℬ𝑛 → ℬ𝑚 be a Boolean function that describes correct 

functionality and 𝑓 : ℬ𝑛 → ℬ𝑚 an approximation of it. The 
average-case error is defined as the sum of absolute differences 
in magnitude between the original and approximate circuit, 
averaged over all inputs: 
 
 
 
where int x  represents a function returning a decimal value of 
the m-bit binary vector x. 

• The worst-case error is defined: 

𝑒𝑎𝑣𝑔 𝑓, 𝑓 =
1

2𝑛
 | int 𝑓 𝑥 − int(𝑓 𝑥 ) 

∀𝑥∈ℬ𝑛

| 

 

𝑒𝑤𝑠𝑡 𝑓, 𝑓 = max
∀𝑥∈ℬ𝑛

| int 𝑓 𝑥 − int(𝑓 𝑥 ) | 

 



Error analysis using BDD (adders)  

25 

VASICEK Z., MRAZEK V., SEKANINA L.: Towards Low Power 
Approximate DCT Architecture for HEVC Standard. DATE 2017 

Approximate adder 

Accurate adder 

m = n + 2 
Example for n = 4: Because  the 
result of SUB is -32 … +31, the 
max  absolute value is 32 and 6 
bits are needed for m.  

Soeken et al. BDD Minimization for Approximate 
Computing ASPDAC 2016 

D < e 
 



The average time needed to perform the worst-case and the average-case error 
analysis for w-bit adders: 

 

 

 

 

 

 

 

 

 

 

Practical experience: BDD-based analysis of multipliers is >10 times slower than 
simulation. 

 

BDD vs exhaustive simulation: Adders 

26 

bit-width inputs 
parallel simulation BDD-based method speedup 

emax + eavg   emax eavg   emax eavg   

4-bit 8 4.5 us 10.3 us 14.0 us 0.43  0.32  

8-bit 16 1.9 ms 3.5 ms 4.6 ms 0.54  0.42  

12-bit 24 682.4 ms 127.9 ms 312.7 ms 5.33  2.18  

16-bit 32 140.9 s 1.38 s 2.93 s 102.3  48.09  

Notes  
1) 100 randomly generated approximate adders were evaluated for each bit-width.  
2) The time required to construct a BDD for the virtual circuit is included. 

VASICEK Z., MRAZEK V., SEKANINA  L.: Towards Low Power Approximate DCT Architecture for HEVC Standard. DATE 2017 



Functional equivalence checking using SAT solvers 

27 

?
 

If C1 and C2 are not functionally equivalent then there is at least one 

assignment to the inputs for which the output of G is 1. 

G: 

C1: C2: 

a 

b 



Tseitin transform used to create CNF for circuit G 

28 

7 

6 

1 

2 

3 

4 

5 

8 
9 

10 

11 

12 

13 

Example: y = not (x) 

x y g 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

g = (~x  ~y)(x  y) 

CNF formula g(x, y) = 1 if the 

predicate y = OP(x) holds true 



SAT solver in action 

29 

7 

6 

1 

2 

3 

4 

5 

8 
9 

10 

11 

12 

13 

SAT solver: MiniSAT 

variables: 13, clauses: 30, time elapsed: 0.03ms 

result: SATISFIABLE / NONEQUIVALENT 

model / counter example: 0011111101011 



Worst-case error analysis using SAT solver 

30 

• The common approach is to use SAT-solver and binary search to find WCE (= X). 

• Example: WCE for approximate n-bit adders  

 

E < X  

E 

Venkatesan et al. ICCAD 2011; Chandrasekharan et al. DAC 2016 

SAT solver 

… 
CNF 

Update CNF 



On a fair comparison of automated approx. methods 

31 

• Common practice: The original circuit and 
approximate circuits created using a given 
method are compared -> not sufficient!  

• A comparisons with other approximation 
methods is needed! 

• Important assumptions for a fair comparison:  

– the original circuits are the same 

– the error is calculated using the same method 
(simulation vs. exact) 

– electrical parameters are calculated using the 
same tool and for the same technology library 

– the time/resources for the approximation 
methods under investigation are the same 

– the same statistically relevant values are 
reported (best, median, mean etc.) 

 
 

 

8-bit multiplier approximation 

power 

er
ro

r 

0 

Method 1 (double time) 

Method 1  

Method 2 

Method 3 

original circuit 



• Adders and multipliers 
– lpACLib Library 

• https://sourceforge.net/projects/lpaclib/ 

– GeaR Library: 
• https://sourceforge.net/projects/approxadderlib/ 

– Evoapprox8b Library 
• http://www.fit.vutbr.cz/research/groups/ehw/approxlib/ 

 

• Other  
– AxBench (GPU, CPU, Verilog) 

