
1

Toward Energy-Efficient Stochastic Circuits
using Parallel Sobol Sequences

Siting Liu, Jie Han, Senior Member, IEEE

Abstract—Stochastic computing (SC) often requires long stochastic sequences and, thus, a long latency to achieve accurate
computation. The long latency leads to an inferior performance and low energy efficiency compared to most conventional binary
designs. In this paper, a type of low-discrepancy sequences, the Sobol sequence, is considered for use in SC. Compared to the use of
pseudorandom sequences generated by linear feedback shift registers (LFSRs), the use of Sobol sequences improves the accuracy of
stochastic computation with a reduced sequence length. The inherent feature in Sobol sequence generators enables the parallel
implementation of random number generators with an improved performance and hardware efficiency. In particular, the underlying
theory is formulated and circuit design is proposed for an arbitrary level of parallelization in a power of 2. In addition, different strategies
are implemented for parallelizing combinational and sequential stochastic circuits. The hardware efficiency of the parallel stochastic
circuits is measured by energy per operation (EPO), throughput per area (TPA) and run time. At a similar accuracy, the 8× parallel
stochastic circuits using Sobol sequences consume approximately 1% of the EPO of the conventional LFSR-based non-parallelized
circuits. Meanwhile, an average of 70 (up to 89) times improvements in TPA and less than 1% run time are achieved. A sorting network
is implemented for a median filter (MF) as an application. For a similar image processing quality, a higher energy efficiency is obtained
for an 8× parallelized stochastic MF compared to its binary counterpart.

Index Terms—Stochastic computing, low-discrepancy sequences, Sobol sequences, parallel Sobol sequence generator.

F

1 INTRODUCTION

S TOCHASTIC computing (SC) is an unconventional com-
puting paradigm proposed in the 1960s [1]. In a typical

SC system, the operands are encoded by random binary
bit streams or stochastic sequences. Arithmetic operations
are performed by bit-wise operations on the stochastic se-
quences. Different from the complex logic circuits required
for implementing binary arithmetic, basic SC elements are
very simple for arithmetic operations. For instance, an AND
gate can perform multiplication in the unipolar representa-
tion, whereas a binary array multiplier costs considerable
hardware resources. SC is also highly fault-tolerant against
bit-flip errors because a bit flip in a long stochastic sequence
has little effect on the computed result. However, a bit
flip on the most significant bit of a binary number can
dramatically change the result.

To encode a number x in SC, it is firstly converted
to a probability p within [0, 1]. Then, p is encoded into a
stochastic sequence by using a stochastic number generator
(SNG). A conventional SNG is shown in Fig. 1. The random
number generator (RNG) is usually implemented by a linear
feedback shift register (LFSR). An N -bit LFSR generates
pseudorandom numbers from 1 to 2N − 1 with a period
of 2N − 1, or from 0 to 2N − 1 with a period of 2N if the all-
zero state is added [2]. These pseudorandom numbers can
be considered as uniformly distributed random numbers
between 0 and 2N − 1. The probability, p, is represented
by an N -bit binary number normalized by 2N . Then, by

• Siting Liu and Dr. Jie Han are with the Department of Electrical and
Computer Engineering, University of Alberta, Edmonton, AB , T6G
1H9, Canada.

Manuscript received September 4, 2017.

Random number
generator (RNG)

x

Stochastic sequence
encoding x
0101100…

Comparator
B

A
A<B

N

N

Fig. 1. A stochastic number generator (SNG).

comparing the pseudorandom number with the binary
representation of p, a stochastic sequence is generated; a
random bit is ’1’ if 2N · p is larger than the random number
or ’0’ otherwise. The probability of each bit being ‘1’ in the
stochastic sequence is then approximately p.

In the unipolar representation, p is directly assigned as
the probability, so the unipolar representation deals with
values in [0, 1]. In the bipolar representation, p = (x+ 1)/2,
such that a value x in [−1, 1] is encoded. Other coding
schemes are rarely used due to the complicated conversion
scheme. Thus, they are not discussed in this paper.

Although an SC circuit can be simple, its performance
is undermined by the required sequence length [3]. Since
each bit is generated in a clock cycle, it takes L clock
cycles to fully generate and process a stochastic sequence
with L bits. As a result, the energy consumption increases
proportionally with L and the throughput decreases in an
inversely proportional manner with L; therefore, a large L
leads to a low energy efficiency. The accuracy of SC can be
improved by increasing the sequence length, but the error
only decreases with O(1/

√
L) [4].

In [5], the Halton sequence is introduced for use in
SC. This low discrepancy (LD) sequence requires a shorter
length for achieving the same accuracy compared to LFSR-

2

generated pseudorandom sequences. When several inde-
pendent sequences are required, however, the generation
of Halton sequences relies on the use of counters with
different radices, thus a base conversion becomes necessary
for a binary circuit. The base conversion imposes additional
hardware overhead on the stochastic circuit. In [6], the Sobol
sequence is introduced to replace LFSR-generated sequences
to improve the efficiency of an SC circuit. It is shown that in
most cases, the use of Sobol sequences leads to a better en-
ergy efficiency with a similar accuracy compared to the use
of LFSR-generated sequences. However, the improvement
is not as significant when compared to the use of Halton
sequences.

In this paper, the inherent feature of Sobol sequence gen-
eration is exploited for an efficient parallel implementation
of the generator. In the proposed 2m× (m = 0, 1, 2, . . .)
parallel generator, only a few extra XOR gates are required
to implement the parallelization. Both parallel combina-
tional and sequential circuits are then designed for stochas-
tic computation. With 8× parallelization, a circuit using
Sobol sequences consumes approximately 1% of the energy
consumption of an LFSR-based circuit with more than 49
times of the throughput per area (TPA) to achieve a similar
accuracy. A stochastic median filter is implemented for
removing noise in images. At a similar quality, the parallel
stochastic Sobol design achieves a higher energy efficiency
than its binary counterpart.

The remainder of this paper is organized as follows.
Section 2 introduces the background. The parallel Sobol
sequence generator design is discussed in section 3. Par-
allel stochastic circuit designs are elaborated in section 4.
The hardware evaluation and comparison are presented in
section 5 for several basic stochastic circuits. In section 6,
the proposed parallel Sobol circuits are used in a stochastic
sorting network to implement a median filter. Section 7
concludes the paper.

