Approximate Computing
with
Approximate Circuits:
Methodologies and Applications

ESWEEK 2017 Tutorial
Lukas Sekanina Jie Han
Faculty of Information Technology Department of Electrical and Computer
Brno University of Technology Engineering, University of Alberta
Brno, Czech Republic Edmonton, AB, Canada
sekanina@fit.vutbr.cz jhan8@ualberta.ca

UNIVERSITY OF

i ALBERTA

Approximate Computing
with
Approximate Circuits:
Methodologies and Applications

Part II: Design automation methods

Lukas Sekanina

Faculty of Information Technology
Brno University of Technology
Brno, Czech Republic
sekanina@fit.vutbr.cz

Tutorial Outline — Part II.

Introduction

Design automation methods for approximate circuits
— Classification and overview

— Circuit parameter estimation

— Error computation

— Relaxed equivalence checking

— Evaluation methodology

Examples of design automation methods for approximate circuits
— Minterm complements, SASIMI, AIG rewriting, ABACUS, GRATER

Evolutionary algorithms, CGP and circuit optimization

Applications of CGP-based approximation methods
— Open-source library of approximate adders and multipliers
— Approximate TMR
— Approximate multipliers in neural networks
— Symbolic error analysis using BDDs/SAT solving in CGP-based tools
— Approximate image filters

Conclusions

Sensitivity analysis

The goal is to identify subsystems suitable for undergoing the approximation.

Method: Random/guided modification of the original implementation and
statistical evaluation of the impact on the quality of result.

In software

precision of number representation
data storage strategies

code simplification

relaxed synchronization

unfinished loops

skipped function calls

Resilience
Dataset Identification

Application

-

Quality
Function Sensitive Resilient
— Parts Parts

Inputs

In hardware

bit width reduction

intentional disconnecting of
components

timing changes
power supply voltage changes
fault injection

Output

Quality
Profile

o

Appe-——"""T0
Resilience Appr A man
‘ . pproximation
Characterization Model n

Chippa et al., ACSSC 2013 & DAC 2013

Error metrics: Notation

* Arithmetic error metrics ewst(f, f) = max | int(f(x)) — int(f(x)) |

— The worst-case error vxEBT
(error magnitude, error significance) eru(F.F) = ma | int(£(x)) — int(f (x)) |
— Relative worst-case error rel\J> S) yxepn int(f(x))

— The average-case error o A
(average error magnitude, mean eavg(f.f) = om Z | int(f(x)) —int(f(x)) |

error distance) S
e @Generic error metrics o 1 z o]
eprop\ fr f) = =— X X
— Error probability (error rate) prob 27

VxeBM
— Maximum Hamming distance

m-—1
(bit-flip error) ens (. f) = max, Z £00 ® Fi(0)
— Average Hamming distance i=0
* Application-specific error metrics 1 = .
— Distance error enalf.f) = o Z Z fi) @ fi(%)
VXEB™ i=0

— Accumulated worst-case error and

accumulated error rate f. f — original and approximate solution
n, m — the number of inputs and outputs
int — returns a decimal value from m bits

Approximation techniques - examples

e precision scaling

* |oop perforation

* |oad value approximation
* memorization

 task dropping/skipping

* memory access skipping
e data sampling

* using different program
(circuit) versions

* eftc.

Mittal S., ACM Computing Surveys, 2016

using inexact or faulty
hardware

voltage scaling
refresh rate reducing
inexact read/write

reducing divergence in
GPUs

lossy compression
use of neural networks.

Functional approximation

Principle: Given F(x), implement a different function F’(x) that
minimizes power, area and other circuit parameters, but satisfies
the requirements on the quality of output.

Example:
Power: 193 uW Power: 100 uW
— Delay: 10 ns — Delay: 5 ns
— Area: 35um2 — Area: 20 um2
— F() C
— B — Error: 5%
performance performance
error
area area
power Traditional view Dower Approximate computing

Functional equivalence Relaxed functional equivalence

is requested between the specification

_ _ Error as a design metric!
and implementation at all levels.

A complex multi-objective design/optimization problem!

Tutorial Outline — Part II.

Introduction

Design automation methods for approximate circuits
— Classification and overview
— Circuit parameter estimation
— Error computation
— Relaxed equivalence checking
— Evaluation methodology

Examples of design automation methods for approximate circuits
— Minterm complements, SASIMI, AIG rewriting, ABACUS, GRATER

Evolutionary algorithms, CGP and circuit optimization

Applications of CGP-based approximation methods
— Open-source library of approximate adders and multipliers
— Approximate TMR
— Approximate multipliers in neural networks
— Symbolic error analysis using BDDs/SAT solving in CGP-based tools
— Approximate image filters

Conclusions

Languages supporting approximate computing

EnerJ [Sampson et al., PLDI 2011]

— An extension to Java that adds approximate data types. Approximate operations introduced by generating
code with cheaper approximate instructions. The system can statically guarantee isolation of the precise
program component from the approximate component.

Rely [Carbin et al., OOPSLA 2013]

— Programmer can mark both variables and operations as approximate. Rely works at the granularity of
instructions and symbolically verifies whether the quality-of-result requirements are satisfied for each
function. Rely requires programmer to provide preconditions on the reliability and range of the data.

e Axilog [Yazdanbakhsh et al., DATE 2015]

— Aset of language annotations that provide the necessary syntax and semantics for approximate hardware

design and reuse in Verilog. Axilog’s language semantics and the Relaxability Inference Analysis are

independent of the approximate synthesis, i.e. Axilog can be used with virtually any approximate synthesis

tool.

* EXpAX [Tech. Report GT-CS-14-05, Georgia Tech., 2014]

— A static safety analysis is performed that uses the high-level (error) expectations to automatically infer a
safe-to-approximate set of program operations

e Others: Chisel, ...

* They require a hardware (CPU) supporting approximate computing.

@Approx int foo (

@Approx int x[][],

@Approx int y[]) {
@Approx int sum := 0;
for i =1 .. x.length

for j =1 .. y.length

sum := sum + x[1]1[j] * y[j]1;

return sum;}

int <0.90*Rix,v)= foo (

int <R(x)> x[1[] in urel,
int <R{y> y[] in urel) {

int sum := 0 in urel;

for i =1 .. x.length

for 3 =1 .. y.length

sum := sum + x[i][j] = vy[j];

return sum;}

int foo (int x[J[], int y[]) {
int sum := 0;
for 1 =1 .. x.length
for j =1 .. y.length
sum := sum + x[1]1[j] * y[3j];
accept magnitude({sum) < 0.10;
return sum,;

}

(a) EnerJ [21]

(b) Rely [4]

(c) ExpAX

Functional approximation of digital circuits

Original design:
gate level / RTL / behavioral

Quality metrics, ‘l'
constraints, data \(~
) = : Functional) —
ca(f-f) =37 D, 1n(F9) ~im(fC0) neona __>‘ Approximate circuit
VXEBn approximation
\ y,

Vs

e Design methodology

e Manual [Kulkarni et al.: J. Low Power Electronic 2011 and others]

e Design automation methods (= some heuristics used)

e SALSA (DAC 2012), SASIMI (DATE 2013), ABACUS (DATE 2014), ASLAN
(DATE 2014), AlG-Rewriting (ICCAD 2016) ...

e CGP (ICES 2013, DDECS 2014, EuroGP 2015, IEEE Tr. on EC 2015, FPL
2016, GENP 2016, ICCAD 2017), ABACUS with NSGA-II (2017)

e Voltage over-scaling not covered in this tutorial.

10

Functional circuit approximation: Classification

Where is the approximation conducted?
— Component (e.g. adder) / module (e.g. DCT) / application (e.g. video compression)
What is the level of abstraction?
— transistor, gate, RTL, behavioral, abstract representation (e.g. SoP, BDD, AlG ...)
How is the circuit approximated?
— truncation
— pruning
— component replacement (using a library of approximate components)
— re-synthesis
— others
How are candidate approximate circuits evaluated?
— quality (at different levels of the application)
* simulation/probabilistic/formal-based methods
— electrical parameters
* power, delay, area, ...
How is the approximation method evaluated?

— The approximation methods are often heuristics! A proper statistical evaluation is
requested (the best vs median value out of several independent runs).

11

Functional circuit approximation: Design automation

First Auth., Conf/Journal, Tool

Method, description

Error comp.

Benchmarks

Shin, DATE10 Elimination in SoP Exhaustive sim. | <16 inputs: rd73, sym10, rd73, clip, sao2, 5xp1, t481
Shin, DATE11 Greedy, fault injection Simulation c880, c1908, c3540, c5315, c7552

Venkataramani, DAC12, SALSA | Don't care simplification | SAT 32-bit+, 8-bit *, 8-bit MAC, SAD, BUT, FIR, IR, DCT
Venkataramani,DATE13,SASIMI | Similar signal detection | Simulation ISCAS85, 32-bit +, 8-bit *, MAC, SAD, ...