• http://axbench.org/ 

– ApproxBench 
• http://approxbench.org/ 

– AcHEe 
• http://www.scorpio-project.eu/wp-

content/uploads/2016/06/CERTH_PP4REE@PPoPP_March2016.pdf 

Benchmarks for approximate computing 

32 



• Introduction 
• Design automation methods for approximate circuits 

– Classification and overview 
– Circuit parameter estimation 
– Error computation 
– Relaxed equivalence checking 
– Evaluation methodology 

• Examples of design automation methods for approximate circuits 
– Minterm complements, SASIMI, AIG rewriting, ABACUS, GRATER 

• Evolutionary algorithms, CGP and circuit optimization 
• Applications of CGP-based approximation methods 

– Open-source library of approximate adders and multipliers 
– Approximate TMR 
– Approximate multipliers in neural networks 
– Symbolic error analysis using BDDs/SAT solving in CGP-based tools 
– Approximate image filters 

• Conclusions 
 
 

 

Tutorial Outline – Part II. 

33 



Finding minterm complements to reduce # literals 

34 Shin and Gupta: Approximate logic synthesis for error tolerant applications.  DATE 2010 34 

• The objective is to obtain designs that have a minimum number of literals for a given 
error rate threshold. 

• Method: Identify minterm complements that produce an approximate circuit version 
that has the smallest number of literals for a given error rate threshold. 

• Exhaustive search for simple functions, a heuristics approach for more complex 
functions. 

𝑥1 𝑥2𝑥4 + 𝑥2𝑥3𝑥4 + 𝑥1𝑥2 𝑥3 𝑥4 

𝑥2𝑥4 + 𝑥1𝑥3 𝑥4 

𝑥1 𝑥2𝑥4 + 𝑥2𝑥3𝑥4 

Original solution: 

Approximation 1: 

Approximation 2: 



SASIMI: Substitute and Simplify 

35 

• Key Idea: Identify signal pairs (TS and SS) that are similar in functionality i.e. produce 
the same value for most of the inputs among signal pairs. 

– Substitute one in place of the other 

•  Circuit becomes approximate  

– Simplify the circuit: Logic Deletion & Downsizing 

Original Circuit 

TS = SS    PDIFF ≈ 0 
TS = !SS   PDIFF  ≈ 1  Difference Signal (DIFF) 

Target Signal 
(TS) 

Substitute Signal (SS) 

Approximate Circuit 

SS 

Deleted 
gates 

Downsized gates 

Downsized gates 

TS 

S. Venkataramani, K. Roy, and A. Raghunathan: Substitute-and simplify: a unified design paradigm for approximate and quality configurable 
circuits, DATE’13, pp. 1367–1372 

Courtesy of K. Roy 

The signal probability calculation 
engine in Synopsys Power 
Compiler was used to obtain 
difference probabilities 



SASIMI: Substitute and Simplify 

36 

S. Venkataramani, K. Roy, and A. Raghunathan, “Substitute-and simplify: a unified design paradigm for approximate and quality configurable 
circuits, DATE’13, pp. 1367–1372 



Approximation-aware Rewriting of AIGs 

37 Chandrasekharan, Soeken, Grosse, Drechsler. Approximation-aware Rewriting of AIGs for Error Tolerant Applications ICCAD 2016 37 

2-bit adder 

Heuristics:  
replace  
the cut  

by constant 0 

• Principle: allow AIG rewriting to change the functionality of the circuit without 
violating a predefined error bound.  

• Rewriting (at the level of cuts on selected paths) takes a greedy approach. 

• Worst-case error, bit-flip error and error rate determined exactly (formally). 

• Evaluated: 8/16-bit adders, LGSYnth91, 8-bit multipliers, 32-bit parity, … 

 



• Original file: Verilog 
• Abstract Syntax Tree (AST) transformations 

(mutations) 
– Data type simplification 
– Operation transformations (e.g. + -> or) 
– Arithmetic expression transformation 
– Variable to Constant transformations 
– Loop transformations 

• Search algorithm: Greedy / NSGA-II 
• Fitness is obtained by circuit simulation and 

combines the error & power 

ABACUS: Approximations at Behavioral RT-level 

38 Nepal K. et al.: DATE 2014 and IEEE Trans. on Emerging Topics in Computing 2017 



ABACUS: Results 

39 Nepal K. et al.: Automated High-Level Generation of Low-Power Approximate Computing Circuits, Trans. on Emerging Topics in Computing, 2017 

Benchmark problems: 

Results of evolutionary approximation: 



GRATER: GA-based optimization of data types 

40 Lotfi A. et al.:  GRATER: An Approximation Workflow for Exploiting Data-Level Parallelism in FPGA Acceleration. DATE 2016 

• Sensitivity analysis performed to find safe-to-
approximate variables (AV) in OpenCL kernel. 

• Encoding: n integers specifying precision (i.e. 
data type) of n variables from AV. 

• Objective: to find an approximate kernel that 
minimizes the resource utilization on FPGA 
while meeting the target quality. 