2 REVIEW

2.1 Low-discrepancy (LD) Sequences

LD sequences were first proposed to accelerate the con-
vergence process of Monte-Carlo (MC) integration [7], [8].
MC integration requires S-dimensional (or S-independent)
random sequences to estimate an S-dimensional numeri-
cal integration. Using random sequences with a sufficient
length, MC integration can provide an estimate of the result
for a numerical integration. It has been shown that a lower
discrepancy in the random samples leads to a smaller error
in MC integration [7]. An SC circuit can be considered as an
MC problem. It is shown in [5] that a stochastic circuit using
Halton sequences as LD sequences produces a smaller error
than a circuit using pseudorandom sequences.

Discrepancy is a measure indicating how evenly a ran-
dom sequence is distributed in the sample space. For a
random sequence P , it can be quantitatively measured by
the star discrepancy D∗(P). For a random sequence with L
random points, it is given by [5], [7]

D∗(P) = max
B

∣∣∣∣∣A(B;P)

L
− λ(B)

∣∣∣∣∣, (1)

whereB is any s-dimensional region in the form
∏s

i=1[0, ui)
within an s-dimensional unit cube

∏s
i=1[0, 1]; A(B;P) is a

function counting the number of points satisfying P ∈ B,
and λ(B) is the Lebesgue measurement of B: it is the length
of B if s = 1 or the area of B if s = 2.

The condition for being an LD sequence is that D∗(P)
reaches a convergence speed of O(log(L)s−1/L). Thus, a
longer sequence (with a larger L) and/or fewer independent
sequences (with a smaller s) imply a smaller error in an
SC circuit. For a small s and a large L, the error in MC
integration asymptotically converges to O(1/L), whereas
it is approximately O(1/

√
L) for using pseudorandom se-

quences. Thus, the stochastic circuits using LD sequences
can produce more accurate results with shorter sequences.

Several methodologies have been developed to generate
different types of LD sequences, including Halton, Sobol
and Faure sequences. Software-based generation methods
have been developed, but few have been implemented in
hardware.

2.2 Sobol Sequence Generation

A direction vector array (DVA) {Vk} (k = 0, 1, . . . , N−1) is a
group of intermediate variables; these variables can be gen-
erated by using primitive polynomials [9]. At least dlog2 Le
direction vectors (DVs) are required for generating a Sobol
sequence with a length of L. Uncorrelated Sobol sequences
can be generated using different DVAs derived from various
primitive polynomials. An algorithm for generating Sobol
sequence with a DVA is elaborated in [9] and is briefly
summarized in Fig. 2. In Fig. 2, {Ri} (i = 0, 1, 2 . . . , L−1) is
a Sobol sequence with length L, and “LSZ” stands for “least
significant zero”.

At each iteration of the loop, the ith quasirandom num-
ber, Ri, is XOR-ed with one of the DVs, Vk, to produce Ri+1.
The index k is determined by the position of the LSZ in
the binary form of i. For example, if i = 11, i is firstly
converted to the binary representation (1011)2. Then, the
LSZ of i is at bit 2, thus k = 2. Accordingly, V2 in the DVA
is XOR-ed with R11 to produce R12. The LSZ detection is
of complexity O(logN) using shift-and-count in a software
implementation, whereas a priority encoder can detect the
LSZ in hardware. The truth table of a 4-to-2 priority encoder
for the LSZ detection is shown in Table 1. “X” stands for
“don‘t care”.

For the algorithm in Fig. 2, a hardware Sobol sequence
generator is proposed in [10], as shown in Fig. 3. The counter
counts i in the for-loop. The priority encoder is used to
detect the LSZ. The obtained index k is then passed to
the component storing the values in DVA for retrieving Vk.
The XOR gates and D flip-flops (FFs) are used to perform

1: R0 = 0; . Initialization
2: for i = 0 to L− 2 do
3: k =LSZ position of i; . Detection of LSZ
4: Ri+1 = Ri ⊕ Vk;
5: end for;
6: return {Rn}, n = 0, 1, . . . , L− 1

Fig. 2. Sobol sequence generation algorithm.

3

TABLE 1
Truth table of a 4-to-2 priority encoder for LSZ detection

Inputs Outputs
D3 D2 D1 D0 Q1 Q0

X X X 0 0 0
X X 0 1 0 1
X 0 1 1 1 0
0 1 1 1 1 1

Ri+1 = Ri ⊕ Vk for each iteration of the for-loop. An N -bit
generator can produce non-repeated Sobol sequences with
a length of L = 2N . Parallelization can be implemented
on the Sobol sequence generator in Fig. 3, however only a
maximum level of 4× is achieved in [10].

3 PARALLEL SOBOL SEQUENCE GENERATOR

A solution to the long-latency problem is to parallelize the
computation by duplicating the SNGs and stochastic cir-
cuits. However, the energy efficiency may not be improved
because the power consumption would be increased such
that the energy consumption would remain nearly the same.
Additionally, the hardware cost would also be increased.
However, the Sobol sequence generation is inherently par-
allelizable so that better energy efficiency can be obtained
by implementing a high degree of parallelism.

3.1 Formulation
In what follows, the unique feature of Sobol sequence
generation is exploited for parallelization. Specifically, the
LSZs of continuous non-negative integers follow a regular
pattern. For the ease of interpretation, let L(i) indicate the
LSZ position of i in its binary format (i = 0, 1, . . .). The
LSZs of continuous integers are listed in Table 2. Following
the algorithm in Fig. 2, the pattern of the LSZs is explored
to generate multiple or multi-dimensional Sobol sequences.

As shown in Table 2, L(i) is “nearly periodic” with a
period of 8, except for the i‘s with a remainder of 7 when
divided by 8, i.e., i ≡ 7 mod 8. Next, we show that L(i)

Counter
(starting

from i=0)

Priority
encoder

index
k

DVA

V3

V2

V1

V0

…

Ri

Vk
Ri+1

D-FFs

LSZ detection and
index generation

k Vk

0 10000000
1 11000000
2 11100000
3 11110000
4 11111000
5 11111100

… …

Example of a DVAWorking example of a Sobol sequence generator

*The D-flip flops are reset for an extra clock cycle to compensate
the clock cycle required to fetch the DV.