Ranjan, DATE14, ASLAN Sequential/heuristics SAT FIR, IIR, MAC, DCT, Sobel, SAD, BUT ...

Nepal, DATE14, ABACUS Greedy over AST Simulation FIR, FFT, perceptron, block matcher, ...
Venkataraman, DATE15 Probabilistic pruning Simulation Filters, QRS in ECG

Li, DAC15 Replacement in HLS Probabilistic MediaBench, IR, FIR, ...

Soeken, ASPDAC16, ABM Heuristics over BDD BDD 6 ISCAS-85

Chandrasekharan, ICCAD16 Greedy, rewriting, AIG | BDD, SAT LGSynth91, 8/16-bit +, 8 bit *, MAC, parity

Jain, DATE16 Logic isolation Probabilistic 32-bit +, 12-bit *, 8-bit DCT, FFT, FIR, ...

Lofti, DATE16, GRATER Truncation, OpenCL Simulation Sobel, DCT, recurs. Gaussian, n-body, convolution

Sekanina, SSCI-ICES13

CGP

Exhaustive sim.

4 |SCASS85 circuits, adders

Vasicek, [EEE Tr. on EC, 2015 CGP Simulation Multipliers, 9/25-input median
Vasicek, GPEM, 2016 CGP BDD Selected circuits from LGSynth, ITC and ISCAS
Ceska, ICCAD17 CGP SAT 32-bit *, 128-bit +

Search-based synthesis of approximate circuits

 The optimization engine applies various transformation rules on a given circuit
and gradually modifies the circuit with the aim to obtain its approximate
version which satisfies a given condition (e.g. maximal error).

* See the CGP-based approximation in this Tutorial.

O e N
: y " — AN

AND
. R AND)}
» candidate circuit 1 o N
n - N HD 81.25% | EP 13/16 AhD d | A

! » <~ »

¢ b 3
AND . . .

d X y candidate circuit 4

c HD 18.75% | EP 3/16
original (accurate) circuit AND 5 GATES
5 GATES y
. 0,
c n.c. candidate circuit 3 RESULT: error 18.8%

AND % .
_ HDO%|EPO HD 18.75% | EP 3/16 reduction: 60%
candidate circuit 2 :

o

GOAL: approx. ~ 20% error

Q

Vasicek, Sekanina. Evolutionary Approach to Approximate Digital Circuits Design. IEEE Transactions on Evolutionary Computation. 2015 13

Circuit parameter estimation

Basic circuit parameters: delay, area, power, ...
* Professional CAD tools
— Good quality
— Slow if thousands of candidate approximate circuits have to be evaluated
* Simple methods
— Fast, but could be inaccurate
* Area = sum of the areas of the gates involved

* Delay = delay along the longest path; the capacitive output load net
ignored

* Power = static (leakage) + dynamic (switching activity simulation)
e Calibration is needed!

— They are used during the approximation process.

— The resulting approximate circuits have to be validated using professional
tools.

Hrbacek, Mrazek, Vasicek. Automatic Design of Approximate Circuits by Means of Multi-Objective Evolutionary Algorithms. In: DTIS 2016, IEEE,
2016, pp. 239-244

14

How to determine the error?

Are F, and F, functionally equivalent?

... X3 x2 XI F1 F2
F,

a1 ,—D_ o 0o o0 1 1
X2 D : 0 0 1 1 1
x1 AND Fl - (x1 N _Ixz) V _Ix3 0 1 0 1 1
___ s 2 0 1 1 1 1

NAND
X3 1 0 0 0 O

x2

FZ — —|(—|(x1 N _I.Xé) N\ XB) 1 1 0 0 0
1 1 1 0 0

Functional equivalence checking methods have been developed for decades.
— They exploit the model canonicity, SAT solving, algebraic approaches, ...
Relaxed functional equivalence checking is a new topic!
— How to prove the equivalence up to some bound?
Scalability problem of (relaxed) equivalence checking!

15

How to determine the error?

Error “estimation”

* (Functional) circuit simulation
* Probabilistic models, e.g. Li at al., DAC 2015

All possible
input vectors

Exact error calculation
e Exhaustive simulation — small problem instances only l

e Analysis of Binary decision diagrams

e Average error, worst case, error rate ...
e M. Soeken et al., ASP-DAC 2016

Approximate

e Average Hamming distance: circuit
e Z.Vasicek and L. Sekanina. Gen. Prog. Evol. Mach., 17(2), 2016
e Not scalable for some circuits such as multipliers l
e Transforming to SAT problem 1.3% -
e Worst case error Error =3.1%

e S.Venkataramani et al. : DAC 2012 (SALSA), A. Chandrasekharan et
al. DAC 2016, M. Ceska et al., ICCAD 2017

e Not suitable if counting the number of solutions is requested.

16

Error computation: Probabilistic methods

* For a given approximate circuit and the input data distribution, a
probabilistic model is constructed and the error statistics are derived.
 Examples

— The error statistics can be expressed as functions of the number of input
bits, carry-chain length, number of overlapping prediction bits and

number of sub-adders in the case of approximate adders [Mazahir et al. IEEE
TC 66(3), 2017]

— In the context of approximate HLS, an error of approximate adders and
multipliers was characterized by its mean and variance. The mean is
systematic and can be compensated. The overall computation precision is
then determined by the variance which, after the constant compensation
corresponds, to the Mean Squared Error [Li et al. DAC 2015].

* Advantages
— Fast error computation
* Disadvantages

— An error model has to be derived for all components which is time
consuming and impractical for circuits different to adders and multipliers.

— Itis hard to provide formal guarantees in terms of the error bound.

17

Example [Li et al. DAC 2015]

Assumptions

* Error can be modeled as a random variable described by its
mean and variance: Mean(¢), Var(¢)

 Mean value of the error can be canceled out by a constant bias
* First order model is sufficient

Basic operations error model

s y=atb-oyteg, =(ate)+(b+e)+e,

* y=axb-oy+te =ab+ag, +beg+ e ey
Pre-processing

* Compute the error sensitivity (ESy, y) of output O; to an error
introduced by nodeY.

* Searching all paths from 0; to Y, using modified DFS traversal.
Error evaluation

* Var(eo,) = Lyenoaes ESo,y * Var(ey)
In this case

« Var(ep,) = 1*Var(ep) + 1+ Var(eg) + 1 xVar(ec)

— (the impact of component A is eliminated)

18

Binary Decision Diagrams

f=ac+ bc

PFRPPFPPOOOOID
PPRPOORKRPEFR OO
RPOPFRPOPRFRPOPRFR O
P OPRPOPRFROOO|

Ol101|O]|21(Of|1]]0]]|1

Truth table -
Decision tree Reduced Ordered

1 edge BDD (ROBDD)
- ==-0edge (canonical form)

Operations over (RO)BDDs implemented by many libraries, e.g. Buddy.

19

Pitfalls of Binary Decision Diagrams

* \Variable ordering is important, may result in a more complex (or
simple) BDD.

X Xy + X3X,

g [

X4 <X5<X3<X4
(optimal)

Equivalence checking using ROBDDs

Are circuits C1 and C2 ROBDD construction:

functionany equivalent? Apply (op, a, b) — creates ROBDD representing
logic function op over two ROBDDs a and b

The decision procedure is
trivial and reduces to
pointer comparison.

Other operations on ROBDDs

 Many logic operations can be performed efficiently on BDDs

— usually in linear time
— tautology and complement are constant time

Procedure Result
Reduce G reduced to canonical form
Apply J1 <op> 1,

Restrict fl x=b

Compose /i |xf=f2

Satisfy-one some element of Sf
Satisfy-all Sf

Satisfy-count |Sf|

Time Complexity
O(IG|loglG1)
O(1GI1G,))
O(IG|loglG1)
O(IG,1*1G,))
O(n)

O(”'|Sf|)

O(G1)

Bryant R.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE Trans. on Comp. 1986

22

Average Hamming distance using BDDs

S T e

x3 o /)) XOR I .y2

Xi g c a
A

XOR

e Create ROBDD for C,, C; and the XOR gates.

e Average Hamming distance:

1
eHD:W Z SatCount(z;)

outputs

i=1

SatCount (f) — gives the
number of input

assignments for which fis
1.

SatCount(z,) = 2
SatCount(z,) =0

X, #combinations

Vasicek Z., Sekanina L.: Evolutionary Design of Complex Approximate Combinational Circuits. Gen. Prog. and Evol. Mach. 17(2), 2016 23

Average-case and worst-case error analysis

Let f: B"™ — B™ be a Boolean function that describes correct

functionality and f: B™ — B™ an approximation of it. The
average-case error is defined as the sum of absolute differences
in magnitude between the original and approximate circuit,
averaged over all inputs:

A 1 A
cavg(F.f) =53 D lint(£ () = int(F () |

VxeBN

where int(x) represents a function returning a decimal value of
the m-bit binary vector x.