• Introduction 
• Design automation methods for approximate circuits 

– Classification and overview 
– Circuit parameter estimation 
– Error computation 
– Relaxed equivalence checking 
– Evaluation methodology 

• Examples of design automation methods for approximate circuits 
– Minterm complements, SASIMI, AIG rewriting, ABACUS, GRATER 

• Evolutionary algorithms, CGP and circuit optimization 
• Applications of CGP-based approximation methods 

– Open-source library of approximate adders and multipliers 
– Approximate TMR 
– Approximate multipliers in neural networks 
– Symbolic error analysis using BDDs/SAT solving in CGP-based tools 
– Approximate image filters 

• Conclusions 
 
 

 

Tutorial Outline – Part II. 

41 



Evolutionary algorithms: GA, ES, EP, GP, LGP, CGP, … 

42 

• The term Evolutionary Algorithm covers various search algorithms 
that have the following common features: 
– There is a population of candidate solutions (inherent parallelism). 

– New candidate solutions are created using operators inspired in genetics 
(crossover, mutation). 

– Nothing is expected about the objective (fitness) function. 

• Main branches: 
– Genetic Algorithms – GA (Holland ~1973) 

– Evolution Strategies – ES (Rechenberg and Schwefel ~1964) 

– Evolutionary Programming - EP (Fogel ~1962) 

– Genetic Programming – GP (Cramer ~1985, Schmidhuber ~1987, Koza, 
~1989) 

– and others such as differential evolution, grammatical evolution, Cartesian 
genetic programming etc. 



Evolutionary algorithms: GA, GP, LGP, CGP, GE … 

43 

fi
tn

e
s
s
 

chromosomes 

Create the 

initial 

population 

Evaluation 
Selection 

of parents 

Recombination 

(crossover) 

Mutation 

Replacement 

GA chromosome: binary string 



Cartesian Genetic Programming (CGP) [Miller, 1999] 

44 

• ni primary inputs 

• no primary outputs 

• nc columns 

• nr rows 

ni 

ni+1 

ni+nr-1 

ni+nr 

ni+nr+1 

ni+2nr-1 

ni+(nc-1)nr 

• na inputs of each node 

•  function set 

• L-back parameter 

ni+ncnr-1 

nr 

nc 

0 

1 

ni-1 

ni 
no 

Nodes in the same 
column are not allowed 
to be connected to 
each other.  
No feedback! 

a 

b 
g(a,b) 



CGP: Representation for logic networks 

45 

Genotype (netlist):  

na+1 integers per node; no integers for outputs;  

Constant size: ncnr(na + 1) + no integers 

 

Phenotype (directed acyclic graph  circuit): 

Variable size; unused nodes are ignored. 

• CGP parameters 
• nr=3 (#rows) 
• nc = 3 (#columns) 
• ni = 3 (#inputs) 
• no = 2 (#outputs) 
• na = 2 (max. arity) 
• L = 3 (level-back 

parameter) 
• = {NAND(0), NOR(1), 

XOR(2), AND(3), OR(4), 
NOT (5)}  



CGP: Fitness function for circuit design 

46 

target table: 

Specification 

(1-bit adder), 

Typical fitness function (circuit functionality):  

 

𝑓 =  𝐻𝐷(𝑦𝑖

𝐾

𝑖=1

, 𝑤𝑖 ) 

Hamming distance 

(between circuit and 

desired response) 

The number of test vectors 

K = 2inputs for combinational circuits. Not scalable!!! 

Additional objectives:  
• area (the number of gates) 

• delay 

• power consumption etc. 



CGP: Mutation-based search 

47 

mutation 

• Mutation: Randomly select h integers and replace them by randomly 
generated (but legal) values: 

(for a full adder) 



CGP: Search algorithm (1 + ) 

48 

; // or use conventional designs 



CGP for optimization of complex circuits 

49 

• SAT solver is used to decide whether candidate circuit Ci 

and reference circuit C1 are functionally equivalent. 

• If so, then fitness(Ci) = the number of gates in Ci; 

• Otherwise: discard Ci. 

Conventional  

synthesis  

(ABC, SIS…) 
CGP 

Optimized 

circuit C1 

Even more  

optimized C1 

(= a seed for the 

initial population; 

reference circuit) 

Vasicek, Sekanina: Genetic Programming and Evolvable Machines 12(3), 2011 

Original 

circuit C 

(BLIF) 

C2, C3, C4, … 



CGP with SAT solver (no approximation) 

50 

SAT solver is called only if the circuit simulation performed for a small 
subset of vectors has indicated no error in the candidate circuit. 

100 combinational circuits (15 inputs) - IWLS2005, MCNC, QUIP 

benchmarks 

Heavily optimized by ABC 

1: alcom (NG = 106 gates; NPI = 15 inputs; NPO = 38 outputs) 

100: ac97ctrl (NG = 16,158; NPI = 2,176; NPO = 2,136) 

- the number of gates (optimized by ABC) 

100 test circuits 

Vasicek Z.: EuroGP 2015 



CGP with SAT solver (no approximation) 

51 

CGP + SAT solver + circuit simulation 

Y-axis: Gate reduction w.r.t. ABC after 15 minutes, 34% on average 

▲ Gate reduction w.r.t. ABC after 24 hours 
 

Vasicek Z.: EuroGP 2015 

Properly optimize before doing approximations! 