CLK i k Vk R i R i+1

reset 0 0 00000000 00000000 00000000
1 1 1 10000000 00000000 10000000
2 2 0 11000000 10000000 01000000
3 3 2 10000000 01000000 11000000
4 4 0 11100000 11000000 00100000
5 5 1 10000000 00100000 10100000

… … … … … …

(a)

(b) (c)

Fig. 3. (a) A Sobol sequence generator, adapted from [10]. (b) An
example is given by using (c) the designated DVA. The example reflects
actual hardware operation instead of a mathematical model.

TABLE 2
LSZ positions of continuous non-negative integers

i 0 1 2 3 4 5 6 7
L(i) 0 1 0 2 0 1 0 3
i 8 9 10 11 12 13 14 15

L(i) 0 1 0 2 0 1 0 4
i . . .

L(i) . . .
i 8j 8j+1 8j+2 8j+3 8j+4 8j+5 8j+6 8j+7

L(i) 0 1 0 2 0 1 0 L(j)+3

is “nearly periodic” with a period of 2m (m = 0, 1, 2, . . .),
except for the i‘s that i ≡ (2m − 1) mod 2m. It is proven
that the LSZ for the residue class modulo 2m is

L(i) =


L(j) +m when i ≡ (2m − 1) mod 2m,

for j = bi/2mc.
L(l) when i ≡ l mod 2m,

l = 0, 1, . . . , 2m − 2.

(2)

An example of (2) is shown in Fig. 4. The detailed
mathematical proof is provided as follows.

Lemma 3.1. L(i) = k is equivalent to [10]:

i ≡ (2k − 1) mod 2k+1, (k = 0, 1, . . .). (3)

Fig. 5 shows an example for Lemma 3.1.

Corollary 3.1.1. For a number i = 2m · j + 2m − 1, (i, j,m ∈
Z≥0) or i ≡ 2m − 1 mod 2m, L(i) = L(j) +m.

Proof. Let L(j) = k. Per Lemma 3.1, we have j ≡ 2k − 1
mod 2k+1, that is, j = h · 2k+1 + 2k − 1, h ∈ Z≥0, so that
i = 2m · j + 2m − 1 = 2m · (h · 2k+1 + 2k − 1) + 2m − 1 =
h · 2m+k+1 + 2m+k − 1. Therefore,

i ≡ (h · 2m+k+1 + 2m+k − 1) mod 2k+m+1

≡ (2m+k − 1) mod 2k+m+1.
(4)

By applying Lemma 3.1, we obtain L(i) = m+ k = L(j) +
m.

S0 S1 Sk-1 Sk Sk＋1 SN-2 SN-1…………

x=1

x=0

 2n-state Counter
INC

DEC

RNG

>
Seqout

A

B Seqout

(a) (b)

comparator

A

B

+

-

Countout

Countout

A

B

+

-

+

-

A

B

A/B

(c) (d)

A

B/(A+B)

J

K

QB C A

B

C

(a) (b)

Up counter

s

Deterministic “stochastic”
sequence encoding s

1,1,1,...0,0,…
Comparator

Y

X
X<Y

n-bit

n-bit

1,1,1,……0,0,…

(a)

(b)

11110000…
p1=0.5

11000000…
p2=0.25

11000000…

p=min{p1,p2}=0.25

(c)

Case 1: the last m bits are all ‘1’s Case 2: the last m bits are not all ‘1’s

L(i) = L(j) + m L(i) = L(l)

i = (XX…XX 111…1)2

m ‘1’sHigher bits, j

i = (XX…XX X…X)2

Lower m bits, l

+

-

Sd,i
wi

Sy,i

Sx,i-k

x=0 x=0 x=0 x=0 x=0 x=0

Raw data

(b)(a)

j = i/2m i = l mod 2m

Fig. 4. LSZ position for the residue class modulo 2m: (a) case 1: the
lower m bits are all ‘1’s; (b) case 2: the lower m bits are not all ‘1’s.

L(i) = L(j) + m L(i) = L(l)

i = (XX…XX 111…1)2

m ‘1’sHigher bits, j

i = (XX…XX X…X)2

Lower m bits, l

(b)(a)

j = i/2m i = l mod 2m

i = (XX…X 0 111…1)2

the kth bit

k ‘1’sDon’t-care
bits

2k-1

i ≡ 2k-1 mod 2k+1

L(i)=k

Fig. 5. An illustration of Lemma 3.1.

4

Corollary 3.1.2. For a number i ≡ l mod 2m, (i,m, l ∈
Z≥0, l 6= 2m − 1), L(i) = L(l).

Proof. Since i ≡ l mod 2m and l 6= 2m − 1, 0 ≤ l ≤ 2m − 2,
and i can be represented by i = 2m · j + l, j = 0, 1, Let
L(l) = k. First, it is clear that k < m, which can be proved
by contradiction. Per Lemma 3.1, we also have: l ≡ 2k − 1
mod 2k+1. The LSZ of i can be obtained by

i ≡ (2m · j + l) mod 2k+1. (5)

Since m > k, and m, k ∈ Z≥0, so m ≥ k + 1. Then, the first
term on the right hand side of (5) can be removed due to
(2m · j) ≡ 0 mod 2k+1. (5) becomes

i ≡ l mod 2k+1

≡ 2k − 1 mod 2k+1.
(6)

Again, we obtain L(i) = k = L(l) with the application of
Lemma 3.1.

By Corollaries 3.1.1 and 3.1.2, (2) is explained.

3.2 Parallelized Sobol SNG and probability estimator
As per Table 2, it is clear that L(i) = L(0) = 0 for every
even number i, because an even number ends with ’0’ in the
binary format, which is the second case of (2) when m =
1. Therefore, the first DV, V0, can be pre-loaded instead of
being computed for every other clock cycle as shown in Fig.
3, i.e., to perform Ri+1 = Ri ⊕ V0. As per (2), when i is an
odd number, the same LSZ detection and index generation
unit can be used, with the counter counting j = bi/2c, (i =
1, 3, 5, . . . so j = 0, 1, 2, . . .) instead of counting i. The ’+m’
term (or ’+1’ in this case) in (2) can be offset by shifting the
index of DVA instead of changing the LSZ detection and
index generation unit as in [10]. Thus, the index of DV Vk,
k, loaded from the shifted DVA yield k = L(j)+1, which is
in accordance with the first case in (2). The XOR gate at the
bottom is used to perform Ri+2 = Ri+1⊕Vk. Accordingly, a
2× parallel Sobol sequence generator is designed as shown
in Fig. 6.