The worst-case error is defined:

ewst(f' f) = max | int(f(x)) — int(f(x)) |

Vx€eBN

24

Error analysis using BDD (adders)

Approximate adder

SE—

Accurate adder

m=n+2
Example for n = 4: Because the

SUB

result of SUB is -32 ... +31, the

A
n+1
DUT #
B f(x)
A
GOLDEN | 71
MODEL [7
B Jx)

max absolute value is 32 and 6
bits are needed for m.
n+2 m
—+—| ABS /> D(x)
ABSOLUTE DIFFERENCE
D(Y) = (dm—h dm—.?s ey d!* dﬂ)

O

Algorithm 2: average-case error analysis

Algorithm 1: BDD worst-case error analysi®

Input: BDD representation of the virtual circuit (d)

Output: The average arithmetic error (g4,)

2forie{m—1,m-2,...,0}tdo
3 L Eavg < €avg + 21_271 : Satcount(di);

4 return ¢,,,;

Input: BDD representation of the virtual circuit (d)
Output: The maximum arithmetic error (£,,,5..)

e fe b e

VASICEK Z., MRAZEK V., SEKANINA L.: Towards Low Power

Approximate DCT Architecture for HEVC Standard. DATE 2017

return £,,,,,..-

tn

Emaz — U, @ + true;
foric {m—1,m—2,...,0} do

if sarisfiable(p N d;) then
L{_ﬁ%ﬁﬂdaamxesmu+f;

Soeken et al. BDD Minimization for Approximate
Computing ASPDAC 2016 25

BDD vs exhaustive simulation: Adders

The average time needed to perform the worst-case and the average-case error
analysis for w-bit adders:

pit-width inputs parallel simulation BDD-based method speedup
gmax+ gavg Emax gavg Emax gavg
4-bit 8 4.5 us 10.3 us 140us 043 x 0.32x
8-bit 16 1.9 ms 3.5ms 46ms 0.54x 0.42x
12-bit 24 682.4 ms 1279 ms 312.7ms 533 x 2.18x

32 140.9 s 1385 LERE 102.3 x 48.09 x

Notes
1) 100 randomly generated approximate adders were evaluated for each bit-width.
2) The time required to construct a BDD for the virtual circuit is included.

Practical experience: BDD-based analysis of multipliers is >10 times slower than
simulation.

VASICEK Z., MRAZEK V., SEKANINA L.: Towards Low Power Approximate DCT Architecture for HEVC Standard. DATE 2017

26

Functional equivalence checking using SAT solvers
Cl: C2:

' f
f NAND
3 —>o Jor 2 O }

X2 !

x1

m— o« Jo>-

x1

If C1 and C2 are not functionally equivalent then there is at least one
assignment to the inputs for which the output of G is 1.

27

Tseitin transform used to create CNF for circuit G

1 . 4 % CNF formula g(x, y) = 1 if the
3d OR :
" _"[>°5 predicate y = OP(x) holds true

[:8 91 g = (~x vV ~y) (x V y)
NAND [0

(w2 + x8)(T2 + T3) EJ,Q .
(xs + x9)(xs + 29)(Ts + T3 + To) (s

r1 + x10)(x9 + 210)(T1 + To + T10) (E+ 7
7 + 210 + 211) (@7 +Tio + 211)(T7 + T1o + 1311)(-56'7 + 210 + T11)
T + 29 +x12) (26 + To + 212) (T + To + T12) (26 + 9 + T12)
r11 + 12 + T (Las—2TT (L1 s =TT

N

N

§:/—\/—\

28

SAT solver in action

| b 12

Nseosens Pl eecenconconssnnenneeetvioedeonehoreenees il oecentonennnenneoneenivieedeoneoneeoneoneoneontonsonenssseneosesneossonsonssssseseossssssssossessssssessessssssssesssssssssessosssssssselsesssessessossstssssessessssssessotstssseseeseseeietostonsotetesenseiesietostossttstesttttetsittorsorsstssessnssnes

(SAT solver: MiniSAT u;)
(variables: 13, clauses: 30, time elapsed: 0.03ms
(result: SATISFIABLE / NONEQUIVALENT

E model / counter example: 0011111101011

29

Worst-case error analysis using SAT solver

« The common approach is to use SAT-solver and binary search to find WCE (= X).
 Example: WCE for approximate n-bit adders

2n
Fi
7

<=

x A
n+l
DUT [
n T
4+ B Sx) E
e n OBJECTIVE
Vi Vi
SUB +—| ABS 7 Funcrion
L | A +
n
CN F G,\,?OLE?EEF 7 ABSOLUTE DIFFERENCE E<X
B Jtx)
Algorithm 2: SAT worst-case error analysis
\Tg + Tg + 212)(T6 + To + T12) Input: SAT representation of the accurate circuit (f)
(Tg + To +T12) X + xg + T12) and the approximate circuits (f”) with m

outputs

(11 + 112 + T13) (13 + T11) - - -
Output: The maximum arithmetic error (¢,,,42)

(13 + T12)(213) Update CNF 1 lbound < 0;
2 ubound +— 2™ — 1:
3 while [bound < ubound do
4 X (ﬂbound—l—lbound].
D ik
5 if satisfiable(ApproxMiter(|f — f'|, X)) then
SAT solver 6 | | lbound « X
7 else
8 L rbound +— X — 1;

9 Emar < lbound,
10 return ,,,,:

Venkatesan et al. ICCAD 2011; Chandrasekharan et al. DAC 2016 30

On a fair comparison of automated approx. methods

* Common practice: The original circuit and
approximate circuits created using a given 8-bit multiplier approximation
method are compared -> not sufficient!

Method 1 (double time)
Method 1

* A comparisons with other approximation
methods is needed!

 Important assumptions for a fair comparison:
— the original circuits are the same

error

— the error is calculated using the same method
(simulation vs. exact)

— electrical parameters are calculated using the
same tool and for the same technology library

— the time/resources for the approximation 0
methods under investigation are the same

— the same statistically relevant values are original circuit
reported (best, median, mean etc.)

31

Benchmarks for approximate computing

Adders and multipliers
— IpACLib Library
* https://sourceforge.net/projects/Ipaclib/
— GeaR Library:
* https://sourceforge.net/projects/approxadderlib/
— Evoapprox8b Library
* http://www.fit.vutbr.cz/research/groups/ehw/approxlib/

Other
— AxBench (GPU, CPU, Verilog)
* http://axbench.org/
— ApproxBench
* http://approxbench.org/
— AcHEe

* http://www.scorpio-project.eu/wp-
content/uploads/2016/06/CERTH_PP4REE@PPoPP_March2016.pdf

32

Tutorial Outline — Part II.

Introduction

Design automation methods for approximate circuits
— Classification and overview

— Circuit parameter estimation

— Error computation

— Relaxed equivalence checking

— Evaluation methodology

Examples of design automation methods for approximate circuits
— Minterm complements, SASIMI, AIG rewriting, ABACUS, GRATER

Evolutionary algorithms, CGP and circuit optimization

Applications of CGP-based approximation methods
— Open-source library of approximate adders and multipliers
— Approximate TMR
— Approximate multipliers in neural networks
— Symbolic error analysis using BDDs/SAT solving in CGP-based tools
— Approximate image filters

Conclusions

33

Finding minterm complements to reduce # literals

e The objective is to obtain designs that have a minimum number of literals for a given
error rate threshold.

e Method: Identify minterm complements that produce an approximate circuit version
that has the smallest number of literals for a given error rate threshold.

e Exhaustive search for simple functions, a heuristics approach for more complex
functions.

Approximation 1: x,x, + x,X3x,

. . . XX
Original solution: 00 ol 11 10
X3Xg 30 e e e e e e e e e e e e e e e e e
— i o0 | o 0 0 0 —e—1d73(7/3/903)
X1XpX4 F XX3Xy + X1X5X3Xy —8— clip(9/5/793
o o [o [fv [l 1) —a— sao2(10/4/496)
< 00 ol 11 10 l J o Sxp1(7/10/347
X3y o ! ! 0 S Wt —1—295%1(%1{4?114%0)
: —8—sym :
wjpofjoejolo w]lofjofo]o = —i— 81(16/1/5233)
o1 | o 1 0 ®) S
n o Juf] o o o 11 10 3 10,
N3Ny o
0] o 0 0 0 o | o 0 0 0 =
(a) 01 0 1 0
¢ 0¥ T T T T 1
1| o 1] o 0.000 0.005 0.010 0.015 0.020 0.025 0.030
10 0 0 0 0 error rate
(c: complemented minterms) © (legend: #of mputs/#of outputs/# of literals in original function.)