• Introduction 
• Design automation methods for approximate circuits 

– Classification and overview 
– Circuit parameter estimation 
– Error computation 
– Relaxed equivalence checking 
– Evaluation methodology 

• Examples of design automation methods for approximate circuits 
– Minterm complements, SASIMI, AIG rewriting, ABACUS, GRATER 

• Evolutionary algorithms, CGP and circuit optimization 
• Applications of CGP-based approximation methods 

– Open-source library of approximate adders and multipliers 
– Approximate TMR 
– Approximate multipliers in neural networks 
– Symbolic error analysis using BDDs/SAT solving in CGP-based tools 
– Approximate image filters 

• Conclusions 
 
 

 

Tutorial Outline – Part II. 

52 



• In approximate computing, partially working solutions are 
sought. 

• In EA, partially working solutions are improved. 

• EAs are excellent in multi-objective design and optimization. 

• Constraints can easily be handled. 

• EA can be seeded with the original code (circuit). 

• EA is easy to implement and parallelize. 

 

Why EA in approximate computing? 

53 



CGP for circuit (functional) approximation 

54 

• Error-oriented (single-objective) method 

• CGP gradually degrades a fully functional circuit 

until a circuit with a required error is obtained. 

Then, the area (and so power consumption) is 

minimized for this error. 
Error 

A
re

a 

Area 

Er
ro

r 

• Resources-oriented (single-objective) 

method 

• CGP is used to minimize the error, but only 

limited resources (components) are provided, 

insufficient for constructing a fully functional 
circuit. 

A
re

a 

Pareto 
front 

Error 

• Multi-objective optimization 

• All target parameters are optimized together. 

 

 

Initial circuit 
Resulting circuit 



Library of approximate 8 bit adders and multipliers 

55 

• Parallel multi-objective CGP:  
• CGP + Non-dominated Sorting Genetic Algorithm II (NSGA-II) [Hrbáček, GECCO 

2015] 

• Parallel implementation: vectorized, multi-threaded, multiple islands 
(computer cluster employed) 

• Constraints: worst case error, worst case relative error 

• Initial population: a set of fully working conventional circuits 

• Fitness: mean relative error, power consumption, delay 

 

Target circuits - Inputs: Ni = 16; Outputs: No = 9 (adders), 16 (multipliers) 

O(i)  is the i-th circuit output 

i = 1 … 2Ni 

 



CGP parameters 

56 

• Population size: 500 candidate circuits 

• Generations: 100k 

• Mutation: 5% 

• Parallel CGP: 10 islands exchanging circuits every 1000 
generations (120 cores) 

• CGP array: 1 x 200 nodes (adders), 1 x 1000 nodes (mult.) 

• CGP function set (180/45 nm technology library):  

• BUF, INV, AND2, OR2, XOR2, NAND2, NOR2, XNOR2, NAND3, NOR3, 
MUX2, AOI21,OAI21, Full Adder, Half Adder 

• 3-input/2-output nodes used 

 



CGP: Initial population 

57 

Architecture Power Area Delay 

Ripple-Carry Adder 100.00% 100.00% 100.00% 

Carry-Select Adder 201.18% 174.78% 61.15% 

Carry-Lookahead Adder 414.74% 334.78% 61.99% 

HVTA (Brent-Kung) 286.00% 201.74% 68.52% 

HVTA (Han-Carlson) 286.00% 201.74% 68.52% 

HVTA (Kogge-Stone) 371.48% 257.39% 59.77% 

HVTA (Sklansky)  305.07% 215.65% 60.45% 

TA (Brent-Kung) 282.99% 201.74% 67.25% 

TA (Han-Carlson) 295.74% 212.17% 61.87% 

TA (Knowles) 362.25% 257.39% 59.94% 

TA (Kogge-Stone) 342.20% 243.48% 57.68% 

TA (Ladner-Fischer) 282.99% 201.74% 67.25% 

TA (Sklansky) 298.34% 212.17% 57.84% 

13 conventional 8-bit adders 

TA = Tree Adder 

HVTA = Higher Valency Tree Adder 

Architecture Power Area Delay 

Ripple-Carry Array 100.00% 100.00% 100.00% 

Carry-Save Array using RCA 102.30% 100.00% 71.16% 

Carry-Save Array using CSA 108.42% 106.16% 62.03% 

Wallace Tree using RCA 104.29% 107.39% 68.91% 

Wallace Tree using CLA 116.10% 148.48% 51.26% 

Wallace Tree using CSA 120.12% 122.35% 53.28% 

6 conventional 8-bit multipliers 

RCA = Ripple-Carry Adder 

CSA = Carry-Save Adder 

CLA = Carry-Lookahead Adder 



Library of 8-bit approx. adders and multipliers 

58 

• Comprehensive library of approximate arithmetic circuits 

• 430 non-dominated adders (evolved from 13 accurate adders) 

• 471 non-dominated multipliers (evolved from 6 accurate multipliers) 

 

V. Mrazek, R. Hrbacek, Z. Vasicek, L. Sekanina: EvoApprox8b: Library, DATE 2a017, p. 1-4 
KIT: M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel: A low latency generic accuracy configurable adder, DAC 2015, pp. 86:1–86:6. 

