
2168-6750 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TETC.2019.2960491, IEEE Transactions on Emerging Topics in Computing

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 1

Exploiting Asymmetry in eDRAM Errors for
Redundancy-Free Error-Tolerant Design

Shanshan Liu (Member, IEEE), Pedro Reviriego (Senior Member, IEEE), Jing Guo,
Jie Han (Senior Member, IEEE) and Fabrizio Lombardi (Fellow, IEEE)

Abstract—For some applications, errors have a different impact on data and memory systems depending on whether they change
a zero to a one or the other way around; for an unsigned integer, a one to zero (or zero to one) error reduces (or increases) the
value. For some memories, errors are also asymmetric; for example, in a DRAM, retention failures discharge the storage cell.
The tolerance of such asymmetric errors would result in a robust and efficient system design. Error Control Codes (ECCs) are
one common technique for memory protection against these errors by introducing some redundancy in memory cells. In this
paper, the asymmetry in the errors in Embedded DRAMs (eDRAMs) is exploited for error-tolerant designs without using any ECC
or parity, which are redundancy-free in terms of memory cells. A model for the impact of retention errors and refresh time of
eDRAMs on the False Positive rate or False Negative rate of some eDRAM applications is proposed and analyzed. Bloom Filters
(BFs) and read-only or write-through caches implemented in eDRAMs are considered as the first case studies for this model. For
BFs, their tolerance to some zero to one errors (but not one to zero errors) is combined with the asymmetry of retention errors in
eDRAMs to show that no ECC or parity is needed to protect the filter; moreover, the eDRAM refresh time can significantly be
increased, thus reducing its power consumption. For caches, this paper shows that asymmetry in errors can be exploited also by
using a redundancy-free error-tolerant scheme, which only introduces false negatives, but no false positives, therefore causing
no data corruption. The proposed redundancy-free implementations have been compared with existing schemes for BFs and
caches to show the benefits in terms of different figures of merit such as memory size, area, decoder/encoder complexity and
delay. Finally, in the last case study, we show that the asymmetry of retention errors can be used to develop additional error
correction capabilities in Modular Redundancy Schemes.

Index Terms— Asymmetric errors, memory design, eDRAMs, Bloom filters, caches, error tolerance

——————————  ——————————

1 INTRODUCTION
emories play a significant role in integrated circuit
design. Volatile memories such as Static Random-Ac-

cess Memories (SRAMs) and Dynamic Random-Access
Memories (DRAMs) [1] are widely used in computing and
networking applications. SRAMs offer high-speed storage,
but they need at least six transistors, so integration density
is modest. They are usually used as first level caches in
CPUs. While DRAM cells are very small (requiring one
transistor and a capacitive element), so they have a high
density that makes them attractive to be employed for
larger caches or main memory [2],[3]. In particular, embed-
ded DRAMs (eDRAMs) are widely used to implement on
chip memories [4]. Few novel DRAM cache structures can
potentially have the same (or better) speed than SRAM
caches [5]. However, eDRAMs need frequent refresh oper-
ations to retain the stored value; otherwise, the value can
be changed due to leakage current and crosstalk in the cir-
cuit, causing the so-called retention errors. Such retention

errors occur mostly on the charged cells, so they are highly
asymmetric (if a “1” (“0”) is stored in the cell then it will be
flipped to “0” (“1”)). The retention times are theoretically
in the order of milliseconds, but in practice, they are in the
order of a few tens of microseconds due to a few cells dis-
charging faster [6]. Therefore, eDRAMs incur in a signifi-
cant power consumption to perform periodic refresh oper-
ations. Memories are also prone to other soft errors, such
as radiation induced Single Event Upsets (SEUs); SEUs can
modify the contents of a word, causing data corruption
and affecting system integrity. Radiation induced soft er-
rors in SRAMs are usually symmetric (i.e., flipping a stored
“1” to “0” or “0” to “1”) [7], but in eDRAMs this depends
on the part of the circuit that is been affected by the SEUs
[5], [7]-[10]. If SEUs occur on the memory cell (the transis-
tor and capacitor pair), soft errors are asymmetric, because
the free carriers generated at or near the drain of the n-
channel access transistor due to radiation are collected
across the drain/substrate junction, thereby discharging
the capacitor. Therefore, they exhibit the same behavior for
state changing as retention errors. However, if SEUs occur
on other parts of the eDRAM circuit (for example sense
amplifiers), then the errors can be symmetric.

Error Control Codes (also referred to as Error Correc-
tion Codes, ECCs) have been extensively used in memory
applications to deal with different classes of errors such as
those introduced above [11]-[13]. To protect a memory, an
ECC first needs few parity bits (Figure 1); these parity bits

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

M

————————————————
• Manuscript received 26 June, revised XX October, 2019. (Corresponding

author: Shanshan Liu)
• S. Liu and F. Lombardi are with Northeastern University, Dept. of ECE,

Boston, MA 02115, USA (email: ssliu@coe.neu.edu, lom-
bardi@ece.neu.edu)

• P. Reviriego is with Universidad Carlos III de Madrid, Av. Universidad
30, Leganés, Madrid, Spain (email: revirieg@it.uc3m.es)

• J. Guo is with School of Instrument and Electronics, North University of
China, Taiyuan, 030051, China (email: guojing19861229@163.com).

• J. Han is with University of Alberta, Dept. ECE, Edmonton, Alberta T6G
2V4, Canada (email: jhan8@ualberta.ca)

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 13,2020 at 00:44:42 UTC from IEEE Xplore. Restrictions apply.

2168-6750 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TETC.2019.2960491, IEEE Transactions on Emerging Topics in Computing

2 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING

are computed based on memory data and performed by
the encoder prior to the memory write operation. Then, the
parity and the data bits are stored together in each memory
word during the write operation. After a read operation, a
decoding procedure is performed; the parity bits are first
recomputed based on the stored data and checked with the
stored parity bits to generate the syndrome. As per the de-
coding algorithm, the syndrome can be used to locate the
error and then correct it (if correctable). The correct data is
then provided as output by the decoder. In addition to im-
proving the reliability of memories, ECCs used in eDRAM
can also improve the refresh rate by correcting retention
errors, thus reducing power consumption. For example,
the use of SEC-DED codes (that have capabilities of single-
bit error correction and double-bit error detection), or
stronger 5EC-6ED BCH codes (that can correct 5-bit errors
and detect 6-bit errors) have been considered in eDRAMs
[13],[14]. However, the drawback of ECCs is that the intro-
duced redundant cells and the circuitry for the en-
coder/decoder increase the memory size and affects the
read/write latency. Especially for strong ECC functions,
the overhead introduced could be rather large and not ac-
ceptable for some designs.

In some applications, errors have a different impact if
they change a “1” to “0” or a “0” to “1”. For example, when
an unsigned integer is stored in a register, the “1” to “0”
errors reduce the value while the “0” to “1” errors would
increase it. If this value is related to the remaining time to
perform a refresh operation in eDRAMs, a decrement of
the value would cause a higher refresh frequency so incur-
ring in a larger power consumption. However, an increase
in the value would delay the refresh and thus may lead to
data corruption. In a Bloom Filter (BF) (as commonly used
in networking applications), a small percentage of false
positives (matching occurs in a pair of mismatched data) is
inherent to the filter nature; no false negative (mismatch-
ing occurs in a pair of matched data) can occur in an error
free filter. Therefore, errors from “1” to “0” cannot be tol-
erated; however, errors from “0” to “1” would only in-
crease the false positive rate. As long as the “0” to “1” er-
rors are limited in number, their impact on the reliability
of BFs is negligible. This is also the case in counting BFs or
count-min sketch applications [15]-[17]. Another example
can be read-only caches, in which false positives can cause
error propagation, but false negatives are not an issue, be-
cause they cannot lead to data corruption.

As error-tolerant techniques for memories are usually

costly, it is interesting to exploit the asymmetry of errors in
specific memories to implement efficient protection. In this
paper, we propose redundancy-free (in terms of memory
cells) schemes that can deal with asymmetric errors in
memories for applications that tolerate some false posi-
tives or negatives. Bloom Filters and caches are used as
case studies in this paper to illustrate the proposed strat-
egy. By combining the asymmetry of errors in memories
and error-tolerance, an effective protection is designed by
introducing only additional logic, but no ECC or parity.
This significantly reduces the hardware overhead com-
pared to the use of existing protection techniques. Finally,
the application of the proposed scheme to modular redun-
dant systems is also discussed.