Approximation 2: XXX, + X;X3X,

Shin and Gupta: Approximate logic synthesis for error tolerant applications. DATE 2010 34

SASIMI: Substitute and Simplify

Original Circuit :> Approximate Circuit

Target Signal
(TS)

Downsized gates

N

Substitute Signal (SS)

Downsized gates

J)D_, TS=SS D P, ~ 0
/.

Difference Signal (DIFF) TS =1SS = Poirr = 1

Courtesy of K. Roy

Key Idea: Identify signal pairs (TS and SS) that are similar in functionality i.e. produce
the same value for most of the inputs among signal pairs.

— Substitute one in place of the other The signal probability calculation
. . engine in Synopsys Power
* Circuit becomes approximate Compiler was used to obtain
— Simplify the circuit: Logic Deletion & Downsizing difference probabilities

S. Venkataramani, K. Roy, and A. Raghunathan: Substitute-and simplify: a unified design paradigm for approximate and quality configurable
circuits, DATE’13, pp. 1367-1372

35

SASIMI: Substitute and Simplify

——c880
=#=-c1908
=#=C2670
| ==c3540
=#=c5315

-8-c7552
0.3 . . .

e
(1]
1

Power -->

0 0.5 1 1.5

Error rate (%) -->

Area -->

0.3 T T 1

0 0.2 0.4
Average error (%) —->

S. Venkataramani, K. Roy, and A. Raghunathan, “Substitute-and simplify: a unified design paradigm for approximate and quality configurable

circuits, DATE’13, pp. 1367-1372

Power -->

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.3

=4=c880
=#-c1908
=#=c2670
==c3540
=w=c5315
=8-c7552

0.5 1 1.5 2
Error rate (%) -->

=4=RCA
== KSA
==CLA
WTM
=0=MUL
== MAC
== SAD
| | | == BUT

02 0.4 0.6
Average error (%) --> ===EUDIST

Approximation-aware Rewriting of AlGs

Principle: allow AIG rewriting to change the functionality of the circuit without
violating a predefined error bound.

Rewriting (at the level of cuts on selected paths) takes a greedy approach.
Worst-case error, bit-flip error and error rate determined exactly (formally).
Evaluated: 8/16-bit adders, LGSYnth91, 8-bit multipliers, 32-bit parity, ...

out[0] outf1] out[2] out[0] outf1] out[2]
i i i

Heuristics:
replace
the cut

by constant O

-

in2[0] in1[0] ini[1] in2[1] cin in2[0] in1[0] in1[1] in2[1]

2-bit adder

Chandrasekharan, Soeken, Grosse, Drechsler. Approximation-aware Rewriting of AlGs for Error Tolerant Applications ICCAD 2016 37

ABACUS: Approximations at Behavioral RT-level

original exact AST modified AST a.pproximgte.
design description design description

P

r-udule

ass gn asmg

» 2 =

/\/\

©)|

I\

e Original file: Verilog
e Abstract Syntax Tree (AST) transformations
(mutations)

— Data type simplification

— Operation transformations (e.g. + -> or)

— Arithmetic expression transformation

— Variable to Constant transformations
Compilation + Synthesis vanams — LOOp transformations

(Design Compiler)) oecs Search algorithm: Greedy / NSGA-II

Fitness is obtained by circuit simulation and
combines the error & power

ABACUS
Design Files
— Simulation
= (ModelSim/Verilator)

Testbench Files
PASS

FAIL

QOS Check

powel * * *

accuracy

Nepal K. et al.: DATE 2014 and IEEE Trans. on Emerging Topics in Computing 2017

38

ABACUS: Results

Benchmark problems:

Design Class of Application | #Lines | Area (um?) | Power (mW) | Quality Measure Quality
perceptron Machine Learning 188 | 37775.16 2.74 | classification error 82.9%
FIR filter Signal Processing 265 | 40390.20 6.89 MSE 99.45%

FFT Signal Processing 255 18480.96 2.07 MSE 100%

block matching | Computer Vision 1277 80272.44 30.42 PSNR 30.66 dB
Results of evolutionary approximation:

0¥ R or ¥ or¥ or

10 T R st i i
20 . — o} | _tor sl Wi s
%% e ae St |] ‘ K 3 \ i
@50 ! o c:a“f25 @30_ fﬂf I". . .
E % | — ‘f: ;gj 30 % b % “l I\\ - l _.'

90 : : : : 45 : : . R - : :]

85 80 75 65 60 100 90 80 70 60 100 99 98 97 96 95 25

Accuracy (%)

(a) Perceptron

Nepal K. et al.: Automated High-Level Generation of Low-Power Approximate Computing Circuits, Trans. on Emerging Topics in Computing, 2017

Accuracy (%)

(b) FIR Filter

Accuracy (%)

(c) FFT

306 305 304 303 302 304
Accuracy (dB)

(d) Block Matching

39

GRATER: GA-based optimization of data types

* Sensitivity analysis performed to find safe-to-
approximate variables (AV) in OpenCL kernel.

* Encoding: n integers specifying precision (i.e.
data type) of n variables from AV.

* Objective: to find an approximate kernel that
minimizes the resource utilization on FPGA
while meeting the target quality.

S : Exact
Test Quality OpenCL Kernel
cases Target

/Source-to-Source Compiler\
|I|| Population

/ (Modified kernel)

Selection v
GPU

Accelerated Profiling

Fitness Evaluation /

Final Set of Approximate Kernels

Mutation/
Crossover

-' Area #1 Area #2 Area #3
: Approximate || Approximate || Approximate
Kernel, Kemel Kernel
h 4
OpenCL
to — FPGA
FPGA

Lotfi A. et al.:

Speedup (Improved Throughput)

Quality Loss

No. of Mapped Kernels

e = RS
[T & B = = T

(=TS I = =]

3.0x

2.5x |

2.0x

1.5x

1.0x

0.5x |

0.0x

21
T I| | T
1 Approximate I Exact |
15
10
rgau55|an sobel conv n-body gmean
2.98x
1 FPGA N GPU
2.02
171 1.82 -
1.37x 1.41x
1.18x
LU | lo1x 1.02x 1.03x
r-gaussian sobel dct conv n-body gmean
i , 0.110%]
0003% | 0016% 00l | O05% T | 0o
r-gaussian sobel dct conv n-body avg
40

GRATER: An Approximation Workflow for Exploiting Data-Level Parallelism in FPGA Acceleration. DATE 2016

Tutorial Outline — Part II.

Introduction

Design automation methods for approximate circuits
— Classification and overview

— Circuit parameter estimation

— Error computation

— Relaxed equivalence checking

— Evaluation methodology

Examples of design automation methods for approximate circuits
— Minterm complements, SASIMI, AIG rewriting, ABACUS, GRATER

Evolutionary algorithms, CGP and circuit optimization

Applications of CGP-based approximation methods
— Open-source library of approximate adders and multipliers
— Approximate TMR
— Approximate multipliers in neural networks
— Symbolic error analysis using BDDs/SAT solving in CGP-based tools
— Approximate image filters

Conclusions

41

Evolutionary algorithms: GA, ES, EP, GP, LGP, CGP, ...

The term Evolutionary Algorithm covers various search algorithms

that have the following common features:
— There is a population of candidate solutions (inherent parallelism).

New candidate solutions are created using operators inspired in genetics
(crossover, mutation).

Nothing is expected about the objective (fitness) function.

e Main branches:

Genetic Algorithms — GA (Holland ~1973)
Evolution Strategies — ES (Rechenberg and Schwefel ~1964)
Evolutionary Programming - EP (Fogel ~1962)

Genetic Programming — GP (Cramer ~1985, Schmidhuber ~1987, Koza,
~1989)

and others such as differential evolution, grammatical evolution, Cartesian
genetic programming etc.

42

Evolutionary algorithms: GA, GP, LGP, CGP, GE ...

Create the
initial
population

Replacement

[Evaluation K

Selection
of parents

chromosomeés

[

Mutation]7

GA chromosome: binary string

43

Cartesian Genetic Programming (CGP) miller, 1999

n. primary inputs e n, inputs of each node Nodes in the same
. - column are not allowed
tputs

n, primary outpu e I function set to be connected to

N, columns e |-back paramEter each other.

N, rows No feedback!