Approximate adders 
(100% is Ripple-Carry Adder) 

Approximate multipliers 
(100% is Ripple-Carry Array Multiplier) 



Library of 8-bit approx. adders and multipliers 

59 

http://www.fit.vutbr.cz/research/groups/ehw/approxlib/ 

Approximate adders (430), exact adders (43) 

Approximate multipliers (471), exact multipliers (28) 

………………………………………………………………………………………………………………………………………………… 

………………………………………………………………………………………………………………………………………………… 

Synthesis results for 45 nm and 180 nm technology (Synopsys Design Compiler) 
7 error metrics 
New: 12-bit multipliers online, 16 – 32-bit multipliers completed 



Approximate circuits in TMR 

60 

b12 

rd73 

t481 

SÁNCHEZ-CLEMENTE, A., J., ENTRENA, L., HRBACEK, R. a SEKANINA, L. Error Mitigation using Approximate 
Logic Circuits: A Comparison of Probabilistic and Evolutionary Approaches. IEEE Transactions on Reliability. 
2016, 65(4), p. 1871-1883 

Incorrect subspace: The subset of input vectors for which the correct circuit and 
approximate circuit produce different outputs. 
  

F (under-approximation): 
Incorrect subspace is a subset of the on-set. 1  0 errors are produced 
 

H (over-approximation) 
Incorrect subspace is a subset of the off-set. 0  1 errors are produced 
 

At most one of the circuits is allowed to produce an incorrect output for 
any input vector. 



Energy-efficient implementation of ANNs 

61 

Approximations proposed: 
• Pruning – weights and neurons 
• Data compression (weights) 
• Memory – approximate cells and 

Load/Store 
 

• Datapath 
• Reducing data bit-width 

 
• Multiplication  
 (~45% of total power) 

• Multiplierless 
multiplication 

• Weights: {-1, 1} 
• Activation function 
• Sum function 
 

[Judd et.al. WAPCO’16] 

∑wI

I0

I1

In

w0

w1

wn

Activation 
function

H1

H2

H3

H4

I1

I2

I3

O1

O2

Hidden layerInput layer Output layer

weights weights

Google TPU: 24% for MAC 



Energy-efficient implementation of ANNs 

62 

Scenario A: 

• Multiplication  
𝑚 𝑎, 𝑏 = 𝑎 ⋅ 𝑏 + Δ 𝑎, 𝑏  

• Classification accuracy :  

10.77% 

 

MNIST dataset classification: 32x32 – 100 – 10 MLP network (classification accuracy 
94.16% with accurate implementation). We introduced an approximate multiplier 
by adding a  jitter function Δ(𝑎, 𝑏), resulting in a 5.2% error for multiplication. 

Scenario B: 

• 80% of multiplications are by 0 

• Multiplication  

𝑚′ 𝑎, 𝑏 =  
0 𝑖𝑓 𝑎 = 0 ∨ 𝑏 = 0

𝑎 ⋅ 𝑏 + Δ 𝑎, 𝑏 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

• Classification accuracy : 94.20% 

 

Mrazek, Sarwar, Sekanina, Vasicek, Roy: “Design of power-efficient approximate multipliers for approximate artificial neural networks,” 
ICCAD 2016 



CGP in approx. multiplier design for ANNs 

63 
Mrazek, Sarwar, Sekanina, Vasicek, Roy: “Design of power-efficient approximate multipliers for approximate artificial neural networks,” 
ICCAD 2016 

Accurate multiplier – initial circuit (6) 
• CSAM RCA, CSAM RCA, RCAM, WTM CLA, WTM CSA, WTM RCA 

Allowed errors:  𝜀 ∈ {0.5%, 1%, 2%, 5%, 10%, 15%, 20%} 

CGP parameters 
• 𝑛𝑖 ∈ 14,22 ; 𝑛𝑜 ∈ 14,22 ; 𝑛𝑟 = 1; 250 < 𝑛𝑐 < 780 

• Functions: {NOT, AND, NAND, OR, NOR, XOR, XNOR} 

• Error constraints: 

1. ∀𝑎, 𝑏: 𝑚 𝑎, 𝑏 − 𝑎 ∗ 𝑏 ≤ 𝜀 ⋅ 2𝑛𝑜  

2. ∀𝑎: 𝑚 𝑎, 0 = 𝑚 0, 𝑎 = 0 

• Fitness function: 

𝐶 𝑚 =  
−𝐺𝑎𝑡𝑒𝑠𝐶𝑜𝑢𝑛𝑡(𝑚) 𝑖𝑓 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 1  𝑎𝑛𝑑 (2) 𝑚𝑒𝑡,

−∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 



CGP in approx. multiplier design for ANNs 

64 
Mrazek, Sarwar, Sekanina, Vasicek, Roy: “Design of power-efficient approximate multipliers for approximate artificial neural networks,” 
ICCAD 2016 

• In total, 852 approximate 7-bit and 11-bit multipliers were evolved by 
CGP. 