2 DRAM BACKGROUND
2.1 DRAM Architecture
As illustrated in Figure 2, a DRAM module is arranged in
a hierarchical manner. Each DRAM module consists of a
set of memory banks (e.g., eight) that include independent
memory arrays; each two dimensional array consists of
cells, row and column decoders, sense amplifiers, and I/O
gating. Each memory cell includes a capacitor and an ac-
cess transistor that connects the associated capacitor to a
bitline.

Ro
w

 d
ec

.

Sense amps
I/O gating

Column dec.

DRAM cells

Array in a Rank

Word line

Bit line

Figure 2 DRAM architecture

In an eDRAM cell, data is stored as an electrical charge
in a capacitor, i.e., a binary bit “1” or “0” is represented by
the amount of stored charge. Depending on circuit design,
a true-cell and anti-cell refer to those eDRAM cells that pre-
sent “1” with the charged and discharged states (i.e., the
stored values are inverted) respectively [18]. eDRAM chips
can be implemented by only using true-cells, or anti-cells,
or both. In this paper, true-cell implementations are as-
sumed; for anti-cell eDRAMs, an inverted coding can be
simply removed or included in the proposed schemes.

When an eDRAM is in stand-by mode, the charged ca-
pacitor in a cell discharges over time due to leakage cur-
rents in the circuitry and eventually it may lead to an error.
So eDRAMs require refresh operations to ensure data re-
tention. The read operation in a DRAM is achieved by
checking the flow direction of the current path (the in-flow
is considered as a logic “0”, while the out-flow is consid-
ered as logic “1”). This may also damage the original state
of the cell, so writing the data back into the cell is needed
after a read operation.

Memory
n

k-bit data

k-bit data

k-bit data

n-bit codeword

m words

n kk

n-k bit parity

n-k bit parity

n-k bit parity

Parity
computation

logic

Encoder

Syndrome
generation

logic

Decoder

Error locator

Error
corrector

Figure 1 Block diagram of the proposed scheme

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 13,2020 at 00:44:42 UTC from IEEE Xplore. Restrictions apply.

2168-6750 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TETC.2019.2960491, IEEE Transactions on Emerging Topics in Computing

S.LIU ET AL: EXPLOITING ASYMMETRY IN EDRAM ERRORS FOR REDUNDANCY-FREE ERROR-TOLERANT DESIGN 3

2.2 Asymmetry of Retention Errors
Considering that a logic “1” is represented by a charged
cell (true-cell), leakage currents in the cell may mostly
cause “1” to “0” errors but few “0” to “1” errors, therefore
eDRAM retention errors are highly asymmetric [14],[19].
When eDRAM cells follow the tail (main) distribution, the
unidirectional gate-induced drain leakage current (junc-
tion leakage current) constitutes the dominant leakage
mechanism for the weakest eDRAM cells; it discharges the
cells and can cause asymmetric errors.

In addition to cell leakage, crosstalk may also cause a
retention failure. There are four major sources of crosstalk
in eDRAMs, bitline to bitline coupling, wordline to word-
line coupling, wordline to bitline coupling, and bitline to
cell coupling [18]. When the charge stored in an eDRAM
cell is weak due to cell leakage, crosstalk can flip the de-
graded cell charge on the bitline during the sensing process,
causing symmetric retention errors. However, when the
charge in the cell is strong (for short refresh intervals), or
significantly degraded (for long refresh intervals), cross-
talk has little impact on the sensing process. Experimental
results [18] have shown the highly asymmetric property of
retention errors. Even if some “0” to “1” errors (caused by
sub-threshold leakage and crosstalk) are observed, their
number is very small and thus, negligible in most cases.
The asymmetry of retention errors is also the underlying
principle in many published works [19]-[21].

In a traditional design, the refresh time of the eDRAM
is driven by a small percentage of cells that discharge fast.
This leads in practice to refresh times of a few tens of mi-
croseconds and thus a significant power consumption is
incurred when performing refresh. This is in stark contrast
with theory in which the refresh times are expected to be
in the order of milliseconds for most of the cells [6].

3 RETENTION ERROR MODEL OF EDRAMS
As discussed in a previous section, a storage capacitor
loses charge over time due to leakage currents, so refresh
operations are needed in DRAMs to ensure data retention.
The retention time of a DRAM cell is defined as the time
for which the cell can retain its correct state, and it depends
on the leakage currents. Therefore, the refresh period of a
DRAM should be shorter than the cell retention time to
avoid data corruption. Embedded DRAMs mostly use fast
logic transistors with a higher leakage current than con-
ventional DRAMs; therefore, they have a significantly
shorter refresh time (about 1000 times shorter than
DRAMs).

Retention errors depend on the cells that discharge
faster, so they are related to the distribution of the reten-
tion time among eDRAM cells. Previous works have ana-
lyzed the relationship between the retention time of a cell
and the probability of a fault-free eDRAM or single bit fail-
ure [13],[22]. Figure 3 shows the probability distribution of
single bit failures with refresh times of an eDRAM [13].
Figure 3 shows that the probability of a single bit failure
increases with a longer refresh time of the eDRAM. The
plot of Figure 3 can be fitted as approximation model by
equation (1):

17 4.591.27 10 4798

1 4798ret
t t s

p
t s

µ
µ

− × ⋅ ≤
≅ 

>
 (1)

where pret is the probability of a single bit failure caused by
a retention error (where pret= pret_c+pret_d), t is the refresh
time of the eDRAM. An eDRAM with a refresh time in the
order of a few tens of microseconds has an extremely low
probability of failure.

Consider pret_c as the probability of a bit “1” changing to
“0”in the charged cell, and pret_d as the probability of a bit
“0” changing to “1”in the discharged cell. Therefore, when
taking into account retention errors, the probability of a bit
being “0” (a discharged cell) on a memory word pd will
change to pd’; this is given by:

()_ _' 1d d ret d c ret cp p p p p= ⋅ − + ⋅ (2)
where pc is the probability of a charged cell on the word,
i.e., pc= 1-pd. The case of pc‘ that is changed from pc is sim-
ilar. As per equation (2), it is then possible to find the prob-
ability of a given memory word changing to another word
and causing a false positive or a false negative for some
applications. Therefore, based on equations (1) and (2), the
impact of the refresh time of an eDRAM on its false posi-
tive rate (△FPR) or false negative rate (△FNR), can be rep-
resented as a function given by:

() () ()' ,d dFPR or FNR t f p f p t∆ = = (3)
This function will be developed for specific implementa-

tions for a few case studies in the next sections.

4 CASE STUDY 1: BLOOM FILTERS
4.1 Overview
Bloom Filters (BFs) are widely used in applications such as
computing and networking systems that need to check if a
given element belongs to a set [23],[24]. There are many al-
gorithms that can achieve this function, but they are usu-
ally based on saving all elements of the set and comparing
them with the given element. This would result in very
high storage as well as incurring in a large searching la-
tency as the number of elements in the set increases.
Whereas BFs proposed in 1970 can filter the elements effi-
ciently [25] and thus are commonly implemented in elec-
tronic circuits to perform approximate membership check-
ing, BFs have also been extended to support the removal
of elements by adding counters as proposed in [15],[26].

Figure 3 eDRAM retention time distribution [13]

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 13,2020 at 00:44:42 UTC from IEEE Xplore. Restrictions apply.

2168-6750 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TETC.2019.2960491, IEEE Transactions on Emerging Topics in Computing

4 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING

A BF is a data structure that consists of an array of “0”
and “1”; it is stored in a high-speed memory (e.g., eDRAM).
The content of a BF array is accessed using some hash func-
tions; each element is mapped to some points in the BF ar-
ray based on the hash functions, and those points are set to
“1”. When searching for a given element, we can simply
check whether its associated points in the array are “1”. If
any point is “0”, the element does not belong to the set. If
all points are “1”, the element is likely to exist in the set.