. n; — ni+n, 2 N+HN-1)n, "\)

— | b— eeeee g(a’b) -

o P> | b >

1 > n+1 — n+n+1

Kni-l > ni+n.n,-1 >

n+n-1 — n+2n,-1 / /

7S 44

CGP: Representation for logic networks

o CGP parameters

1,21, 1,2,2, 0,1,2, 4,2,5;, 54,3, 3,0,2, 7,1,2;, 1,6,5, 1,1,3, 8,9

Genotype (netlist):
n,+1 integers per node; n, integers for outputs;
Constant size: n.n(n, + 1) + n, integers

Phenotype (directed acyclic graph = circuit):
Variable size; unused nodes are ignored.

n.=3 (#rows)

< = 3 (#columns)
. = 3 (#inputs)

2 (#outputs)
2 (max. arity)

3 (level-back
parameter)

'= {NAND©®, NOR®,
XOR®@ AND®), OR®),
NOT G}

n
n;
Ny
n
L

a

45

CGP: Fitness function for circuit design

9 abc d s L. .
ooo0 o0 Specification
010 o1 (1-bit adder)
010 01 -
1 ~5° 011 10 ’
100 01 .
$00 04 target table:
\ 110 10
d 111 11 => fitness = 16
b d
11 560 ol
001 0 10
010 010
1,2,1;1,2,2;0,1,2;4,2,5; 54,3, 3,0,2; 7,1,2; 1,6,5; 1,1,3; 8,9 g é é é 8
101 111
Typical fitness function (circuit functionality): 713 | 1% L fitness = 10
K- The number of test vectors
_ Additional objectives:
f — HD (yl y Wi) :
« area (the number of gates)
i=1 T « delay

Hamming distance .
(between circuit and
desired response)

power consumption etc.

K = 2inputs for combinational circuits. Not scalable!!!

46

CGP: Mutation-based search

. Mutation: Randomly select h integers and replace them by randomly
generated (but legal) values:

0 9
a
S
1 1
b
5 d
c 1
Xxor — and
\
1,2,1:1,2,2; 0,1,2; 4,2,5: 5,4,3; glo,z; 7.1,2;1,6,5: 1,1,3: 8,9 1,21,1,22,0,1,2, 42,5, 54,3, 30,2; 7,1,2,1,6,5/ 1,13 89
L} >

(a) mutation (b)

abc d s abc d s

000 ol 00O 00

001 o0 001 01

010 o0lo 010 01

011 10 011 10

100 oo 100 01

101 111 101 10

110 1 110 10

111 11 => fitness = 10 111 11 => fitness = 16

(for a full adder)

47

CGP: Search algorithm (1 + A)

Algorithm 1: CGP

Input: CGP parameters, fitness function
Output: The highest scored individual p and its fitness

P < randomly generate population;// or use conventional designs
EvaluatePopulation(P); p <— highest-scored-individual(P);
while (rerminating condition not satisfied) do
a < highest-scored-individual(P);
if fitness(av) > fitness(p) then
L P a;

P < create A offspring of p using mutation;
EvaluatePopulation(P):

=N B SN

oo =~

9 return p, fitness(p);

48

CGP for optimization of complex circuits

Origi Optimized Even more
ginal : A e

2 Conventional circuit C1 optimized C1
circuit C .

(BW synthesis > CGP —

(= a seed for the
(ABC’ SIS..) initial population;
reference circuit)

« SAT solver is used to decide whether candidate circuit C,
and reference circuit C1 are functionally equivalent.

* If so, then fitness(C,) = the number of gates in C;
 Otherwise: discard C..

Vasicek, Sekanina: Genetic Programming and Evolvable Machines 12(3), 2011

49

CGP with SAT solver (no approximation)

SAT solver is called only if the circuit simulation performed for a small
subset of vectors has indicated no error in the candidate circuit.

— : : : : : : : : : : : : 1106

103 | ™= Ny = N: -the number of gates (optimized by ABC) :
] NR) | 5
10
[100 test circuits } I
10% | {10
i _—_—_—_—_ | _— ________________________ —_ i I T n 103
10 b] ,
110

<
= |2

1 5 10 15 20 2% 30 35 40 45 50 55 60 65 70 7% 80 85 90 95 1

00

100 combinational circuits (=15 inputs) - IWLS2005, MCNC, QUIP
benchmarks

Heavily optimized by ABC

1: alcom (Ng = 106 gates; Ny, = 15 inputs; Ny = 38 outputs)

100: ac97ctrl (Ng = 16,158; Np, = 2,176; Npg = 2,136)

Vasicek Z.: EuroGP 2015 50

CGP with SAT solver (no approximation)

100%—

=51 sat only

Sl
- b

||
5 10 15 20 25 30 35 40 45 50 55 60 65 70 7 80 85 90 95 100

CGP + SAT solver + circuit simulation
Y-axis: Gate reduction w.r.t. ABC after 15 minutes, 34% on average
A Gate reduction w.r.t. ABC after 24 hours

[Properly optimize before doing approximations! 1

Vasicek Z.: EuroGP 2015

51

Tutorial Outline — Part II.

Introduction

Design automation methods for approximate circuits
— Classification and overview
— Circuit parameter estimation
— Error computation
— Relaxed equivalence checking
— Evaluation methodology

Examples of design automation methods for approximate circuits
— Minterm complements, SASIMI, AIG rewriting, ABACUS, GRATER

Evolutionary algorithms, CGP and circuit optimization

Applications of CGP-based approximation methods
— Open-source library of approximate adders and multipliers
— Approximate TMR
— Approximate multipliers in neural networks
— Symbolic error analysis using BDDs/SAT solving in CGP-based tools
— Approximate image filters

Conclusions

52

Why EA in approximate computing?

In approximate computing, partially working solutions are
sought.

In EA, partially working solutions are improved.

EAs are excellent in multi-objective design and optimization.
Constraints can easily be handled.

EA can be seeded with the original code (circuit).

EA is easy to implement and parallelize.

53

CGP for circuit (functional) approximation

« Error-oriented (single-objective) method

« CGP gradually degrades a fully functional circuit
until a circuit with a required error is obtained.
Then, the area (and so power consumption) is
minimized for this error.

* Resources-oriented (single-objective)

method

* CGP is used to minimize the error, but only
limited resources (components) are provided,
insufficient for constructing a fully functional
circuit.

* Multi-objective optimization
« All target parameters are optimized together.

©
Q
bl
<<

Error

O
)
-
<<

@ |nitial circuit

?im‘ @ Resulting circuit
\ ~a
Error
\
?
Area
$ o
o
Pareto @
front [) S

Error
54

Library of approximate 8 bit adders and multipliers

e Parallel multi-objective CGP:

e CGP + Non-dominated Sorting Genetic Algorithm Il (NSGA-II) [Hrbagek, GECCO
2015]

e Parallel implementation: vectorized, multi-threaded, multiple islands
(computer cluster employed)

e Constraints: worst case error, worst case relative error
e |nitial population: a set of fully working conventional circuits
e Fitness: mean relative error, power consumption, delay

orig approx

th ma:»:(1,@‘“:I)

orig

|O[i} _o)

O is the i-th circuit output
i=1..2M

fmre . —

ONi

Target circuits - Inputs: N; = 16; Outputs: N, = 9 (adders), 16 (multipliers)

55

CGP parameters

Population size: 500 candidate circuits
Generations: 100k
Mutation: 5%

Parallel CGP: 10 islands exchanging circuits every 1000
generations (120 cores)

CGP array: 1 x 200 nodes (adders), 1 x 1000 nodes (mult.)

CGP function set (180/45 nm technology library):

e BUF, INV, AND2, OR2, XOR2, NAND2, NOR2, XNOR2, NAND3, NOR3,
MUX2, AOI21,0AI121, Full Adder, Half Adder

e 3-input/2-output nodes used

CGP: Initial population

Architecture Power Area Delay
Ripple-Carry Adder 100.00% 100.00% 100.00%
Carry-Select Adder 201.18% 174.78% 61.15%
Carry-Lookahead Adder 414.74% 334.78% 61.99%
HVTA (Brent-Kung) 286.00% 201.74% 68.52%
HVTA (Han-Carlson) 286.00% 201.74% 68.52%
HVTA (Kogge-Stone) 371.48% 257.39% 59.77%
HVTA (Sklansky) 305.07% 215.65% 60.45%
TA (Brent-Kung) 282.99% 201.74% 67.25%
TA (Han-Carlson) 295.74% 212.17% 61.87%
TA (Knowles) 362.25% 257.39% 59.94%
TA (Kogge-Stone) 342.20% 243.48% 57.68%
TA (Ladner-Fischer) 282.99% 201.74% 67.25%
TA (Sklansky) 298.34% 212.17% 57.84%

Architecture Power Area Delay
Ripple-Carry Array | 100.00% 100.00% 100.00%
Carry-Save Array using RCA | 102.30% 100.00% 71.16%
Carry-Save Array using CSA 108.42% 106.16% 62.03%
Wallace Tree using RCA | 104.29% 107.39% 68.91%
Wallace Tree using CLA | 116.10% 148.48% 51.26%
Wallace Tree using CSA | 120.12% 122.35% 53.28%

13 conventional 8-bit adders
TA = Tree Adder
HVTA = Higher Valency Tree Adder

6 conventional 8-bit multipliers
RCA = Ripple-Carry Adder

CSA = Carry-Save Adder

CLA = Carry-Lookahead Adder

57

Library of 8-bit approx. adders and multipliers

e Comprehensive library of approximate arithmetic circuits
e 430 non-dominated adders (evolved from 13 accurate adders)
e 471 non-dominated multipliers (evolved from 6 accurate multipliers)

450 — , __ Error-power projection . 110 40 Error-power projection
: : : : : : P o caP : : i 120
400 I S S A S N S N iy accurate || Imu I
i - lasa 1110
330 e e e e froareaeee 7 190
N1 T N W W
o]] |10 E
by i i i i i | i P
ELIE T N ———"——_ e
o H H H H H H H H
IR% " RNt S e S s s s - {70
s 40
; ﬂ A S dbeneeeeeens . 8 60
b i 5 = 30
i, S .}’..x. - 50
20 ;
= 3 2 ; s 0 12 12 16 20! é .i' é IE |iu L 40
mean relative error [%] .
mean relative error [%]
Approximate adders Approximate multipliers
(100% is Ripple-Carry Adder) (100% is Ripple-Carry Array Multiplier)

V. Mrazek, R. Hrbacek, Z. Vasicek, L. Sekanina: EvoApprox8b: Library, DATE 2a017, p. 1-4
KIT: M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel: A low latency generic accuracy configurable adder, DAC 2015, pp. 86:1-86:6.