• Multipliers were sign-extended using one’s complement. 

• The 8-bit and 12-bit multipliers were applied in NNs. 

• The NNs were retrained with approximate multiplication operation using 
the backpropagation algorithm. 

• Approximate multipliers showing the best trade off between power and 
accuracy in NN were selected (for different error targets). 

 



Evolved approximate multipliers for ANNs 

65 

0

50

100

150

200

250

300

350

400

450

500

0% 0,50% 1% 2% 5% 10% 15% 20%

Power and area of 8 bit approximate multipliers 

PWR μW AREA μm2 

0

200

400

600

800

1000

1200

1400

0% 0,50% 1% 2% 5% 10% 15% 20%

Power and area of 12 bit approximate multipliers 

PWR μW AREA μm2 

Results of synthesis of sign-extended multipliers with Synopsys DC 
45 nm technology 
Timing: 

8-bit multipliers: 2.5 GHz 
12-bit multipliers: 2 GHz 

Accurate multiplier was implemented in Verilog using standard * arithmetic 
operator 

 

Mrazek, Sarwar, Sekanina, Vasicek, Roy: “Design of power-efficient approximate multipliers for approximate artificial neural networks,” 
ICCAD 2016 



Energy-efficient implementation of ANNs: MLP 

66 

• Handwritten number dataset 
(dataset used for benchmarking) 

• Fully connected MLP network 

• 28x28 inputs, 300 hidden neurons, 
10 outputs 

• 60k training images 

• 10k testing images 

• More than 238k multiplications for 
approximation 

• Initial classification accuracy: 

– 8b: 97.67% 

– 12b: 97.70% 

 

H1

H2

H3

H4

I1

I2

I3

O1

O2

Hidden layerInput layer Output layer

weights weights



Energy-efficient implementation of ANNs: LeNet 

67 

• Complex real-world problem 

• Convolutional LeNet NN 

• 278,104 multiplications in 6 layers 

• 73k training images 

• 26k testing images 

• Approximation introduced in L1,L3,L5 
and L6 layers 

• Initial classification accuracy:  
– 8b: 86.85% 

– 12b: 86.90% 

 

Input image
32x32

6@28x28 6@14x14 16@10x10 16@5x5 120@1x1 10 values

L1 – Convolutional
117,600 multiplications

L2 – Subsampling
4,704 multiplications

L3 – Convolutional
150,000 multiplications

L4 – Subsampling
1,600 multiplications

L5 – Convolutional
3,000 multiplications

L6 – Fully connected
1,200 multiplications



Energy-efficient implementation of ANNs: Summary 

68 
Mrazek, Sarwar, Sekanina, Vasicek, Roy: “Design of power-efficient approximate multipliers for approximate artificial neural networks,” 
ICCAD 2016 

-9% 
-1% 

-25% 
-20% 

-36% 
-60% 

70%

75%

80%

85%

90%

95%

100%

0% 0.50% 1% 2% 5% 10% 15% 20% {1} {1,3} {1,3,5,7}

C
la

ss
if

ic
at

io
n

 a
cc

u
ra

cy
 o

f 
N

N
 

Approximation error ε of multipliers 

Classification Accuracy and power reduction (in multiplication) 

MNIST w=8

MNIST w=12

SVHN w=8

SVHN w=12

Multiplierless multiplication  by 
Sarwar et al. DATE’2016 

-20% 
-50% 

-30% 
-43% 

(8 bit) 
(12 bit) 

Power 
-57% 
-66% 

-77% 
-70% 

-82% 
-85% 

-91% 
-86% 

-91% 
-87% 



Circuit approximation with CGP and BDD 

69 

• Three criteria 
• relative area, delay and error  

• Error is the average Hamming distance (10 target error values Ei = 0.1 … 0.9 %) 

• CGP parameters 
• Rows = 1; Columns = # of gates in the original circuit 

• 5 mut./chromosome,  = 5, 30 min/run, 10 independent runs 

• Function set (relative area): and (1.333), or (1.333), xor (2.0), nand (1.0), nor (1.0), 

xnor (2.0), buf (1.333), inv (0.667) 

• Two stages: 
• Find a circuit showing Ei , but a small (< 5%) imperfection tolerated 

• weight fitness (error / area / delay): (we; wa; wd) = (0.12; 0.5; 0.38) 

 (but the error still kept under 5% of Ei) 

• 16 benchmark circuits 

 

Vasicek Z., Sekanina L.: Evolutionary Design of Complex Approximate Combinational Circuits. Gen. Prog. and Evol. Mach. 17(2), 2016 



Hamming distance using BDDs 

70 

• Create ROBDD for the parent circuit CA, the 
offspring circuit CB and the XOR gates.  