A 4× parallel Sobol sequence generator can similarly be
constructed for m = 2. When i ≡ l mod 4 (l = 0, 1, 2),
as per (2), the LSZ position for i, L(i), yields L(i) = L(l).
Equivalently,

L(i) =


0 when i ≡ 0 mod 4,

1 when i ≡ 1 mod 4,

0 when i ≡ 2 mod 4.

(7)

Accordingly, V0 and V1 are preloaded to perform the XOR
operations. When i ≡ 3 mod 4, i.e., i = 3, 7, 11, . . . , the
shifted DVA produces Vk with k = L(i) = L(j) + 2, where
j = bi/4c. The counter in Fig. 7 is used for counting j
(j = 0, 1, . . .). A 4× parallel Sobol sequence generator is
designed and the diagram is shown in Fig. 7.

Similarly, an arbitrary level of 2m× (m = 3, 4, . . .)
parallelization can be implemented by exploring the reg-
ular pattern of the LSZ positions. Only several additional
XOR gates are required to implement the parallelization.
When multiple Sobol sequences are required, a second DVA
different from the existing one is inserted, and so are the
XOR gate array and the D-FFs. The LSZ detection and index

Working example of a 2× parallel Sobol sequence generator

*The D-flip flops are reset for an extra clock cycle to compensate the clock cycle required to retch the DV.
*The DVA used is the same as the one in Fig. 3(c).

Counter
(starting

from j=0)

Priority
encoder

index
k

Shifted
DVA

V4

V3

V2

V1

…

Ri

Ri+1

D-FFs
LSZ detection and
index generation

V0

Ri+2
Vk+1

CLK i k R i V0 Ri+1 Vk+1 R i+2

reset 0 0 00000000 10000000 10000000 00000000 10000000
1 1 1 00000000 10000000 10000000 11000000 01000000
2 2 0 01000000 10000000 11000000 11100000 00100000
3 3 2 00100000 10000000 10100000 11000000 01100000
4 4 0 01100000 10000000 11100000 11110000 00010000
5 5 1 00010000 10000000 10010000 11000000 01010000

… … … … … … … …

(a)

(b)

Fig. 6. (a) Proposed 2× parallel Sobol sequence generator. The D-
FFs at the final stage are used for recursively generating the Sobol
sequence. (b) A working example shows how the generator works.

generation components can be shared since the LSZs are
the same for different Sobol sequence generations [10]. A
generator for two uncorrelated Sobol sequences is shown in
Fig. 8.

An SNG is composed of an RNG and a comparator.
Similar to Fig. 1, a Sobol SNG can be implemented by an
N -bit Sobol sequence generator and a comparator. For a
parallel SNG, 2m comparators are required to implement
2m× parallelization, and 2m stochastic sequences encoding
the same value are generated. Because the circuit for gener-
ating additional Sobol sequences is small (using a few XOR
gates), the hardware cost of the comparators will dominate,
especially when the level of parallelization is high. A 2m×
parallel Sobol SNG is shown in Fig. 9.

The probability estimator (PE) can be implemented by
an accumulative parallel counter (APC) as proposed in [11].
The APC can take multiple stochastic sequences at one
clock cycle and obtain the total number of ‘1’s in parallel
stochastic sequences. The diagram is shown in Fig. 10.

4 PARALLEL STOCHASTIC CIRCUITS

4.1 Basic Computing Elements
To compare the hardware efficiency of using different types
of random sequences in SC, several basic stochastic elements

Counter
(starting

from j=0)

Priority
encoder

index
k

Shifted
DVA

V5

V4

V3

V2

…

Ri

Ri+1

LSZ detection and
index generation

V0

Ri+2

D-FFs

V1
Ri+3

Ri+4

V6

Vk+2

Fig. 7. Proposed 4× parallel Sobol sequence generator.

5

LSZ detection and
index generation

Shifted
DVA 1

index k Shifted
DVA 2

R1

XOR
arrays

D-FFs

R2

XOR
arrays

D-FFs

Fig. 8. Two uncorrelated Sobol sequences are generated by the same
LSZ detection and index generation component, but different DVAs.

N-bit width
2m× parallel Sobol
sequence generator

Ri+1

Ri+2

A

B
A<B

A

B
A<B

A

B
A<B

Round(p×2N)
N-bit width

2m× stochastic
sequences encoding p

2m-Comparator
array

…

…

Ri+2m

…

Fig. 9. A 2m× parallel Sobol SNG.

are considered: (a) an AND gate implementing a multiplier;
(b) a multiplexing circuit computing the Bernstein polyno-
mial [12] as a high-dimensional case; (c) a divider based
on stochastic integrator (with an up/down counter) as a
stochastic sequential element. The schematics of the circuits
are shown in Fig. 11.

In Fig. 11(a), given uncorrelated stochastic sequences
encoding x1 and x2, the probability of the output of the
AND gate is y = x1x2 in the unipolar representation. The
multiplexing circuit in Fig. 11(b) is used to calculate an
N th order Bernstein polynomial f(x) =

∑N
i=0 ziBi,N (x),

where Bi,N (x) =
(N
i

)
xi(1 − x)N−i. The selection signal

is produced by a binary adder summing up the indepen-
dent stochastic bit streams encoding x. A stochastic divider
employs the converged value of the up/down counter to
estimate the quotient of two numbers [13]. As shown in Fig.
11(c), when an equilibrium state is reached, the probabilities
of counting-up and counting-down are equal.

4.2 Parallel Computing Elements

4.2.1 Parallel combinational elements

The implementation of parallel stochastic combinational
elements is straightforward. In general, 2m duplicates of
the original stochastic circuit can implement 2m× paral-

2m-to-(m+1)
compressor…

2m× parallel
stochastic
sequences

 +

Accumulator

Fig. 10. An accumulative parallel counter (APC) adapted from [11].