58

delay [%)]

Library of 8-bit approx. adders and multipliers

Approximate adders (430), exact adders (43)

Circuit 1& Est. area

adds_000 820 pm?
adds_001 2040 pm?2
adds_002 836 pm?
adds_003 912 pm?
adds_004 708 pm?

Est. delay
1314 ns
0718ns
1.282ns
0.379ns

1.213 ns

Est. power
19431 pw
681.20 pwW
194.75 pW
266.66 pwW

205.54 p\W

Nodes

HD

138496

0

140448

192640

134528

MAE

1.71875

0.00000

1.69531

9.64844

1.37500

MSE

6.00000

0.00000

585938

138.25000

3.25000

MRE

088 %

0.00 %

0.88 %

521 %

0.75 %

WCE

Approximate multipliers (471), exact multipliers (28)

Circuit 1& Est. area

mulg_000 9224 pm?
mulg_001 5200 pm?
muld_002 6715 pm?
mulg_003 4172 pm?
mulg_004 5034 pm?

Est. delay

3.015ns

3.566 ns

2.086 ns

1.963 ns

1.944 ns

Est. power

493322 pW
252484 pW
2789.47 pwW
1816.06 pwW

1893.73 pwW

Nodes

137

91

132

79

104

HD

176134

310752

339806

376002

382402

MAE

9852710

239.95550

329.88147

624.46875

639.22653

MSE

27520.00000

108908.84375

207883.35278

679898.57422

709554.15625

MRE

1.99 %

536 %

6.70 %

10.00 %

9.76 %

WCE

820

1671

2193

291

3143

Synthesis results for 45 nm and 180 nm technology (Synopsys Design Compiler)

7 error metrics

New: 12-bit multipliers online, 16 — 32-bit multipliers completed

http://www.fit.vutbr.cz/research/groups/ehw/approxlib/

>

WCRE

100 %

0%

100 %

100 %

200 %

WCRE

560 %

100 %

700 %

700 %

253 %

Click here to
DOWNLOAD

EP

71875 %

0.000 %

71.484 %

96.875 %

76.562 %

EP

86.490 %

98.169 %

98.482 %

98.984 %

99.071 %

OPS
[Veves [Lo
[Veves [Lo

OPS
[veves [Lo
[veves [[

59

Approximate circuits in TMR

(under)

A 4

G
(Original)

Voter

Inputs

Y N

Outputs

H
(over)

v

Incorrect subspace: The subset of input vectors for which the correct circuit and
approximate circuit produce different outputs.

F (under-approximation):
Incorrect subspace is a subset of the on-set. 1 — 0 errors are produced

H (over-approximation)
Incorrect subspace is a subset of the off-set. 0 — 1 errors are produced

At most one of the circuits is allowed to produce an incorrect output for
any input vector.

SANCHEZ-CLEMENTE, A., J., ENTRENA, L., HRBACEK, R. a SEKANINA, L. Error Mitigation using Approximate

Logic Circuits: A Comparison of Probabilistic and Evolutionary Approaches. IEEE Transactions on Reliability.

2016, 65(4), p. 1871-1883

1a%

b12 > Evolutionary logic
2% \
\ —+—Prabability-based
"? 10% ‘L\\—
- |
© e +
a
3]
t
Q ex '
1
(<] X
E as
2%
0% E——
0% 0% 40% 60% 80% 100% 120% 140% 160% 180% 200%
Area overhead
25%
rd73 ——Probability-based
20% e
> KT % Evolutionary logic
T —
£ X e
B 5% X 4
2 i
« -
2 .
o K % —
2o X %
g 5
w %}&f‘ X
5% ;
0% . . . ; SO Fox X
0% 50% 100% 150% 200% 250% 300% 350%
Area overhead
9% —
t481 —+— Probability-based
8% -
o 79 » Evolutionary logic
= X X
= +. X P
2 X Xx
g - ~+ X X
© ~X__ X
8 s S
S % \
e \\
L~
wo2%

™

N

0%

100% 150% 200%

Area overhead

50%

Energy-efficient implementation of ANNs

Input layer Hidden layer Output layer

ne Buffers mmmeDRAM DRAM

Activation
function

Approximations proposed:

Pruning — weights and neurons
Data compression (weights)
Memory — approximate cells and
Load/Store

Datapath
* Reducing data bit-width

* Multiplication
(~45% of total power)

‘ Matrix Multiply Unit

Unified Buffer
. . for Local Activations | (256x256x8b=64K MAC)
* Multiplierless (96256 = 24 i)
29% of chip

multiplication 8 = e W

. . A Interf. 2% . : x = iB) 6% A
¢ We I g hts * {- 1) 1} prrt - Activation Pipeline 6% l' " prrl

. . . ddr3 ddr3

e Activation function = e | - [fisciomE] -

e Sum function

Google TPU: 24% for MAC

Energy-efficient implementation of ANNs

MNIST dataset classification: 32x32 — 100 — 10 MLP network (classification accuracy
94.16% with accurate implementation). We introduced an approximate multiplier
by adding a jitter function A(a, b), resulting in a 5.2% error for multiplication.

Scenario A: Scenario B:
 Multiplication e 80% of multiplications are by O
m(a,b) = a-b+ A(a, b) e Multiplication
 Classification accuracy : : _ 0 ifa=0vb=0
10.77% m(a,b) = {a b + A(a, b) otherwise

e C(Classification accuracy : 94.20%

Output error of neurons in the hidden layer

1

20 FE
40 SR = 0.8

60 [

o
o)

80 [Eates

100 [

o
H
Absolute error

Sample

120 [

140 P

°
)

160 P e

180 R

T

000 10 20 30

2 50 60 70 8
Neuron
(a)
Mrazek, Sarwar, Sekanina, Vasicek, Roy: “Design of power-efficient approximate multipliers for approximate artificial neural networks,” 6

ICCAD 2016

2 90 100

CGP in approx. multiplier design for ANNs

Accurate multiplier — initial circuit (6)
e CSAM RCA, CSAM RCA, RCAM, WTM CLA, WTM CSA, WTM RCA
Allowed errors: ¢ € {0.5%, 1%, 2%, 5%, 10%, 15%, 20%}
CGP parameters
o ny; €{14,22}; n, € {14,22};n, = 1; 250 < n, < 780
* Functions: {NOT, AND, NAND, OR, NOR, XOR, XNOR}
* Error constraints:
1. Va,b:|lm(a,b) —axb| < g-2M
2. Va:m(a,0) =m(0,a) =0
* Fitness function:

C(m) = {—GateSC ount(m) if constraints (1) and (2) met,
—00 otherwise

Mrazek, Sarwar, Sekanina, Vasicek, Roy: “Design of power-efficient approximate multipliers for approximate artificial neural networks,”63
ICCAD 2016

CGP in approx. multiplier design for ANNs

* In total, 852 approximate 7-bit and 11-bit multipliers were evolved by
CGP.

 Multipliers were sign-extended using one’s complement.
* The 8-bit and 12-bit multipliers were applied in NNs.

 The NNs were retrained with approximate multiplication operation using
the backpropagation algorithm.

* Approximate multipliers showing the best trade off between power and
accuracy in NN were selected (for different error targets).