Figure 4 shows a diagram of a BF, and its operations are
defined as follows:

- Insertion: Each element is mapped to q bits that are
set to “1” in the BF array S (originally all zeros on all
m bits) that correspond to the positions of q hash func-
tions. For example, when inserting element x, find its
positions based on the hash functions h1(x), h2(x), ... ,
hq(x) first, and then set them to “1”.

- Query: when checking if a given element (e.g. y) be-
longs to the BF array, the bits on the positions of h1(y),
h2(y), ... , hq(y) are read. Only when all of the bits are
“1”, the element y is considered to be a member of the
BF array. Otherwise, in the case of searching an ele-
ment z, if there is at least one “0” on its positions as-
sociated to h1(z), h2(z), ... , hq(z), then it is not a mem-
ber of this set.

1 0 0 0 1 0 0 0 1 1 0 0 01 1 0
012m-1m

x y

h1(x)
h2(x) h3(x)

h1(y)
h2(y)

h3(y)

Insertion

zy

h1(x) h2(z)

h3(z)

h1(y)
h2(y)

h3(z)
Query

S

m bits (initially set to 0)
q hash functions

if h(x) = i, 0≤i≤m
set S[i] = 1

one bit is 0
 z ∉ S

Figure 4 Illustration of a Bloom filter

These operations ensure that all inserted elements are
found in the query process; false negatives therefore do not
occur in an error-free BF. However, false positives can hap-
pen as a given element that is not in the BF may have “1”
on the positions of its hash functions. For example, in Fig-
ure 4, assume that element y has not been inserted in the
BF array (i.e., it is not a member of this set). When testing
for y, the positions that correspond to h1(y), h2(y), ... , hq(y)
are checked. However, the value on all of these positions
can be “1” due to other elements; in this case, such given
element would be considered to belong to the set (while it
is not), hence a false positive occurs. BFs are usually de-
signed to have an acceptable false positive rate, for exam-
ple 1% or lower, so that they have a small impact on per-
formance.
4.2 Proposed Error-tolerant eDRAM-based BFs
As discussed before, BFs are used in many networking ap-
plications to speed up packet processing [27]. In some of
these applications, the on-chip BFs are used to avoid ac-
cesses to external memory; therefore, BFs can be imple-
mented by using eDRAMs [28],[29]. However, in an
eDRAM-based BF, retention errors changing a stored “1”

to “0” would cause false negatives. Thus, some protection
techniques like ECCs are needed to protect the BF against
such errors. Ad-hoc protection techniques have also been
proposed for BFs, but they still require at least the use of a
parity check per memory word [30]. Note that “1” to “0”
errors are deleterious because they can lead to false nega-
tives, while “0” to “1” errors can only degrade the false
positive rate. This is the motivation to propose a redun-
dancy-free error-tolerant scheme to avoid false negatives
in eDRAM-based BFs.

Figure 5 shows the block diagram of the proposed
scheme. When storing the BF array into the eDRAM, we
can first simply code “1” as “0” and “0” as “1”, and then
write the data into the memory. This ensures that if a re-
tention error changes a charged to a discharged cell, this is
equivalent to an error from “0” to “1” in the BF array. In
this case, the proposed scheme may only introduce false
positives, so false negatives are avoided. Even when an ad-
ditional number of “1” are introduced in the filter, their im-
pact on the increase of the false positive rate can be negli-
gible. Moreover, the refresh rate is improved and the re-
fresh power consumption is significantly reduced without
any other protection technique.

k-bit data

k-bit data

k-bit data

m words

kk
Memory

Encoder

kk

Decoder

Figure 5 Block diagram of the proposed scheme

Assume there are q hash functions used for mapping el-
ements to the positions in a BF array. The false positive rate
(FPR) in the case that the eDRAM is error-free, can be ap-
proximated as p1q, where p1 is the probability of a bit being
“1” on the BF array output from the decoder. When con-
sidering possible retention errors, p1 increases to p1’ as
modeled in equation (2) (p1 (p1’) on the decoded data in the
filter is equal to pd (pd’) on the memory as we perform an
inversion coding). Therefore, we can establish the relevant
increase of FPR (△FPR) presented previously in equation
(3) of Section 3 as:

() ()()1 _ 1 _ 1

1

1 1
q q

ret d ret c

q

p p p p p
FPR

p

− + − −
∆ ≅ (4)

From Figure 3 and equation (1), the probability of a sin-
gle bit retention failure is extremely low (<<1) in an
eDRAM with a refresh period in the order of a few tens of
microseconds in practice. For example pret is 7.7E-11 when
the refresh time is 30μs. Therefore, equation (4) can be ap-
proximated by developing the first part of the numerator
and is given by:

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 13,2020 at 00:44:42 UTC from IEEE Xplore. Restrictions apply.

2168-6750 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TETC.2019.2960491, IEEE Transactions on Emerging Topics in Computing

S.LIU ET AL: EXPLOITING ASYMMETRY IN EDRAM ERRORS FOR REDUNDANCY-FREE ERROR-TOLERANT DESIGN 5

() ()()1 _ _
_

1

1 1 1ret c ret d
ret d

q p p q p
FPR q p

p
− ⋅ − −

∆ ≅ − ⋅ (5)

When the proposed scheme is utilized, the refresh time
of the eDRAM can be decreased and pret will also increase
to pret’. In this case, the impact of the proposed scheme on
the FPR can be estimated as the updated relevant increase
of FPR (△FPR’) given by:

() ()() () ()()
() ()()

() ()() ()()() ()

' '
1 _ 1 _ 1 _ 1 _'

1 _ 1 _

'
1 _ _ _ _ '

_ _
1

1 1 1 1

1 1

1 ' 1 1 1 1

q q

ret d ret c ret d ret c

q

ret d ret c

ret c ret d ret c ret d
ret d ret d

p p p p p p p p
FPR

p p p p

q p p q p p q p
q p p

p

− + − − − + −
∆ ≅

− + −

− − − − − −
≅ + −

(6)

Assume that variations in the false positive rate smaller
than 1% from the error free case are negligible. According
to equations (1) and (6), the maximum refresh time when
introducing a negligible effect on FPR is given by:

() ()
_17 4.59 1

_
_ 1

0.01+ '
1.27 10 '

1 ' 1 1
ret d

ret d
ret d

q p pt p
p q q p

− ⋅
× ⋅ ≤ ⋅ +

− ⋅ − −
 (7)

As discussed previously, retention errors in eDRAMs
are highly asymmetric; only a negligible portion is from “0”
to “1” errors, for example they accounts for only 0.005% of
all retention errors as per the experiment results of [18].
Therefore, an approximate model can be established from
equation (7); this is given by:

()
17 4.59 1

1

0.011.27 10
1

pt
q p

− ⋅
× ⋅ ≤

−
 (8)

Figure 6 shows the maximum refresh time for those
cases (such that p1 varies from 0.1 to 0.8 and q from 2 to 6)
as found in practice. For example, when p1=0.8, q=2, the
refresh time can increase from a few tens of microseconds
(e.g. 30μs) up to 2046μs by using the proposed scheme,
with an increase of only 1% in the FPR. Even in the worst
case of p1=0.1, q=6, the refresh time increases up to 737μs.

Therefore, the proposed scheme that is redundancy-free
can significantly improve the refresh time by introducing
a negligible effect on the false positive rate in BFs. Note
that when the refresh time is increased, the refresh power
consumption is substantially reduced, because the refresh
frequency decreases. In the next subsection, the saving in
terms of refresh power is evaluated.

The proposed scheme can protect eDRAM-based BFs
without any ECC or parity, and significantly increase the
refresh time, thus reducing power consumption. Moreover,
it can tolerate all possible retention errors (including single
and multiple bit errors) on each word (i.e., k·(1-p1)·pret_c bit
errors, where k is the length of a memory word). Note that
the proposed error-tolerant scheme can also be applied to
other similar structures like counting BFs, or count-min
sketches.

The proposed scheme is highly accurate when the “0” to
“1” retention errors have a negligible contribution. How-
ever, when these errors cannot be neglected, the proposed
scheme may generate false negatives as not appearing in
error free BFs. In this case, the proposed scheme can be en-
hanced by utilizing any pattern with q-1 ones from the

hash functions as element matching to avoid false nega-
tives, but increasing the false positive rate (as proposed in
[31]). Therefore by combining both techniques, the pro-
posed scheme is also applicable to scenarios in which the
errors are asymmetric, but the number of “0” to “1” errors
is not negligible.