P1
Stochastic
sequence

P2
Stochastic
sequence

RNG

P1/P2

P1/P2
Stochastic
sequence

B

A
A<B Up/down

Counter
inc

dec

MUX

+…

…

SNG
Array

x
x

x
z0
z1

zN

y

(b) A multiplexing circuit
implementing Bernstein polynomials

SNGs
x1

x2

y=x1x2

(a) A unipolar
stochastic multiplier

∑x

Binary number
(c) A stochastic divider

Fig. 11. Basic stochastic elements for hardware efficiency evaluation.

lelization. Fig. 12 shows a 4× unipolar stochastic multiplier,
which is implemented by four duplicates of the AND gate.

Similarly, a parallel stochastic Bernstein polynomial cir-
cuit can be implemented by duplications.

4.2.2 Parallel sequential elements

Stochastic sequential elements mainly consist of two cat-
egories: finite state machine (FSM)-based and stochastic
integrator-based. For the FSM-based circuits, the function-
alities are based on the theory of Markov chains, that is,
the current state of the FSM is only directly related with its
last state. This type of circuits requires that each bit in the
input stochastic sequence is independently generated from
one clock cycle to another in a temporal manner. However,
the bits in a Sobol sequence are generated from the previ-
ous bits, so it violates the independence requirement and
will not produce accurate results. For example, a stochastic
tanh (Stanh) circuit using a Sobol sequence creates a hard-
threshold function instead of an S-shaped curve as shown in
Fig. 13. However, the use of Sobol sequences improves the
accuracy of stochastic integrator-based circuits. The stochas-
tic divider is considered as an illustrative example.

Stochastic
sequences

4× Sobol
SNG

PE

4× stochastic
multipliers

opA

opB

Fig. 12. A 4× unipolar stochastic multiplier. The SNG generates parallel
stochastic sequences for the multiplier and multiplicand, opA and opB,
respectively. PE stands for a probability estimator.

6

S0 S1 S2 S3 S4 S5

X=0X=0X=0X=0X=0

X=1 X=1 X=1 X=1 X=1

Y=0 Y=1

X=0

X=1

Stochastic tanh
(Stanh) circuit

X Y

X: Stochastic sequence
encoding x
Y: Stochastic sequence
encoding y

y

x

(a)

(b)

(b)

Fig. 13. Using Sobol sequences in the FSM-based Stanh circuit pro-
duces inaccurate results: (a) the state transition graph of Stanh, (b)
the results of tanh(3x) computed by using Sobol and LFSR-generated
sequences. x is encoded by the stochastic sequence X, while y is
encoded by the sequence Y.

Because it does not increase the convergence speed of a
stochastic divider by simply duplicating the circuit, the par-
allelization is implemented by doubling the input sequences
of the up/down counter to accelerate the computation as
shown in Fig. 14. To help understand the underlying theory,
the mathematical model of a stochastic divider is analyzed
as follows.

In the stochastic divider in Fig. 11(c) [13], the com-
putation of the quotient relies on the convergence of the
stochastic integrator until its equilibrium state is reached.
Let p1,i, p2,i and qi be the ith bit in the stochastic sequences
encoding P1, P2 and P1/P2. Let the integer stored in the
N -bit counter be Yi. The probability value carried by the
counter is then yi = Yi/2

N , where N is the bit width of
the up/down counter. The AND gate serves as a stochastic
multiplier, and the output of the AND gate is p2,i · qi. The
up/down counter is updated by the rule [14]:

Yi+1 = Yi + p1,i − p2,i · qi. (8)

If the initial value stored in the counter is Y0, the value
of Yk at an arbitrary kth clock cycle is obtained by accumu-

P1

P2

Parallel
Sobol SNG

P1/P2
2× sequence

A

B
A<B

 Up/down Counter
INC

DEC

Parallel Sobol sequence
generator

A

B
A<B

Parallel
Sobol SNG

+

+

Half adder 2× Stochastic
sequences

encoding P2

2× Stochastic
sequences

encoding P1

Fig. 14. A 2× parallel stochastic divider.

lating (8) for i = 0, 1, . . . , k − 1 as

Yk = Y0 +
k−1∑
i=0

(p1,i − p2,i · qi). (9)

Additionally, the sequence {qi} is generated by compar-
ing the number stored in the counter and the uniformly
distributed random number generated by the RNG, in a
similar manner as an SNG, so the expectation of qi is
E[qi] = yi = Yi/2

N . Then, the expectation of Yk is given
by

E[Yk] = Y0 +
k−1∑
i=0

(P1 − P2yi). (10)

Substituting Yk and Y0 by yk and y0, (10) becomes

E[yk] = y0 +
1

2N

k−1∑
i=0

(P1 − P2yi). (11)

The Euler method is a first-order iterative algorithm
solving an ordinary differential equation (ODE). For an ODE
dy(t)

dt = f(t), a one-step solution is calculated from the
previous estimate

ŷi+1 = ŷi + hf(ti), (12)

where h is the step size and ti = hi. ŷi is the Euler numerical
solution at the ith step. Given an initial condition of an
ODE y0, the kth step numerical solution is calculated by
accumulating (12) through i = 0, 1, . . . , k − 1, such that

ŷk = y0 + h
k−1∑
i=0

f(ti). (13)

By comparing (11) and (13), it can be seen that the
stochastic integrator of the divider provides an unbiased
estimate to the Euler solution of the ODE:

dy(t)

dt
= P1 − P2y(t), (14)

with a step size of h = 1/2N . By solving (14) analytically,
the convergence process of the counter is approximated by

y(t) =
P1

P2
− 1

P2
(P1 − P2y0)e

−P2t, (15)

where t is discretized to the number of clock cycles, i.e.,
ti = h·i = i/2N , i = 0, 1, . . . and y0 is set to the initial value
of the counter. As t approaches infinity, the exponential term
approaches 0 so that y(t) converges to the quotient of P1 and
P2. The convergence process is governed by an exponential
function, and the speed of convergence is determined by the
exponent.

The convergence process of the proposed parallel
stochastic divider in Fig. 14 can similarly be evaluated. The
expectation of the “INC” input parallel stochastic sequences
can be obtained from the distribution of

∑
P1 in Table 3, as

E[INC] = 0 × (1 − P1)
2 + 2P1(1 − P1) + 2 × P 2

1 = 2P1.
Similarly, E[DEC] = 2P2y(t). Then the expectation of the
value stored in the counter at the kth clock cycle is given by

E[Yk] = Y0 +
k−1∑
i=0

(2P1 − 2P2yi). (16)

7

TABLE 3
Probability distribution of

∑
P1.