Mrazek, Sarwar, Sekanina, Vasicek, Roy: “Design of power-efficient approximate multipliers for approximate artificial neural networks,”
ICCAD 2016 o4

Evolved approximate multipliers for ANNs

Power and area of 8 bit approximate multipliers Power and area of 12 bit approximate multipliers

500 1400

420 1200

400

350 1000

300 800

250

200 600

150 400

100

. il . I H.l.d.d
; | | S S al sl »
0% 0,50% 1% 2% 5% 10% 15% 20% 0% 050% 1% 2% 5% 10% 15% 20%
EPWR W B AREA um2 mPWR W ®AREA um2

Results of synthesis of sign-extended multipliers with Synopsys DC
45 nm technology
Timing:
8-bit multipliers: 2.5 GHz
12-bit multipliers: 2 GHz
Accurate multiplier was implemented in Verilog using standard * arithmetic
operator

Mrazek, Sarwar, Sekanina, Vasicek, Roy: “Design of power-efficient approximate multipliers for approximate artificial neural networks,”
ICCAD 2016

65

Energy-efficient implementation of ANNs: MLP

Handwritten number dataset
(dataset used for benchmarking) weights Q weights

Fully connected MLP network 4’@\@ w
28x28 inputs, 300 hidden neurons, 4%

10 outputs \
60k training images

10k tESting images Input layer Hidden layer Output layer

More than 238k multiplications for
approximation

Initial classification accuracy:

— 8b:97.67%

— 12b: 97.70%

Q@ tyIh Pz
e oo e
M~ =
04 oQ % M %a Bo =
Q- 0vve D0

=
O |
-1
o/
O 1
7
O/

Ny
o [0 er Gy te P N
Lo Lol

Energy-efficient implementation of ANNs: LeNet

Complex real-world problem
Convolutional LeNet NN

278,104 multiplications in 6 layers
73k training images

26k testing images

Approximation introduced in L1,L3,L5
and L6 layers

Initial classification accuracy:
— 8b: 86.85%
— 12b: 86.90%

L1 — Convolutional L2 — Subsampling L3 — Convolutional L4 — Subsampling L5 — Convolutional L6 — Fully connected
117,600 multiplications 4,704 multiplications 150,000 multiplications 1,600 multiplications 3,000 multiplications 1,200 multiplications

Input image
32x32

6@28x28 6@14x14 16@10x10 . 16@5x5 120@1x1 10 values 7/

Energy-efficient implementation of ANNs: Summary

Classification Accuracy and power reduction (in multiplication)

(8 bit) -20% -30% -57% -77% -82% -91% -91% |-36% -25% -9%
(12 bit) -50% -43% -66% -70% -85% -86% -87% |-60% -20% -1%
100%

95%
90% MNIST w=8
250, B MNIST w=12
B SVHN w=8
80%
B SVHN w=12
75%
70%

0% 0.50% 1% 2% 5% 10% 15% 20% \ {1} {1,3} {1,3,5,7}}

Power

Classification accuracy of NN

Approximation error € of multipliers Y

Multiplierless multiplication by
Sarwar et al. DATE’2016

Mrazek, Sarwar, Sekanina, Vasicek, Roy: “Design of power-efficient approximate multipliers for approximate artificial neural networks,”
ICCAD 2016

68

Circuit approximation with CGP and BDD

* Three criteria
* relative area, delay and error

* Error is the average Hamming distance (10 target error values E;= 0.1 ... 0.9 %)

* CGP parameters
 Rows = 1; Columns = # of gates in the original circuit

* 5 mut./chromosome, A =5, 30 min/run, 10 independent runs

* Function set (relative area): and (1.333), or (1.333), xor (2.0), nand (1.0), nor (1.0),
xnor (2.0), buf (1.333), inv (0.667)

* Two stages:
* Find a circuit showing E;, but a small (< 5%) imperfection tolerated

* weight fitness (error / area / delay): (w,; w,; w,) = (0.12; 0.5; 0.38)
(but the error still kept under 5% of E,)

e 16 benchmark circuits

Vasicek Z., Sekanina L.: Evolutionary Design of Complex Approximate Combinational Circuits. Gen. Prog. and Evol. Mach. 17(2), 2016 69

Hamming distance using BDDs

;CI_‘: X o \D 2 SatCount (f) — gives the
x:.)) xor ~ v, , . number of input

assignments for which fis
1.

SatCount(z,) = 2
SatCount(z,) =0

XOR

combinations

e Create ROBDD for the parent circuit C,, the
offspring circuit C; and the XOR gates.

e Average Hamming distance: 0O 1 1 0 1

outputs

1
eHD:W Z SatCount(z;)
i=1

Vasicek Z., Sekanina L.: Evolutionary Design of Complex Approximate Combinational Circuits. Gen. Prog. and Evol. Mach. 17(2), 2016 70

CGP with BDD in the fitness function: Example 1

error/area only error/delay only

DU " T T | T T T T I T T

1
0.1F 410 gates 1t

single run

0.2} |l
0.3} i
9
s | global
I Pareto front
0.7k i
0.8 i
0.9} i

100 90 80 areal[%] 40 30 100 90 80 delay[%] 40 30

O Clmb (bus interface): 46 inputs, 33 outputs
O Original clmb: 641 gates, 19 logic levels, |[BDD| = 6966, |BDD,,| = 627 (SIFT in 2.3 s)
L Optimized by CGP (no error allowed):

0O Best: 410 gates, 12 logic levels -- in 29 minutes (2.9 x 10° generations)
O Median: 442 gates, 13 logic levels

[Properly optimize before doing approximations!

Vasicek Z., Sekanina L.: Evolutionary Design of Complex Approximate Combinational Circuits. Gen. Prog. and Evol. Mach. 17(2), 2016 71

CGP with BDD in the fitness function: Example 2

100 p=— 154 gates

o
itC b‘lﬂ 1056 gates A
80F m,=27.n, =17
105 —t——t—t——
100 .
- . L]
-

9 95 . .
B R
3 90 . e

85 :
8{] 1 1 1 |

05 07 09
error [%]

Hamming distance [%)]
L= A T S e B o L S) e e L S S B S 5 T G) e B S L L

NL 1 commlll meml FIHFFL

. - rgn1 . IZII run|2 IIZI {unS
- 39=0,9%:
L E?=U,7%:

Wl m@ :IH B 71

es =U.5%:

i M es =U.3%:

B T '_'T- '_|| I_ll_l:IJ:lI- T T |- IT‘ T T T ’_'TI__

L 21 =0.1% A

[1 | == |._|. 1 s) 1 1 m 1 1 1 | == |
1 2 6 7 8 8 10 11 12 13 14 15 16 17

Vasicek Z., Sekanina L.: Evolutionary Design of Complex Approximate Combinational Circuits. Gen. Prog. and Evol. Mach. 17(2), 2016

72

Approximate circuits: CGP with SAT solver

' 170 SAT calls | |
: : no termination]
| I I | I

[} 1 | |
: : 856 SAT calls
| | 15% terminated
|
|
I

* Worst case absolute error (WCAE)
computation based on SAT solving
(for adders and multipliers)

| ’_L/‘u 1 I I :
* Improved miter construction | Sr— w
0.1 0.2 0.5 1 20

° SAT Solver terminated if no deCiSion Maximal allowed worst-case absolute error [%]

4500

PDP [10 2TWs]
O NWBUOON®O
T T T

after spending a predefined time. woogE g s ii A
& 3000 I I I ; ; I I I
* Integrated to ABC e
© 2000} I I I | | I I I
S
_ S R
r__,| Approximate | Jo 5 T S R S R I
circuit (C) B) 9 Maximal allowed worst-case absolute error [%]
O |e S Ne>T
s > 8 I B limit L=co MM limit L=160K MM limit L=20K
Q £
Golden fe|l 3 S . L
circuit (G) > T O e 16-bit multipliers for 9 target WCAE
—1 .

2 hours/1 run
e 30 circuits analyzed for each WCAE

if WCAE(C) < T * Synopsys Design Compiler, 45 nm
else * Listhe max. number of conflicts for an
AlG node, L =160 K (~120 seconds) and

L =20 K (~3 seconds).
Ceska, Matyas, Mrazek, Sekanina, Vasicek, Vojnar: ICCAD 2017 73

fitness(C) = {SiZ:O(C)

PDP [10~ 121 5]

Approxim

ate 16-bit multipliers: Comparison

M1: IpACLib, DAC’15 @ M5: EvoApproxLib

2x2 multipliers composition 8x8 multipliers composition

Evolved approx.
multipliers

M2: BSDLC
DATE 2016

i . A . TR . | . TR
107# 1071 10° 10! 102

10~* 1073
Worst case absolute error [%]
e* e Proposed method » » 4 M3 (Bit-width truncation)

mmg M1Lit (ConfMult16x16Lit) -~ M4 (Kulkarni 2x2)
+%e M1VH éConfMufﬁﬁxT 6V1) o * s M5 (EvoApproxLib8)

eoe M2 (B

Ceska, Matyas, Mrazek, Sekanina, Vasicek, Vojnar: ICCAD 2017

DLC)

Accurate multiplier

74

Approximate adders and multipliers (exact error)