4.3 Evaluation
Initially, the refresh power consumption reduction pro
vided by the proposed scheme is evaluated. Then, the
overheads for the area, delay and power consumption in-
troduced by the proposed scheme are also evaluated. Ex-
isting schemes using SEC-DED codes and 5EC-6ED BCH
codes are also compared to show the advantage of the pro-
posed scheme.

Refresh power consumption: Consider that when we in-
crease the refresh time t to t’, the saving in the refresh
power (Powersaving) is given by:

0 0

0

1 1
' 11 'saving

Power Power tt tPower
tPower

t

⋅ − ⋅
= = −

⋅
 (9)

where Power0 is the power consumption of each refresh
operation.

Consider equation (9); the saving in refresh power is re-
lated to an increase in refresh time. Therefore, in the exam-
ple considered previously when the refresh time is in-
creased from 30μs to 2046μs, the refresh power is reduced
by 98.5% with a negligible impact (+1%) on the false posi-
tive rate. This is better than using ECCs, such as the SEC-
DED codes and 5EC-6ED BCH codes [13]. For example,
when using SEC-DED (5EC-6ED BCH) codes, the refresh
time can be improved from 30μs to 150μs (440μs), and the
refresh power can be reduced by 80.0% (93.2%).

Figure 6 Estimated refresh time for different p1 and q

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 13,2020 at 00:44:42 UTC from IEEE Xplore. Restrictions apply.

2168-6750 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TETC.2019.2960491, IEEE Transactions on Emerging Topics in Computing

6 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING

Overheads: The proposed scheme is redundancy-free so
has no impact on memory size; the SEC-DED codes and
5EC-6ED BCH codes need few parity bits stored in each
memory word. Table 1 shows the increase in memory in-
troduced by different schemes, the worst FPR and their
ECC function level when protecting the eDRAM-based BFs
with 8, 16, 32, 64-bit words. The proposed scheme signifi-
cantly saves memory size at the cost of introducing a slight
impact on the FPR.

To compare the protection circuitry (encoder and de-
coder) needed by the different schemes, designs were im-
plemented in HDL and synthesized by the Synopsys De-
sign Compiler mapping to a TSMC 65nm library. The tool
was set with maximum effort in terms of area and delay.
Table 2 shows the comparison results for the encoders and
decoders (the area and power results include the corre-
sponding figures for the encoders and decoders; also for
the delay, decoders are included because the operational
speed depends on the decoding latency); Figures 7 plots
the PDP (Power Delay Product) results. The proposed
scheme achieves significant improvements over existing
schemes in all cases.

5 CASE STUDY 2: CACHES
5.1 Overview
In a processor, there are typically several levels of caches.
They are smaller in capacity, but faster than the main
memory, and store frequently used data to increase the
throughput of a processor. Generally, the first level cache
can be implemented in SRAMs due to the fast speed;
higher level/larger caches can be implemented based on
embedded DRAMs (eDRAMs) to allow for a larger capac-
ity [3],[4]. Each entry in a cache has at least a Tag that iden-
tifies the address to which the entry corresponds in the
next level cache or the main memory and the stored Data
(also denoted as Value). To access the cache, we first read
the position that corresponds to the incoming address.
Then for each way, the Tag is compared with the incoming
Tag. If there is a match (also denoted as a “hit”), Data that
corresponds to the Tag is read out next. Otherwise, it is a

“miss” (mismatch); Data will then be fetched from the next
cache level or the main memory. Most caches, for example
the Instruction Caches (ICs) or Translation Lookaside Buff-
ers (TLBs) also have a valid bit in each entry to identify if
the data is valid or invalid. So the incoming Tag is only
compared with the Tags that are valid.

A soft error, for example a retention error in an eDRAM-
based cache can have different effects depending whether

Table 2 Comparison for protection circuitry
Data
size Scheme Area

(μm2)
Delay

(ns)
Power
(mW)

8-bit
SEC-DED 234.4 0.61 0.28

5EC-6ED BCH 2052.4 1.12 2.08
Proposed 19.2 0.10 0.02

16-bit
SEC-DED 467.6 0.65 0.6

5EC-6ED BCH 55468 1.74 33.52
Proposed 38.4 0.10 0.02

32-bit
SEC-DED 921.6 0.73 1.44

5EC-6ED BCH 270936.8 1.88 80.75
Proposed 76.8 0.10 0.06

64-bit
SEC-DED 1871.2 0.90 2.72

5EC-6ED BCH 1102215.2 2.05 165.35
Proposed 153.6 0.10 0.12

Figure 7 PDP (ns·mW) for the protection circuitry of different schemes
versus data size

Table 1 Features and memory overhead introduced for different schemes

Scheme Data size
parity

bits/word
Increase in

memory size
Worst FPR*1 ECC Function level

SEC-DED

8-bit 4 50.0%

1×10-6
1-bit error correction and

2-bit error detection
16-bit 6 37.5%
32-bit 7 21.8%
64-bit 8 12.5%

5EC-6ED BCH

8-bit 20 250.0%

1×10-6
5-bit error correction and

6-bit error detection
16-bit 27 168.8%
32-bit 27 84.4%
64-bit 35 54.7%

Proposed

8-bit 0 0

1×10-6 + 1×10-8 All possible error correction*2 16-bit 0 0
32-bit 0 0
64-bit 0 0

*1 The worst FPR is estimated when p1= 0.1, q=6.
*2 The proposed scheme can deal with all possible errors (including single and multiple bit errors) by introducing a negligi-

ble impact on FPR so its ECC function level can be considered as all possible error correction.

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 13,2020 at 00:44:42 UTC from IEEE Xplore. Restrictions apply.

2168-6750 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TETC.2019.2960491, IEEE Transactions on Emerging Topics in Computing

S.LIU ET AL: EXPLOITING ASYMMETRY IN EDRAM ERRORS FOR REDUNDANCY-FREE ERROR-TOLERANT DESIGN 7

it affects the Tag or Data [27]. If the Tag is corrupted, there
are two scenarios, false positive and false negative. A false
positive occurs when an incoming Tag matches a stored
Tag that has been modified by an error. In this case, an in-
correct Data is returned and this may lead to a system error.
False negatives occur when an incoming Tag should have
matched a stored Tag; however, it is not matched because
it has been changed by the error. In this case, there is no
data corruption as long as the Data stored in the entry
(whose Tag was affected by the error), has not been modi-
fied. If the Data stored in cache has been changed and not
updated in main memory, data corruption will occur.
Therefore, false negatives are only an issue for write-back
caches, but not for read-only or write-through caches (e.g.,
ICs or TLBs) because they would only cause a “miss” that
can degrade performance but it cannot affect the correct-
ness of the results.

ECCs are widely used to protect caches against soft er-
rors [32],[33]. For example, a single parity bit can be added
for the Tag in each entry to detect single bit errors. Figure
8 illustrates this scheme for an N-way cache. The access to
the cache first reads the position that corresponds to the
incoming address based on Index and Offset; then for a
valid Tag in each way, a parity checker is used to detect if
there is an error in the Tag. If there is an error, then the Tag
is not considered further in the process. After checking that
Tags are correct, they are compared with the incoming
Tag; if there is no match, a “miss” occurs, and the system
retrieves the data from the next level cache or the main
memory. If there is a match, Data that corresponds to the
matching Tag is read out. As per Figure 8, this error-toler-
ant scheme requires the following elements:

- A parity bit P for each Tag and the valid bit.
- A logic to check if the Tag is valid or not (can be

simply implemented by an and logic).
- A parity checker circuitry with t+2 inputs for each

way.
- A t bit comparison logic for each way, where t is

the width of the Tag bits.
This scheme can also be used to detect single errors on

Data bits by using the parity to cover both Tag and Data
bits in each entry. For applications in which multiple errors
are a concern, stronger function ECCs or interleaved parity

bits can be used, at the cost of a larger overhead introduced
by the increased number of parity bits per line and the par-
ity checking procedure, also at a higher hardware com-
plexity [34],[35].