∑
P1 0 1 2

probability (1− P1)2 2P1(1− P1) P 2
1

Due to (16), the parallel stochastic divider actually solves

dy(t)

dt
= 2P1 − 2P2y(t). (17)

The solution for (17) is

y(t) =
P1

P2
− 1

P2
(P1 − P2y0)e

−2P2t. (18)

Compared to (15), the exponent is doubled, so the conver-
gence process of the 2× parallel divider design is twice as
fast as the one without using any parallelization.

4.2.3 Convergence time of a stochastic divider
The time when the value of y(t) converges, referred to as
the convergence time, can be estimated by (15) or (18).
Since the value stored in the counter is an N -bit number,
the resolution is 1/2N for encoding a probability in [0, 1].
When the absolute value of the exponential term in (15) (or
(18)) is smaller than the resolution of the counter, the state
of the counter is considered converged. The convergence
time can then be estimated. Additionally, both the divisor
and dividend are shifted to the left by the same number
of bits such that the MSB of the divisor is ‘1’. By doing
so, the divisor, P2, is amplified, so that the term containing
the exponential expression in (15) or (18) approaches to 0
faster, while the quotient is not changed. Assume that the
convergence time is tconv , an inequality is composed to find
tconv for the original stochastic divider as per (15),∣∣∣∣(P1 − P2y0)

1

P2
e−P2tconv

∣∣∣∣ < 1

2N
. (19)

By solving the inequality, tconv is estimated to be

tconv ≥
1

P2
(N log 2 + log

∣∣∣∣P1 − P2y0
P2

∣∣∣∣) (20)

This approach is used for estimating the run time of a
stochastic divider. Also, it can be applied to any stochas-
tic integrator-based circuits, whose convergence follows an
exponential function.

5 EXPERIMENTS AND RESULTS

5.1 Metrics
The performance of the SC elements are examined by energy
per operation (EPO), throughput per area (TPA) [15] and
run time. The root-mean-squared error (RMSE) is used to
measure the accuracy.

Given the sequence length L and level of parallelization
P for a stochastic arithmetic operation, the EPO for an SC
element can be calculated by

EPO = Total Power× Tclk × L/P, (21)

where Tclk is the clock period and power is measured at
the corresponding Tclk. P = 1 when no parallelization
is applied. Similarly, the EPO of an SNG is measured by

the energy consumption for generating one bit. Throughput
is used to measure how much information a system can
process during a unit time. The TPA of an SNG is measured
by the number of stochastic bits generated in a unit time
per unit area. The TPA of a stochastic circuit is measured by
the number of computation results produced in a unit time
per unit area. The run time is considered as tc × L/P for
producing one result for a combinational circuit, where tc is
the critical path delay. The sequence length of a stochastic di-
vider is determined by the convergence time. Subsequently,
the TPA is given by

TPA = 1 bit×P/tc/area, (22)

for an SNG and

TPA = 1/(tc × L/P)/area, (23)

for a stochastic arithmetic circuit.
The run time, T , is evaluated by

T = tc × L/P. (24)

The critical path delay, area and power consumption
are first obtained by the Synopsis Design Compiler with a
28nm industrial process. The same temperature and process
corners are applied to all the circuits. The EPO, TPA and
run time are then computed. The RMSE is obtained by using
10,000 random trials for each circuit.

5.2 Evaluation of the proposed Sobol SNG

5.2.1 Accuracy

The accuracy of an 8-bit Sobol SNG is compared with an
8-bit LFSR-based SNG to show how accurate a real number
is encoded by using those two different types of SNGs with
different sequence lengths. The numbers to be encoded are
randomly chosen. For a different sequence length, the ratio
of ‘1’s in the stochastic sequences generated by the two
SNGs are calculated. The difference between the ratio and
the number to be encoded is measured by RMSE and the
results are shown in Fig. 15.

The accuracy of a stochastic sequence generated by a
Sobol SNG is consistently higher than that generated by
an LFSR-based SNG. Note that the parallelization does not
affect the accuracy since the total number of 1‘s remains the
same, but with a faster generation rate.

2 4 6 8

Sequence length (2N)

10-2

10-1

100

R
M

SE

Sobol SNG

LFSR-based
 SNG

Fig. 15. Accuracy of the Sobol SNG and LFSR-based SNG.

8

5.2.2 Hardware efficiency
A Sobol SNG consists of a sequence generator and com-
parators. A 2m× parallelization requires approximately
(2m − 1) × N more XOR gates than a single Sobol SNG,
where N is the bit width of the generator. The number of
comparators required is the same as the level of paralleliza-
tion, i.e., 2m. Table 4 shows the components required in a
2m× parallel Sobol SNG.

The hardware efficiency of a Sobol SNG is measured in
EPO,TPA and generation time. For the Sobol SNG, different
levels of parallelization are implemented. The results are
shown in Fig. 16 for an 8-bit SNG. The performance of an
8-bit LFSR-based SNG is used as a reference.

When no parallelization is applied, as can be seen in Fig.
16, the Sobol SNG has a lower hardware efficiency com-
pared with the LFSR-based SNG. However, the EPO and
TPA of a Sobol SNG increase with the level of parallelization
because of its small hardware cost.

5.3 Stochastic Combinational Circuits

5.3.1 Accuracy
For the AND-based stochastic multiplier, two independent
stochastic sequences are required. For a third-order Bern-
stein polynomial circuit, at least 4-dimensional or 4 indepen-
dent stochastic sequences are required. The accuracy com-
parisons for the stochastic multiplier and Bernstein poly-
nomial circuit are shown in Fig. 17, in which another type
of LD sequences, Halton sequence, is also considered. The
Halton sequence generators are implemented by inversely-
mapped counters using different bases [5].

As shown in Fig. 17, for the same sequence length, the ac-
curacy of the results produced by using Sobol sequences are
mostly higher than those obtained using LFSR-generated
and Halton sequences. For the stochastic multiplier, it is also
observed that as the sequence length increases, the RMSE of
the LD sequences-based circuits decreases faster than that
of the LFSR-based design. However, due to the increased
dimension of the sequences, the RMSE of the Bernstein
polynomial circuit using LD sequences does not converge
as fast as the multiplier.