• Average Hamming distance:  

 

SatCount(z1) = 2 

SatCount(z2) = 0 

SatCount (f) – gives the 
number of input 
assignments for which f is 
‘1’. 

 

x1 x2 x3 x4 # combinations 

0 0 0 0 1 

0 1 1 0 1 

𝑒𝐻𝐷 =
1

2𝑖𝑛𝑝𝑢𝑡𝑠
 𝑆𝑎𝑡𝐶𝑜𝑢𝑛𝑡(𝑧𝑖)

𝑜𝑢𝑡𝑝𝑢𝑡𝑠

𝑖=1

 

Vasicek Z., Sekanina L.: Evolutionary Design of Complex Approximate Combinational Circuits. Gen. Prog. and Evol. Mach. 17(2), 2016 



CGP with BDD in the fitness function: Example 1 

71 

error/delay only 

single run 

error/area only 

global 
Pareto front 

Properly optimize before doing approximations! 

 Clmb (bus interface): 46 inputs, 33 outputs 
 Original clmb: 641 gates, 19 logic levels, |BDD| = 6966, |BDDopt| = 627 (SIFT in 2.3 s) 
 Optimized by CGP (no error allowed):  

 Best: 410 gates, 12 logic levels -- in 29 minutes (2.9 x 106 generations) 
 Median: 442 gates, 13 logic levels 

Vasicek Z., Sekanina L.: Evolutionary Design of Complex Approximate Combinational Circuits. Gen. Prog. and Evol. Mach. 17(2), 2016 



CGP with BDD in the fitness function: Example 2 

72 Vasicek Z., Sekanina L.: Evolutionary Design of Complex Approximate Combinational Circuits. Gen. Prog. and Evol. Mach. 17(2), 2016 



Approximate circuits: CGP with SAT solver  

73 Ceska, Matyas, Mrazek, Sekanina, Vasicek, Vojnar: ICCAD 2017 

• Worst case absolute error (WCAE) 
computation based on SAT solving 
(for adders and multipliers) 

• Improved miter construction 

• SAT solver terminated if no decision 
after spending a predefined time. 

• Integrated to ABC 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝐶 =  
𝑠𝑖𝑧𝑒(𝐶) 𝑖𝑓 𝑊𝐶𝐴𝐸 𝐶 < 𝜏

∞ 𝑒𝑙𝑠𝑒
 

22,050 SAT calls 
11% terminated 

170 SAT calls 
no termination 

856 SAT calls 
15% terminated 

• 16-bit multipliers for 9 target WCAE 

• 2 hours/1 run 

• 30 circuits analyzed for each WCAE 

• Synopsys Design Compiler, 45 nm 

• L is the max. number of conflicts for an 
AIG node, L = 160 K (~120 seconds) and 
L = 20 K (~3 seconds).   

 



Approximate 16-bit multipliers: Comparison 

74 
Ceska, Matyas, Mrazek, Sekanina, Vasicek, Vojnar: ICCAD 2017 

M2: BSDLC 
DATE 2016 

M5: EvoApproxLib 
8x8 multipliers composition 

M4: Kulkarni, 2011 
2x2 multipliers composition 

M1: lpACLib, DAC’15 
2x2 multipliers composition 

Evolved approx. 
multipliers 

Truncated mult. 
15x15, 14x14 etc. 



Approximate adders and multipliers (exact error) 

75 
Ceska, Matyas, Mrazek, Sekanina, Vasicek, Vojnar: ICCAD 2017 



Non-linear image filters 

76 

filtered image 
(9-input median filter) 

corrupted image  
(10% pixels, impulse noise) 

 

original 



• Approximation of the comparator element 
– MONAJATI et al. Circuits, Systems, and Signal Processing, 34(10),  2015 

• Approximation of the network (pruning) 

– CGP used to find a network of N 
comparators minimizing the error w.r.t. the 
original median (consisting of K 
comparators), but resources are limited, i.e. 
N < K. 

• Evolutionary image filter design from scratch 

– CGP used to evolve an image filter showing a 
minimal error and cost. Filters are composed 
of elementary 2-input functions (min, max, 
+, logic functions over 8 bits).  
 

 

Non-linear image filters: Approximation strategies 

77 



Approximate median using CGP 

78 

• Median network (consisting of up to N operations) is represented by means of 
a one-dimensional array of N nodes. 

• Each node can act as:  identity (0), minimum (1), maximum (2) over 8 bits 

• Each candidate solution is encoded using 3N + 1 integers. 