5.2 Proposed Error-tolerant eDRAM-based Caches
In this subsection, a redundancy-free error-tolerant
scheme for eDRAM-based read-only or write-through
caches (e.g., ICs or TLBs) is proposed. This scheme can de-
tect single bit retention errors and improves the refresh
rate to reduce the refresh power consumption.

The proposed scheme protects caches based on propa-
gating the error on the Tag in each entry to the valid bit
and consists of three parts as follows.

Part 1: Overload the valid bit. In a cache entry, when an
eDRAM cell in which the capacitor discharges fastest
causes a retention error on a Tag bit, the first step of the
proposed scheme propagates the error to the valid bit of
this entry, as in the approach in [36] that propagated an
error to a sensitive bit. This can be achieved by overloading
the valid bit with the xor result of the original value of the
valid bit and all stored Tag bits. Consider a cache entry that
stores a valid bit V, a Tag of width t having bits T1, T2, ...
Tt , and a Data of width d having bits D1, D2, ..., Dd. In Step
1, we overload the valid bit by using:

1 2' tV V xor T xor T xor xor T=  (10)
where V’ is the recomputed valid bit and is overloaded in
the entry. This procedure is the same as the encoder for a
single parity bit in the single parity bit scheme. Instead of
introducing an additional cell to store the parity bit (P in
Figure 8), we only overload the recomputed valid bit V’
with no additional cell in the proposed scheme.

Part 2: Recover the valid bit. When the selected entry is
read from the cache, the valid bit V is recovered by per-
forming the xor of V’ with the bits stored in Tag, i.e., equa-
tion (11) below.

1 2'rec tV V xor T xor T xor xor T=  (11)
where Vrec is the recovered valid bit.

 In this case, any error on the Tag changes also the re-
covered valid bit and thus, any valid entry is changed into
an invalid entry (the recovered V is “0”, while the value
stored was “1”). Therefore, entries that have an error on
the Tag are effectively removed. This procedure can be im-
plemented similarly to the parity checker in Figure 8 but
needing one less input (therefore the parity bit is saved).

An issue with this approach is that an error on Tag bits
can turn an invalid entry into a valid entry and therefore,
this may result in a potential error. However, as retention
errors in an eDRAM are asymmetric and only cause bit
flips from “1” to “0”, this can be avoided by resetting the
Tag value T to all zeros when we invalidate an entry.
Therefore, an invalid entry will have an all zeros value and
cannot be affected by retention errors.

Part 3: Perform a direct comparison. Consider the over-
loaded valid bit in valid and invalid entries first. If the en-
try was valid, then from Part 1 and equation (10) the over-
loaded valid bit V’ should be equal to 1 xor T. If the entry
was invalid, V’ should be “0” according to equation (10) as
all Tag bits stored in an invalid entry are set to “0” in Part

Dout

Tag P

t+2 bit t+2 bit

t bit t bit t bit MUX

Match 0

Match N-1…

…

…

…

Way 0

Tag
Tag

Tag
Tag

Tag
Tag

P
P

P
P
P
P

Way N-1

… …

Way 0

Data
Data

Data
Data

Data
Data

Way N-1

Data
Data

Data
Data

Data
Data

… …

Parity checker Parity checker

…

V
V
V
V

V
V

“hit”or“miss”

Index OffsetTag

Tag P

Tag
Tag

Tag
Tag

Tag
Tag

P
P

P
P
P
P

…

V
V
V
V

V
V

If V=1 If V=1

= =

Figure 8 An N-way Cache protected with a single parity bit

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 13,2020 at 00:44:42 UTC from IEEE Xplore. Restrictions apply.

2168-6750 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TETC.2019.2960491, IEEE Transactions on Emerging Topics in Computing

8 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING

2. Therefore, after Part 2, we would only have three cases:
1) an error-free Tag with Vrec=1; 2) an error-free Tag with
Vrec=0 (retention errors considered in this case are asym-
metric in an eDRAM and cannot change “0” to “1”; thus an
invalid entry will always be all zeros); 3) an erroneous Tag
with Vrec=0 (a single error that affects one Tag bit has been
propagated to Vrec and invalidates the entry) .

As when searching for an incoming Tag Vin, only valid
entries must be considered. The direct comparison is per-
formed between T in and T read from the entries when
Vrec=1 to find the incoming Tag. If there is a match, a “hit”
occurs; otherwise it is a case of “miss”. If the read Tag is
invalid, a “miss” case will also occur.

Figure 9 shows an example of the proposed scheme. In
the error-free case of Figure 9 a), there is always a “hit” if
the incoming Tag matches the read Tag, then Data that cor-
responds to the matched Tag is used. For the single bit er-
ror case in b), the read entry is invalidated so there is al-
ways a “miss” and no error is propagated to next operation.

As illustrated in Figure 10, the following hardware is re-
quired or the proposed scheme in an N-way cache.

- A decoder with t+1 inputs for each way to recover
the valid bit for the read Tag.

- A t bit comparison logic for each way, where t is
the width of the Tag bits.

- A logic block to check whether Tag is valid or not
(can be simply implemented by an and logic).

Compared to the hardware required by the existing
scheme using a single parity bit discussed in Section 5.1,

the advantage of the proposed scheme is that it is redun-
dancy-free, i.e., there is no need to add any parity bit to
detect errors, so it has no impact on memory overhead.
Moreover, the proposed scheme needs a simpler circuitry
for the decoder of each entry than for the parity checker
used in the single parity bit scheme due to the single input
in the circuit. The overhead introduced by the proposed
scheme will be evaluated in subsection 5.3 to show its ben-
efits.

 As any single error on the Tag bits is detected, the pro-
posed scheme does not introduce any false positive but it
may cause false negatives for a match between the incom-
ing Tag and the read Tag when it has been modified by the
error. However, as discussed previously, this is not a prob-
lem for read-only or write-through caches, because there is
no data corruption. The increase of the false negative rate
(△FNR) caused by the proposed scheme is equal to the
probability of a retention error, i.e., △FPR=pret; and it is
rather low (refer to Figure 3 or equation (1)). To avoid more
retention errors, the refresh operation is necessary for the
eDRAM. However, the refresh rate can be significantly im-
proved in the proposed scheme, because it can deal with
single errors, so the refresh power consumption can be re-
duced. Note that single errors on Data bits can also be de-
tected if the overloaded valid bit covers both Tag and Data
bits.

Additionally, the proposed scheme can detect multiple
errors that affect any odd number of bits, because these er-
rors will always be propagated to the valid bit and invalid
the entry. Under errors that affect an even number of bits,
the proposed scheme will fail, because the entry with a
valid bit “1” will still keep a valid probability, causing a
fault positive due to the errors. In this case, the proposed
scheme can be extended by combining it with an extra par-
ity bit. For example, combined with a single parity bit that
covers all odd bits, detection of any two adjacent bit errors

Overload the valid bit
V’
1 0 0 0 1 0 0 1 0

Vrec

1 0 0 0 1 0 0 1 0
Recover the valid bit

(implemented in Decoder)
Vrec = 1 xor 0 xor 0 xor 0 xor 1 xor 0 xor 0 xor 1 xor 0

V T1 T2 T3 T4 T5 T6 T7 T8

1 0 0 0 1 0 0 1 0
Original stored Tag

V’ = 1 xor 0 xor 0 xor 0 xor 1 xor 0 xor 0 xor 1 xor 0

Incoming Tag
Tin1 Tin2 Tin3 Tin4 Tin5 Tin6 Tin7 Tin8

0 0 0 1 0 0 1 0

Do a direct comparison hit !

T1 T2 T3 T4 T5 T6 T7 T8

T1 T2 T3 T4 T5 T6 T7 T8

a)

Overload the valid bit
V’
1 0 0 0 1 0 0 1 0

Vrec

0 0 0 0 0 0 0 1 0
Recover the valid bit

(implemented in Decoder)
Vrec = 1 xor 0 xor 0 xor 0 xor 0 xor 0 xor 0 xor 1 xor 0

V
1 0 0 0 1 0 0 1 0

Original stored Tag

V’ = 1 xor 0 xor 0 xor 0 xor 1 xor 0 xor 0 xor 1 xor 0

Incoming Tag
Tin1 Tin2 Tin3 Tin4 Tin5 Tin6 Tin7 Tin8

0 0 0 1 0 0 1 0

Invalidate the entry automatically Not valid
 so create a“miss”

A retention error affects T4 V’
1 0 0 0 0 0 0 1 0

T1 T2 T3 T4 T5 T6 T7 T8

T1 T2 T3 T4 T5 T6 T7 T8

T1 T2 T3 T4 T5 T6 T7 T8

T1 T2 T3 T4 T5 T6 T7 T8

b)

Figure 9 Example used to illustrate the proposed scheme: a) error-free
case; b) the case of a single error affecting bit T4.