5.3.2 Hardware Efficiency
The hardware efficiency of stochastic multipliers are shown
in Figs. 18, 19 and 20. For the same accuracy, a lower EPO, a
larger TPA and a shorter run time indicate a more efficient
hardware design. From Figs. 18, 19 and 20, most Sobol-
based designs show a higher efficiency than Halton and
LFSR-based designs. It is due to the shorter sequence length
required in a Sobol-based design to achieve a similar RMSE.

TABLE 4
Hardware cost for a 2m× parallel Sobol SNG

Parallelism LSZ detection XOR gates Comparators
& DVA

1× 1 N 1
2× 1 2N 2
4× 1 4N 4
.
2m× 1 2mN 2m

Also, the parallelization in Sobol sequence generation makes
a design more efficient because of the small hardware cost
to implement the parallelization. The Sobol- and Halton-
based multipliers consume a similar energy when no par-
allelization is applied, whereas a parallel Sobol design is
more energy efficient than the Halton-based design. If par-
allelization is implemented for the Halton- or LFSR-based
designs, the EPO and TPA would not change much due to
the extra power consumption and hardware cost, albeit with
a reduction in run time.

The stochastic multiplier using 28-bit Sobol sequences
has a similar RMSE with a design using 212-bit LFSR-
generated sequences. The EPO of the 8× parallel Sobol
multiplier costs only 1.44% of the energy of the LFSR-
based design with 49.80 times of the TPA. The Bernstein
polynomial circuits are also evaluated, and the results show
a similar trend as the multipliers.

5.3.3 Curse of dimensionality

The benefits using LD sequences can diminish as the dimen-
sion of the sequences increases [7], which is referred to as the
“curse of dimensionality”. To investigate how the number of
dimensions affects the accuracy and the hardware efficiency
of a Sobol-based design, n-dimensional random sequences
are employed to implement (n− 1)th order Bernstein poly-
nomial with the same sequence length. 10,000 Monte Carlo
simulation runs are carried out, with the coefficient of the
Bernstein polynomial randomly chosen. As shown in Fig.
21(a), the RMSEs of LFSR-based designs oscillate around
0.04 throughout all dimensions. Although the RMSE of a
Sobol-based design increases, it does not exceed that of an
LFSR-based design for up to 20 dimensions. The RMSE of a
Halton-based design is slightly larger than that of the Sobol
counterpart.

The EPO, TPA and run time are reported in Figs. 21(b),
(c) and (d). As can be seen, a 4× parallel Sobol-based
design always results in the lowest EPO, the largest TPA
and the shortest run time. The EPO of the Halton-based

Level of parallelism
1# 2# 4# 8#

EP
O

 (f
J)

20

40

80

160

LFSR

(a) EPO

Level of parallelism
1# 2# 4# 8#

TP
A

 (b
/u

m
2 /n

s)

0.02

0.03

0.04
0.05
0.06
0.07

LFSR

(b) TPA

1 2 4 8
Level of parallelism

20

40

80

160

G
en

er
at

io
n

tim
e

(n
s)

LFSR

(c) Generation time

Fig. 16. Hardware measurements of SNGs.

9

4 6 8 10 12

Resolution (2 N-bit length)

10-4

10-3

10-2

10-1
R

M
SE

LFSR

Sobol
Halton

(a) Multiplier

4 6 8 10 12

Resolution (2 N-bit length)

10-3

10-2

10-1

R
M

SE

LFSR

Sobol
Halton

(b) Bernstein polynomial circuit

Fig. 17. Accuracy of combinational stochastic circuits using Sobol, Hal-
ton and LFSR-generated sequences.

10-4 10-3 10-2 10-1

RMSE

103

104

105

106

EP
O

 (f
J)

1
2
4
8 LFSR

Halton

Sobol

Fig. 18. EPO of stochastic multipliers using 212-bit, 210-bit, 28-bit, 26-bit
and 24-bit length from left to the right.

design increases quickly with the order of the polynomial,
because a larger counter is required in the larger base for
a higher-dimensional Halton sequence. The EPO of the
Sobol-based design increases rather slowly because the LSZ
detection and index generation unit is shared to generate
multi-dimensional Sobol sequences as shown in Fig. 8.

5.4 Stochastic Sequential Circuits
5.4.1 Verification of the proposed parallel stochastic divider
The parallel stochastic divider design proposed in Section
4 is first verified by using hardware simulation. An 8-bit
counter is used and different levels of parallelization are
applied. The result produced by using LFSRs is also con-
sidered for comparison as shown in Fig. 22. The predicted

10-4 10-3 10-2

RMSE

10-6

10-5

10-4

10-3

TP
A

 (w
or

d/
um

2 /n
s)

1
2
4
8

LFSRHalton

Sobol

Fig. 19. TPA of stochastic multipliers using 212-bit, 210-bit, 28-bit, 26-bit
and 24-bit length from left to the right.

10-4 10-3 10-2 10-1

RMSE

100

101

102

103

104

Ti
m

e
(n

s)

1
2
4
8

LFSR
Halton

Sobol

Fig. 20. Run time of stochastic multipliers using 212-bit, 210-bit, 28-bit,
26-bit and 24-bit length from left to the right.

5 10 15 20
The order of the polynomial in (n-1)

0

0.01

0.02

0.03

0.04

0.05

R
M

SE

LFSR
Halton

Sobol

(a) RMSE

2 3 4 5 6
The order of the polynomial in (n-1)

0.5

1

1.5

2

EP
O

 (f
J)

105

4 Sobol

Halton

LFSR

(b) EPO

2 3 4 5 6
The order of the polynomial in (n-1)

0

1

2

3

4

TP
A

 (w
or

d/
um

2 /n
s)

10-5

4 Sobol

Halton

LFSR

(c) TPA

2 3 4 5 6
The order of the polynomial in (n-1)

50

100

150

200

250

300

Ti
m

e
(n

s)

4 Sobol

Halton

LFSR

(d) Run time

Fig. 21. Accuracy, EPO, TPA and run time of an (n-1)th order Bernstein
polynomial circuit using different random sequences with the same
sequence length. An n-dimensional random sequence is required to
implement an (n-1)th order Bernstein polynomial circuit.

convergence time is calculated by using (19) with P1 = 0.8,
P2 = 0.9 and y0 = 0.5.