100% T T ; T T T T T T T T T

80%

. 60%L
=
o
()]
& 40%
20%
0% i i | i i i i i i i i i
1037 103 10°' 10% 102 1022 107 107 10 10 107 10* 101
Worst-case absolute error [%]
—o— 20420 adders —o— 28+28 adders —e— 64464 adders
24424 adders —e— 32432 adders 128+128 adders
. Area and WCAE for multipliers PDP and MAE for multipliers PDP and WCAE for multipliers
100% —r T i T p!) 100%)) ! T ! P !) 100%))) ! 1 F') !
L e e e L T e S e e e s S T
~ 60%} 1 = 60%fee S S S RS IS S b d L B0% e b b A RN S S
= 2 : 5 5 5 : 5 s 2 5 : 5 5 1 : :
S o ; ; ; i ; ; ;) ; k : . | ; :
< 40% B B 40% |- R [[[SRR A R o B ERE ARRREEEL. 1 \CEETEETS \REELEEE i [i oo b
20%1- § 20% | orereeeiteo i 1 AL A & 20% fovreoeedene s S el Mg
0% i i \ i i i A 0% i I I 1 1 \ T 0% i i i i e o,
107 10° 10° 10* 103 102 1071 10° 10! 107 10t 10® 10° 107 10° 10'' 10'% 10%° 107 10°% 10° 10% 10° 102 10t 10° 10%
Worst case absolute error [%] Mean absolute error Worst case absolute error [%]
== 12x12 multipliers 16x16 multipliers =e= 20x20 multipliers =—e= 24x24 multipliers == 28x28 multipliers =—e= 32x32 multipliers

Ceska, Matyas, Mrazek, Sekanina, Vasicek, Vojnar: ICCAD 2017 75

Non-linear image filters
corrupted image filtered image
(10% pixels, impulse noise) (9-input median filter)

median

original

MIN MAX
76

Non-linear image filters: Approximation strategies

: H O = & E O EE
* Approximation of the comparator element sl el
— MONAIJATI et al. Circuits, Systems, and Signal Processing, 34(10), 2015 =] ¢ L}J
e Approximation of the network (pruning) CRCIT N
. v e ' ' m
— CGP used to find a network of N LB e

comparators minimizing the error w.r.t. the
original median (consisting of K
comparators), but resources are limited, i.e. v
N<K.

* Evolutionary image filter design from scratch

o5 &
m}EL

[=L

— CGP used to evolve an image filter showing a
minimal error and cost. Filters are composed
of elementary 2-input functions (min, max,
+, logic functions over 8 bits).

<U‘ E|

77

Approximate median using CGP
Median network (consisting of up to N operations) is represented by means of
a one-dimensional array of N nodes.
Each node can act as: identity (0), minimum (1), maximum (2) over 8 bits
Each candidate solution is encoded using 3N + 1 integers.
Fitness function (single objective)
error = Z|Ocandidate (l) - OTeference (l)|
i€s
Example for a 3-input median:

lo

X1 01\23/—1.}2_3/—03\—2
2 min - /—maxf fmax —_

Chromosome: 0, 2,3; 3,2,0; 0,2,2; 5,3,1, 6,1,2; 7,0,0; 6,8,2; 8

78

Approximate median using CGP

Experimental setup

(1+4)-ES, no crossover, 5 % of the chromosome mutated

" edians | Medan2s
9 25

1 1
Generations 3 x 10° (3 hours) 3 x 10° (3 hours)
Training vectors 1 x 10* 1 x 10°
Exact solution (K) 38 operations 220 operations
Available nodes (N) 6 — 34 operations 10 — 200 operations

20% operations o 60% operation '. y original

Z. Vasicek and L. Sekanina. Evolutionary approach to approximate digital circuits design. IEEE trans. on Evol. Comp. 19(3), 2015

79

100%
80%
60%
40%
20%

0%

g 80%
S 60%
o

= 40%
> 20%
T 0
Tz
o

80%
60%
40%
20%

0%

Approximate median: Distance error analysis

9-input median
fully-working: 38 operations

95.2%

21% reduction

. — 9-median, 30-ops |

52% reduction

I 651‘% — gmedlan 18- ops J

T T T T T T T
T SR SO e . — 9-median, 6-ops
T . R L |
roo 143?23 8% C 19::4%”"'5 """"" """"""" 7
I S P .270 . ___ .].D.: A G

: 12.3% gy

—4 —3 -2 -1 0 1 2 3 4
Distance error

100%
80% |
60%
0% |-
20% |-
0% b

'
=

e g &

Relative frequency

40%
30% -
20% |
10% |-

=)
=

25-input median
fully-working: 220 operations

27% reduction

.. — 25-median, 160-ops |

94.4%

54% reduction

45.9%
. L ________ L SN B — 25-median, 100-ops |
81% reduction

— 25-median, 40-ops |

0
-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

Distance error

V. Mrazek, Z. Vasicek and L. Sekanina. GECCO Gl Workshop, 2015 80

Evolutionary design of image filters from scratch

min Jess

AN DY

33
+ 3“"""-minﬁ(

fitness

swap]

Input image Output image - v Golden image - w

N x M pixels

fimess =) > | v(i, j)—w(i, j)|

i=1 j=1

Sekanina L. Image Filter Design with Evolvable Hardware. LNCS 2279, 2002 81

40

PSNR [dB]

PSNR [dB]

—0—= CWMF9 =o= MF9 == MF25

-o- AMF25 #79 -0- CWMF9 #7 -v- MF9 #7 --»- MF25 #8 o BNK #1,
w0 AMF25 #99 o CWMF9 #9 ~v.. MF9 #9 a4~ MF25 #9
15 ‘ : : : : :
0 5 10 15 20 25 30
noise intensity [%]
10 : : : : ‘
v MF9 A MF25 O CWMF9 O AMF25 O EVO #1
¥ MFO#7 A MF25#8 @ CWMFO#7 © AMF25#79 o BNK#1
15! v MFO#9 A MF25#9 m CWMFI#9 @ AMF25 #99
"~ noise
intensity
30%
30! —O |
35¢
40 : : : : : :
0 10 20 30 40 50 60

power consumption [mW]

70

Comparison of
approximate median filters
and evolved filters for salt

and pepper noise

AV MF median filter
o AMF adaptive median filter
0 CWMF center weighted median filter
EVO evolved filter (5x5)
BNK bank of 3 evolved filters (5x5)
9 3x3 kernel
25 5x5 kernel
xy approximation no. xy

PSNR — mean PSNR on 30 images
Synopsys Design compiler; 45 nm PDK
All filters are pipelined with f.. =1 GHz

Sekanina, Vasicek, Mrazek: Radioengineering 26(3), 2017
82

Conclusions — Part |l

* Design automation methods implementing functional circuit approximation
— work at various levels (abstract, source code, RTL, gate),

— use different strategies and heuristics to introduce the approximation (truncation,
pruning, component replacement, local re-synthesis, ...),

— evaluate the quality of approximate circuits by means of simulation, probabilistic
or formal methods,

— have not been systematically compared in terms of quality.

* CGP-based methods can provide quite competitive approximate circuits
— at different levels of abstraction (very flexible representation),
— with formally proven quality of result (when needed),

— because the problem can be formulated as a multi-objective one with various
constraints and solved by means of a multi-objective approach,

— butitis a computationally demanding approach.

* Properly optimize before doing approximations!

References

* See references on particular slides

* Selected tutorial and survey papers on Approximate Computing

J. Han and M. Orshansky, “Approximate computing: An emerging paradigm for
energy-efficient design,” in Proc. of the 18th IEEE European Test Symposium. IEEE,
2013, pp. 1-6

H. Esmaeilzadeh, A. Sampson, L. Ceze, D. Burger, “Neural acceleration for general-
purpose approximate programs,” Commun. ACM, 58(1): 105-115, 2015

S. Mittal, “A survey of techniques for approximate computing,” ACM Computing
Surveys, 48(4), 1-34, 2016.
Q. Xu, T. Mytkowicz, N. S. Kim. “Approximate Computing: A Survey,” IEEE Design
and Test, 33(1), 8-22, 2016.

L. Sekanina, “Introduction to Approximate Computing”. IEEE International
Symposium on Design and Diagnostics of Electronic Circuits, DDECS 2016

Z. Vasicek, “Relaxed equivalence checking: a new challenge in logic synthesis”. IEEE
International Symposium on Design and Diagnostics of Electronic Circuits, DDECS
2017

Acknowledgement

EHW group at Brno University of Technology
— Zdenék Vasicek, Michal Bidlo, Roland Dobai

— Michaela Sikulova, Radek Hrbacgek, Vojtéch Mrazek, David Grochol, Milo§ Minafik,
Jakub Husa, Marek Kidon, Michal Wiglasz and other students

Research funding
— IT4Innovations Centre of Excellence — National supercomputing center
— IT4Innovations excellence in science - LQ1602

— Advanced Methods for Evolutionary Design of Complex Digital Circuits, 2014 —
2016 (Czech Science Foundation)

— Relaxed equivalence checking for approximate computing, 2016 — 2018 (Czech
Science Foundation)

— Brno University of Technology

85