Dout

Tag
t+1 bit t+1 bit

MUX

Match 0

Match N-1

…

…

…
…

Way 0

Tag
Tag

Tag
Tag

Tag
Tag

Way N-1

… …

Way 0

Data
Data

Data
Data

Data
Data

Way N-1

Data
Data

Data
Data

Data
Data

… …

Decoder Decoder

…

V’

“hit”or“miss”

Index OffsetTag

Tag

Tag
Tag

Tag
Tag

Tag
Tag
…

t bit t bit t bit

V’
V’
V’

V’
V’

V’
V’
V’
V’

V’
V’

= =

If V=1 If V=1

Figure 10 An N-way Cache protected with the proposed scheme

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 13,2020 at 00:44:42 UTC from IEEE Xplore. Restrictions apply.

2168-6750 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TETC.2019.2960491, IEEE Transactions on Emerging Topics in Computing

S.LIU ET AL: EXPLOITING ASYMMETRY IN EDRAM ERRORS FOR REDUNDANCY-FREE ERROR-TOLERANT DESIGN 9

is accomplished because one of the two erroneous bits (i.e.,
the one in the odd position) is detected by the parity
checker, and so causing a “miss”. Even though this ex-
tended scheme is not redundancy-free, compared with a
conventional interleaved parity bit scheme [41] (in which
two parity bits are needed to detect double adjacent bit er-
rors), one parity bit per entry is saved, thus reducing the
memory overhead, and keeping a similar latency (the over-
loading/recovering of the valid bit and encoding/decod-
ing of the parity bit operate in parallel).

5.3 Evaluation
In this subsection, the proposed scheme for single asym-
metric error detection in eDRAM-based caches is evalu-
ated. The scheme has been implemented and the overhead
has been estimated and compared with the existing single
parity bit (SPB) scheme in terms of memory size and pro-
tection circuitry.

Memory size: The proposed scheme is redundancy-free
so the memory size remains unaltered; the existing SPB
scheme needs an additional cell in each entry to store the
parity bit. Therefore, let the width of each Tag in an
eDRAM-based cache with an N-way and E-entry configu-
ration be t. The saving ratio of the proposed scheme and
the SPB scheme in terms of total number of Tag memory
cells is given by:

()
()

1 11
2 2

E N t
Saving ratio

E N t t
⋅ +

= − =
⋅ + +

 (12)

For an example of a cache with 24-bit Tags [37], the pro-
posed scheme reduces 3.8% the memory cells compared to
the SPB scheme. As memories in most cases account for a
significant portion of the area of processors, this advantage
in terms of memory size makes the proposed scheme very
attractive for protecting caches in many applications.

Protection Circuitry: Compared to the SPB scheme, the
proposed scheme requires similar hardware in the protec-
tion circuitry and has the advantage in terms of complexity
of the decoder of saving one input in the circuit. Both
schemes have been studied for different caches, including
the DRAM cache with 24-bit Tags for the 4-way configura-
tion in [37], the L2 TLB with 32-bit Tags for the 5-way con-
figurations and L2 cache with 36-bit Tags for the 8-way
configurations in the ARM Cortex-A76 processor [38], the
eTag DRAM cache with 40-bit Tags for the 16-way config-
urations in [39], and the L3 cache with 44-bit Tags for the

16-way configuration in the ARM CCN-508 cache coherent
network [40]. Designs have been implemented in HDL and
mapped to a 65nm library from TSMC using Design Com-
piler configured for area and delay optimization to obtain
the best results for these metrics.

Table 3 shows the synthesis results for different schemes;
Figure 11 plots the PDP results. The proposed scheme
shows improvements in all cases. For example, when pro-
tecting the Tag RAM of the L2 cache in the ARM cortex-
A76 processor, the proposed scheme saves 1.4% in area
and 18.9% in PDP. Recall that as the proposed scheme and
the SPB scheme detect single retention errors, then they
can also be used to reduce the refresh power consumption
of the eDRAM.

6 CASE STUDY 3: MODULAR REDUNDANCY
In many applications, a computer system must continue to
operate in the presence of a failure [42]. In these cases, a
common solution is to use Modular Redundancy, i.e. to
replicate components multiple times to ensure that the fail-
ure of at least a component does not compromise the oper-
ation of the entire system [43]. For example, in Triple Mod-
ular Redundancy (TMR) the component is triplicated and
voting is performed among the outputs of the three copies
to ensure that a correct result is provided in the presence
of a single component failure. Similarly, when using five

Figure 11 PDP (ns·mW) for the SPB scheme and proposed scheme
for caches with different tag width.

Table 3 Comparison for different caches
Cache configuration*

Scheme
Area Delay Power

 N t μm2 % ns % mW %

DRAM cache in [37] 4 24
SPB 874.8 100 0.66 100 0.55 100

Proposed 862.8 98.63 0.64 96.97 0.46 83.64

L2 TLB in ARM Cortex-A76 [38] 5 32
SPB 1526.4 100 0.68 100 1.07 100

Proposed 1391.6 91.17 0.65 95.59 0.82 76.64

L2 Cache in ARM Cortex-A76 [38] 8 36
SPB 2706.4 100 0.74 100 1.82 100

Proposed 2679.9 99.02 0.71 95.95 1.71 93.96

eTag DRAM cache in [39] 16 40
SPB 6000.0 100 0.78 100 3.94 100

Proposed 5988.8 99.81 0.75 96.15 3.88 98.48

L3 cache in ARM CCN-508 [40] 16 44
SPB 6560.8 100 0.83 100 4.70 100

Proposed 6541.6 99.71 0.79 95.18 4.54 96.60
* N is the associative (way); t is the Tag width (bit).

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 13,2020 at 00:44:42 UTC from IEEE Xplore. Restrictions apply.

2168-6750 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TETC.2019.2960491, IEEE Transactions on Emerging Topics in Computing

10 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING

copies, failures in two of them can be tolerated. Dual Mod-
ular Redundancy (DMR) uses only two copies, so a single
failure can only be detected. If Quadruple Modular Redun-
dancy (QMR) is used, a single failure can be corrected and
failures in two components can be detected.

For memories, Modular Redundancy targets compo-
nent level failures that affect the entire memory or large
parts of it (for example, failures in the access logic or con-
trol logic); it can additionally be used to correct retention
errors. In this context, an interesting observation is that
when errors are highly asymmetric, most errors, can be
corrected by using DMR. So, when a bit has a different
value in each of the two memories, the logical OR of both
bits is provided as output (Figure 12 a)). This ensures that
“1” to “0” errors (that represent the vast majority) in a sin-
gle module are corrected. The cases in which retention er-
rors cannot be corrected include: i) “1” to “0” errors occur-
ring in both modules; ii) “0” to “1” errors occurring in any
one or both modules. Therefore, for a given bit, the proba-
bility of a retention error that cannot be corrected when us-
ing this approach is given by:

()2 1 2
_ _ _ 2 _ _ _1ret err DMR ret c ret d ret d ret dp p C p p p= + ⋅ ⋅ − + (13)

The same scheme can be extended to Quadruple Mod-
ular Redundancy. In this case, correction is accomplished
when the four values of a bit are two ones and two zeros
indicating that two errors are present. Again, as the “1” to
“0” errors are dominant, we can output a “1”. In this case,
the correction logic is slightly more complex. The four val-
ues are input to a majority gate (which is shown in Figure
12 b)); the threshold of the majority gate is two, i.e., a “1”
is provided as output as long as there are at least two in-
puts of “1”. The cases in which errors cannot be corrected
and an erroneous data is provided as output include: i) “1”
to “0” errors occur in three or all four modules; ii) “0” to
“1” errors occur in two or more modules. When using the
proposed scheme in QMR, the probability of having an in-
correct retention error for a bit is given by:

() ()
()

23 3 4 2 2
_ _ 4 _ _ _ 4 _ _

3 3 4
4 _ _ _

1 1

1

ret err QMR ret c ret c ret c ret d ret d

ret d ret d ret d

p C p p p C p p

C p p p

= ⋅ ⋅ − + + ⋅ ⋅ −

+ ⋅ ⋅ − +
(14)

As example, the error correction capability (in terms of
the probability of an uncorrectable retention error) for the
proposed protection schemes are shown in Figure 13 for
different retention error probabilities (i.e., at different t) in
Figure 3 by assuming “0” to “1” errors account for a negli-
gible fractional part of all retention errors (i.e., pret_c≈pret
and pret_d≈0). Figure 13 shows that the proposed schemes
can correct almost all retention errors during this range of
refresh time.