• Fitness function (single objective) 

e𝑟𝑟𝑜𝑟 =  𝑂𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑖 − 𝑂𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑖)

𝑖∈𝑆

 

• Example for a 3-input median: 

Chromosome: 0, 2, 3;  3, 2, 0;  0, 2, 2;  5, 3, 1;  6, 1, 2;  7, 0, 0;  6, 8, 2;   8 



Approximate median using CGP 

79 

Experimental setup 

• (1+4)-ES, no crossover, 5 % of the chromosome mutated 

 
Median-9 Median-25 

Inputs 9 25 

Outputs 1 1 

Generations 3 × 106 (3 hours) 3 × 105 (3 hours) 

Training vectors 1 × 104 1 × 105 

Exact solution (K) 38 operations 220 operations 

Available nodes (N) 6 – 34 operations 10 – 200 operations  

60% operation 20% operations original 

Z. Vašíček and L. Sekanina. Evolutionary approach to approximate digital circuits design. IEEE trans. on Evol. Comp. 19(3), 2015 



Approximate median: Distance error analysis 

80 

9-input median 
fully-working: 38 operations 

25-input median 
fully-working: 220 operations 

21% reduction 

52% reduction 

84% reduction 

4.8% 

95.2% 

65.1% 

24.6% 

20.2% 13.4% 

1.2% 

23.8% 19.4% 
12.3% 

5.5% 
14.3% 

27% reduction 

54% reduction 

81% reduction 

94.4% 

45.9% 

19.0% 

V. Mrazek, Z. Vasicek and L. Sekanina. GECCO GI Workshop, 2015 



Evolutionary design of image filters from scratch 

81 

Golden image - w  Input image 

Compare 
fitness  


 


N

i

M

j

jiwjivfitness
1 1

|),(),(|

N x M pixels  

Output image - v  

Sekanina L. Image Filter Design with Evolvable Hardware. LNCS 2279, 2002  



Comparison of 
approximate median filters 
and evolved filters for salt 

and pepper noise 

82 

∆ MF median filter 
○ AMF adaptive median filter 
□ CWMF center weighted median filter 
◊ EVO evolved filter (5x5) 
⌂ BNK bank of 3 evolved filters (5x5) 
9  3x3 kernel 
25  5x5 kernel  
# xy  approximation no. xy 
 
PSNR – mean PSNR on 30 images 
Synopsys Design compiler; 45 nm PDK 
All filters are pipelined with fmin = 1 GHz 

Sekanina, Vasicek, Mrazek: Radioengineering  26(3), 2017 



• Design automation methods implementing functional circuit approximation 

– work at various levels (abstract, source code, RTL, gate), 

– use different strategies and heuristics to introduce the approximation (truncation, 
pruning, component replacement, local re-synthesis, …), 

– evaluate the quality of approximate circuits by means of simulation, probabilistic  
or formal methods, 

– have not been systematically compared in terms of quality. 

• CGP-based methods can provide quite competitive approximate circuits  

– at different levels of abstraction (very flexible representation), 

– with formally proven quality of result (when needed), 

– because the problem can be formulated as a multi-objective one with various 
constraints and solved by means of a multi-objective approach, 

– but it is a computationally demanding approach. 

• Properly optimize before doing approximations! 

 
 

 

 

Conclusions – Part II 

83 



• See references on particular slides 

• Selected tutorial and survey papers on Approximate Computing 

– J. Han and M. Orshansky, “Approximate computing: An emerging paradigm for 
energy-efficient design,” in Proc. of the 18th IEEE European Test Symposium. IEEE, 
2013, pp. 1–6 

– H. Esmaeilzadeh, A. Sampson, L. Ceze, D. Burger, “Neural acceleration for general-
purpose approximate programs,” Commun. ACM, 58(1): 105-115, 2015 

– S. Mittal, “A survey of techniques for approximate computing,” ACM Computing 
Surveys, 48(4), 1–34, 2016. 

– Q. Xu, T. Mytkowicz, N. S. Kim. “Approximate Computing: A Survey,” IEEE Design 
and Test, 33(1), 8-22, 2016. 

– L. Sekanina, “Introduction to Approximate Computing”. IEEE International 
Symposium on Design and Diagnostics of Electronic Circuits, DDECS 2016 

– Z. Vasicek, “Relaxed equivalence checking: a new challenge in logic synthesis”. IEEE 
International Symposium on Design and Diagnostics of Electronic Circuits, DDECS 
2017  

 

 

 

References 

84 



• EHW group at Brno University of Technology 

– Zdeněk Vašíček, Michal Bidlo, Roland Dobai 

– Michaela Šikulová, Radek Hrbáček, Vojtěch Mrázek, David Grochol, Miloš Minařík, 
Jakub Husa, Marek Kidoň, Michal Wiglasz and other students 

• Research funding 

– IT4Innovations Centre of Excellence – National supercomputing center 

– IT4Innovations excellence in science - LQ1602 

– Advanced Methods for Evolutionary Design of Complex Digital Circuits, 2014 – 
2016 (Czech Science Foundation) 

– Relaxed equivalence checking for approximate computing, 2016 – 2018 (Czech 
Science Foundation) 

– Brno University of Technology 

 

 

Acknowledgement 

85 