7 DISCUSSION
In the first case study that focuses on eDRAM-based BFs,

a redundancy-free error-tolerant scheme has been pro-
posed to deal with all possible retention errors (including
single and multiple bit errors) in the eDRAM. This is
achieved by an inversion coding for the BF data, so simply
encoding “1” in the BF data as “0” and “0” as “1“ in the

write operation for the memory. Then asymmetric reten-
tion errors (only changing charged cells to discharged ones)
would only change errors from “0” to “1” but not from “1”
to “0” in the decoded BF array; this increases the false pos-
itive rate (FPR) of the BF. However, BFs have an intrinsic
FPR due to the nature of the data structure. We have mod-
eled the impact of the proposed scheme on the FPR with
the refresh time of an eDRAM. It has been shown that
when the increase is negligible (limited to 1%), the refresh
rate can be significantly improved (for example from 30μs
to 2046μs, the refresh power consumption can be reduced
by 98.5%) and better than for existing error-tolerant
schemes using SEC-DED and 5EC-6ED BCH codes. In
terms of additional overhead introduced by the different
coding schemes, the proposed scheme also has a signifi-
cant advantage both in memory size (saving of 50.0%
memory compared to SEC-DED codes and 250.0% for the
5EC-6ED BCH codes for a memory with 8-bit words), and
protection circuitry (savings of 86.5% in area, 69.7% in de-
lay, 83.3% in power consumption for the encoder, and 94.1%
in area, 83.6% in delay, 95.5% in power consumption for
the decoder to the SEC-DED codes; 94.2% in area, 74.4% in
delay, 95.6% in power consumption for the encoder, and
99.5%% in area, 91.1% in delay, 99.5% in power consump-
tion for the decoder to the SEC-DED codes in a 8-bit words
memory). The proposed scheme is also applicable to other
similar data structures like counting BFs, or count-min

Module 1

Module 2

Decision
Logic

Output result

Signal_error

OR

Traditional
DMR

Decision
Logic

Output result

Signal_error

Majority
Gate

Traditional
QMRModule 1

Module 2

Module 3

Module 4

a) b)

Figure 12 Illustration for the proposed scheme for: a) DMR; b) QMR.

Figure 13 The probability of a retention error that cannot be corrected
by the proposed schemes in DMR and QMR.

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 13,2020 at 00:44:42 UTC from IEEE Xplore. Restrictions apply.

2168-6750 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TETC.2019.2960491, IEEE Transactions on Emerging Topics in Computing

S.LIU ET AL: EXPLOITING ASYMMETRY IN EDRAM ERRORS FOR REDUNDANCY-FREE ERROR-TOLERANT DESIGN 11

sketches.
In the second case study, we have presented a redun-

dancy-free error-tolerant scheme to detect single errors in
eDRAM-based caches that have a valid bit in each entry,
such as Instruction caches (ICs) or Translation Lookaside
Buffers (TLBs). By setting all bits to “0” in the invalid en-
tries when writing them into the memory, no false posi-
tives or false negatives occur as asymmetric retention er-
rors of the eDRAM cannot change the stored “0” to “1”. By
overloading the valid bit to the xor result of the valid bit
with all Tag bits in the valid entries, any retention error is
propagated to the recovered valid bit, hence invalidating
the entry. Therefore, the proposed scheme can only cause
false negatives in the cache, but no data corruption. Com-
pared to the existing single parity bit scheme for single er-
rors in caches, the proposed scheme saves one cell storing
the parity bit in each word, thus reducing the memory size.
In terms of protection circuitry, the proposed also incurs in
a lower overhead (for example, it reduces 1.4% of the area
and 18.9% of the PDP for 24-bit Tags).

In the third case study, we have proposed redundancy-
free schemes for the traditional DMR and QMR. In addi-
tion to retaining single module error detection (single
module error correction and double module error detec-
tion) of DMR (QMR), the asymmetry of retention errors
has been exploited to provide additional error correction
capability (>99.99%) for these errors in all modules by add-
ing an OR logic (majority gate), but still without any addi-
tional memory redundancy.

Moreover, the proposed schemes are also applicable in
the presence of radiation induced soft errors in eDRAM
cells, because these errors are also asymmetric (a change
from “1” to “0” only) as introduced previously. If radiation
affects other parts of the eDRAM circuits (such as the sense
amplifiers) and causing symmetric errors, the proposed
schemes must be combined with other protection tech-
niques for such parts to provide a full error tolerant capa-
bility.

8 CONCLUSION
This paper has exploited the asymmetry of retention er-

rors in eDRAMs for redundancy-free error-tolerant design.
Applications based on eDRAMs that can tolerate false pos-
itives or false negatives have been considered. By combin-
ing asymmetry and false positive/negative error behav-
iors, a comprehensive model has been proposed; eDRAM-
based Bloom Filters (BFs) and eDRAM-based caches have
been analyzed as case studies. It has been shown that these
schemes can efficiently deal with retention errors by intro-
ducing a negligible impact on the false positive rate or false
negative rate; however, they do not need any ECC or par-
ity and can be implemented by simpler decoder and en-
coder circuits than existing coding approaches. Moreover,
the schemes can significantly improve the refresh rate of
the eDRAMs, thus reducing power consumption. The

asymmetry of retention errors has also been used for addi-
tional error correction capability in Modular Redundancy
schemes without introducing memory redundancy.

REFERENCES
[1] J.M. Rabaey, A. Chandrakasan, B. Nikolic, “Digital Integrated

Circuits-A Design Perspective”, 2nd ed, 2003.
[2] C.W. Slayman, “Cache and Memory Error Detection, Correction,

and Reduction Techniques for Terrestrial Servers and Work-
stations”, IEEE Trans. on Device and Materials Reliability, vol.
5, no. 3, pp. 397-404, 2005.

[3] B. Jacob, S. Ng, D. Wang, “Memory Systems: Cache, DRAM,
Disk”, Morgan Kaufmann, 2010.

[4] B. Sinharoy, et al. “IBM POWER8 Processor Core Microarchitec-
ture”, IBM Journal of Research and Development, vol. 59, no. 1,
pp. 2,1-21, 2015.

[5] W.K. Luk and R. Nair, “DRAM Cache with on-Demand Reload”,
U.S. Patent 7,805,658, issued September 28, 2010.

[6] A. Agrawal, A. Ansari, and J. Torrellas, "Mosaic: Exploiting the
Spatial Locality of Process Variation to Reduce Refresh Energy
in on-Chip eDRAM Modules", IEEE 20th International Sympo-
sium on High Performance Computer Architecture (HPCA), pp.
84-95, 2014.

[7] R.C. Baumann, “Radiation-Induced Soft Errors in Advanced
Semiconductor Technologies”, IEEE Trans. Device mater. Re-
liab. vol.5, no.3, pp.301-316, 2015.

[8] B. Narasimham, W.K. Luk, “A Multi-Bit Detection Scheme for
DRAM using Partial Sums with Parallel Counters”, IEEE Inter-
national Reliability Physics Symposium, pp.202-205, 2008.

[9] S. Buchner, A. Campbell, R. Reed, and et.al. “Angular Depend-
ence of Multiple-bit Upsets Induced by Protons in a 16 Mbit
DRAM”, IEEE Transactions on Nuclear Science, vol. 51, no. 6,
pp.3270-3277, 2004.

[10] A. Makihara, H. Shindou, N. Nemoto, and et.al. “Analysis of
Single-Ion Multiple-Bit Upset in High-Density DRAMs”, IEEE
Transactions on Nuclear Science, vol. 47, no. 6, pp. 2400-2404,
2000.

[11] S. Lin and D. J. Costello, “Error Control Coding”, 2nd ed. Eng-
lewood Cliffs, NJ, USA: Prentice-Hall, 2004.

[12] K. Namba, F. Lombardi, “Non-Binary Orthogonal Latin Square
Codes for a Multilevel Phase Charge Memory (PCM)”, IEEE
Trans. on Computers, vol.64, no. 7, pp.2092-2097, 2015.

[13] C. Wilkerson, A. R. Alameldeen, Z. Chishti, W. Wu, D. So-
masekhar, and S.-L. Lu, “Reducing Cache Power with Low-Cost,
Multi-bit Error Correcting Codes”, ACM SIGARCH Computer
Architecture News, vol. 38, no. 3, pp. 83-93, 2010.

[14] P. Emma, W. Reohr, and M. Meterelliyoz, “Rethinking Refresh:
Increasing Availability and Reducing Power in DRAM for
Cache Applications”, IEEE Micro, pp. 47-56, 2008.

[15] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary Cache:
a Scalable Wide Area Web Cache Sharing Protocol”,
IEEE/ACM Trans. on Networking, vol.8, no.3, pp.281-293, 2000.

[16] S. Pontarelli, P. Reviriego and M. Mitzenmacher, "EMOMA: Ex-
act Match in One Memory Access," in IEEE Transactions on
Knowledge and Data Engineering, vol. 30, no. 11, pp. 2120-2133,
2018

[17] G. Cormode and S. Muthukrishnan, “An Improved Data Stream
Summary: The Count-Min Sketch and its Applications”, Journal
of Algorithms, vol.55, no.1, pp.58–75, 2005.

[18] K. Kraft, D.M. Mathew, C. Sudarshan, M. Jung, C. Weis, N.
When, F. Longnos, “Efficient Coding Scheme for DDR4
Memory Subsystems”, ACM, in Proceedings of the Interna-
tional Symposium on Memory Systems, pp.148-157, 2018.

[19] S. Wang, M.N. Bojnordi, X. Guo, E. Lpek, “Content Aware Re-
fresh: Exploiting the Asymmetry of DRAM Retention Errors to
Reduce the Refresh Frequency of Less Vulnerable Data”, IEEE
Trans. Computers, vol.68, no.3, pp.362-374, pp.362-374, 2019.

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 13,2020 at 00:44:42 UTC from IEEE Xplore. Restrictions apply.

2168-6750 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TETC.2019.2960491, IEEE Transactions on Emerging Topics in Computing

12 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING

[20] B. Narasimham, W.K. Luk, “A Multi-Bit Detection Scheme for
DRAM using Partial Sums with Parallel Counters”, IEEE Inter-
national Reliability Physics Symposium, pp.202-205, 2008.

[21] K. Kraft, C. Sudarshan, D.M. Mathew, et al., “Improving the Er-
ror Behavior of DRAM by Exploiting its Z-Channel Property”,
IEEE Design, Automation & Test in Europe Conference & Exhi-
bition (DATE), pp. 1492-1495, 2018.

[22] W. Kong, P.C. Parries, G. Wang, S.S. Iyer, “Analysis of Retention
Time Distribution of Embedded DRAM-A new Method to
Characterize Acrosschip Threshold Voltage Variation”, in Pro-
ceedings of IEEE International Test Conference (ITC 2008), pp.
1-7, 2008.

[23] A. Broder and M. Mitzenmacher, “Network Applications of
Bloom filters: A Survey”, Internet Math., vol. 1, no. 4, pp. 485-
509, 2003.

[24] Y.Kanizo, D.Hayand, I.Keslassy,“Maximizing the Throughput
of Hash Tables in Network Devices with Combined
SRAM/DRAM Memory”, IEEE Transactions on Parallel and
Distributed Systems, vol. 26, no. 3, pp. 796-809, 2015.

[25] B. Bloom, “Space/Time Tradeoffs in Hash Coding with Allow-
able Errors”, Comm. ACM, vol. 13, no. 7, pp. 422-426, 1970.

[26] E. Safi, A. Moshovos, A. Veneris, “L-CBF: A Low-Power, Fast
Counting Bloom Filter Architecture”, IEEE Trans. on Very
Large Scale Integ. (VLSI) Systems, vol.16, no.6, pp.628-638, 2008.

[27] S. Mukherjee, “Architecture Design for Soft Errors”, Morgan
Kaufmann, 2008.

[28] M. Jimeno, K. J. Christensen, A. Roginsky. "Two-tier Bloom fil-
ter to achieve faster membership testing", Electronics Letters vol.
44, no. 7, pp.503-504, 2008

[29] N. Mcvicar, C.C. Lin, S. Hauck. "K-mer counting using Bloom
filters with an FPGA-attached HMC." In 2017 IEEE 25th Annual
International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pp. 203-210., 2017.

[30] P. Reviriego, S. Salvatore, J.A. Maestro, M. Ottavi. "A Method to
Protect Bloom Filters from Soft Errors", IEEE International Sym-
posium on Defect and Fault Tolerance in VLSI and Nanotech-
nology Systems (DFTS), pp. 80-84, 2015.

[31] A. Sánchez-Macián, P. Reviriego, J.A. Maestro, S. Liu, “Single
Event Transient Tolerant Bloom Filter Implementations”, IEEE
Trans. on Computers, vol. 66, no. 10, pp. 1831-1836, 2017.

[32] J. Kim, S. Kim, and Y. Lee. "SimTag: exploiting tag bits similarity
to improve the reliability of the data caches", Proceedings of the
Conference on Design, Automation and Test in Europe. Euro-
pean Design and Automation Association, 2010.

[33] S. Wang, J. Hu, and S. G. Ziavras. "Replicating tag entries for
reliability enhancement in cache tag arrays", IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 20, no. 4,
pp. 643-654, 2012.

[34] S. Liu, P. Reviriego and L. Xiao, "Evaluating Direct Compare for
Double Error Correction Codes", IEEE Transactions on Device
and Materials Reliability, vol.7, no.4, pp. 802-804, 2017.

[35] A. Gendler, A. Bramnik, A. Szapiro and Y. Sazeides, “Don’t Cor-
rect the Tags in a Cache, Just Check Their Hamming Distance
From the Lookup Tag”, IEEE International Symposium on High
Performance Computer Architecture (HPCA), pp.571-582, 2018.

[36] J. Martínez, J.A. Maestro, P. Reviriego, "A Scheme to Improve
the Intrinsic Error Detection of the Instruction Set Architecture",
IEEE Computer Architecture Letters, vol. 16, no 2, pp. 103-106,
2017.

[37] C.C. Huang, V. Nagarajan, “ATCache: Reducing DRAM Cache
Latency via a Small SRAM Tag Cache”, ACM, Proceedings of
the 23rd international conference on Parallel architectures and
compilation, pp. 51-60, 2014.

[38] “Arm Cortex-A76 Core Technical Reference Manual”, Revision:
r3p0, https://developer.arm.com, 2016.

[39] K.H. Yang, H.J. Tsai, C.Y. Li, et.al. “eTag: Tag-Comparison in
Memory to Achieve Direct Data Access based on eDRAM to Im-
prove Energy Efficiency of DRAM Cache”, IEEE Trans. on Cir-
cuits and Systems I: Regular Papers, vol.64, no.4, pp.858-868,
2017.

[40] “Arm CoreLink CCN-508 Cache Coherent Network Technical
Reference Manual”, Revision: r0p1, https://developer.arm.com,
2014

[41] S. Baeg, S. Wen, and R. Wong, “SRAM Interleaving Distance Se-
lection with a Soft Error Failure Model”, IEEE Trans. Nucl. Sci.,
vol. 56, no. 4, pp. 2111–2118, 2009.

[42] N. Kanekawa, E.H. Ibe, T. Suge and Y. Uematsu, “Dependabil-
ity in Electronic Systems”, Springer Science & Business Media,
New York, 2011.

[43] E. Fujiwara, “Code Design for Dependable Systems”, 1st ed, Ho-
boken, NJ, USA: Wiley, 2006.

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 13,2020 at 00:44:42 UTC from IEEE Xplore. Restrictions apply.