From Fig. 22, all the parallel divider designs converge to
the accurate result with different speeds. The Sobol design
using 4× parallelization is the fastest, followed by the
designs using 2× parallelization and no parallelization. The
result produced by using LFSRs fluctuates significantly and
leads to an ambiguous result, as shown in Fig. 22. However,
the results produced by Sobol sequences are more stable.
Additionally, the predicted convergence time fits well with
the simulation results with less glitches for Sobol sequences.

5.4.2 Accuracy

The accuracy is measured with different levels of paralleliza-
tion and different bit widths for the up/down counter. The
results are shown in Fig. 23.

As shown in Fig. 23, the parallelization has little effect
on the accuracy of Sobol-based dividers, and the RMSEs of

10

0 200 400 600 800 1000 1200 1400
Number of clock cycle

0.5

0.6

0.7

0.8

0.9

Q
uo

tie
nt

 e
st

im
at

io
n

y(
t)

1
2

Predicted convergence time

Accurate result

4

Exponential function showing
predicted convergence process

T=1309

LFSR

T=328
T=655

Fig. 22. Convergence processes of stochastic dividers using Sobol se-
quences with 1×, 2× and 4× parallelization (colored lines), computing
0.8 ÷ 0.9. y(t) is initialized with y0 = 0.5. The red bold curve with
larger glitches is produced by a stochastic divider using LFSR-generated
sequences.

4 6 8 10 12
Bit width of the up/down counter

10-4

10-3

10-2

10-1

100

R
M

SE

LFSR

Sobol with different
levels of parallelization

Halton

Fig. 23. Accuracy of stochastic dividers using Sobol sequences with
1×, 2×, 4× and 8× parallelization with different sizes of the up/down
counter. The RMSEs for using Halton and LFSR-generated sequences
without parallelization are also compared.

those designs almost overlap with one another. The RMSE of
a Sobol-based design decreases linearly with the bit width of
the up/down counter and it is consistently smaller than that
of an LFSR-based design. A Halton-based divider shows a
similar accuracy as its Sobol counterpart.

5.4.3 Hardware Efficiency

For different operands, the convergence time (in the number
of clock cycles) of the stochastic divider is different. An
average convergence time is estimated for randomly chosen
operands and the average EPO, TPA and run time are
obtained by using the average convergence time. Different
levels of parallelization are applied to evaluate the improve-
ment in performance and hardware efficiency. The results
are shown in Figs. 24, 25 and 26.

As can be seen, as the level of parallelization increases,
the energy and hardware efficiency improve. However, the
improvement of a higher level parallelization is not as
significant as at a lower level parallelization. It is evident
in Fig. 25, that the TPAs of 8× parallel stochastic dividers
are close to 4× ones, whereas the TPAs of 2× parallel
stochastic dividers are well separated from the ones without
parallelization. It occurs because the number of comparators
increases linearly with the level of parallelization, as shown
in Table 4. Thus, they dominate the energy and hardware
cost of the design.

10-4 10-3 10-2 10-1

RMSE

103

104

105

106

107

EP
O

 (f
J)

1
2
4
8 LFSR

Sobol

Halton

Fig. 24. EPO of stochastic dividers using Sobol sequences with 1×,
2×, 4× and 8× parallelization with 12-bit, 10-bit, 8-bit, 6-bit and 4-bit
up/down counter from left to the right. The LFSR-based design without
parallelization is also shown.

10-4 10-3 10-2 10-1

RMSE

10-8

10-7

10-6

10-5

10-4

10-3

TP
A

 (w
or

d/
um

2 /n
s)

1
2
4
8

LFSR

Sobol

Halton

Fig. 25. TPA of stochastic dividers using Sobol sequences with 1×,
2×, 4× and 8× parallelization with 12-bit, 10-bit, 8-bit, 6-bit and 4-bit
up/down counter from left to the right. The LFSR-based design without
parallelization is also shown.

For the Halton-based designs, they have a similar EPO,
TPA and run time as their Sobol counterparts without par-
allelization. However, the Sobol-based design benefits from
the efficient implementation of parallelization, so it outper-
forms its Halton counterpart in all considered metrics.

For the LFSR-based designs, it takes at least two more
bit widths to achieve a similar accuracy as the Sobol-based

10-3 10-2 10-1

RMSE

101

102

103

104

105

Ti
m

e
(n

s)

1
2
4
8

LFSR

Sobol

Halton

Fig. 26. Run time of stochastic dividers using Sobol sequences with 1×,
2×, 4× and 8× parallelization with 12-bit, 10-bit, 8-bit, 6-bit and 4-bit
up/down counter from left to the right. The LFSR-based design without
parallelization is also shown.

11

designs. Therefore, it results in a longer run time and a lower
hardware efficiency. When a 12-bit LFSR-based design is
compared with an 8-bit Sobol design, the 8× parallel Sobol-
based design costs 0.92% of the energy consumption and
produces 89 times of the TPA of an LFSR-based design.
Additionally, the accuracy of an 8-bit Sobol-based divider
is higher than that of the 12-bit LFSR-based divider.

The basic stochastic elements are not compared with
their binary counterparts because it either favors the SC
design without considering the SNGs and PEs or otherwise,
it imposes a large overhead on the stochastic arithmetic
elements. Instead, the hardware efficiency is compared at
the application level in the next section.

6 APPLICATION

6.1 A sorting network and median filter design

A sorting network rearranges a list of values in an ascending
or descending order. It is widely used in modern com-
puter systems for file-matching, data searching and filtering,
among other applications [16]. A sorting network can be
implemented in hardware by comparators and multiplexers
for comparing and swapping the values. However, the
hardware cost is very high for large volumes of input data.
The depth of a sorting network is defined as the largest
number of comparators an input goes through the network.
It is in the order of O(n log(n)2) [17], where n is the size
of the input data. If the compare-and-swap is executed in
parallel, the run time is proportional to the network depth.
Here, a stochastic circuit is used to implement the sorting
network with an energy-efficiency compare-and-swap unit.

The design of a basic stochastic unit is shown in Fig. 27.
The underlying principle can be explained by considering
the AND gate as an example. The probability of its output
sequence is given by:

P [Pout = 1] = P [(PX > RN) ∧ (PY > RN)]

= P [min{PX , PY } > RN].
(25)

Thus, the probability of the output sequence is the lesser
value of PX and PY . Similarly, the OR gate can be shown to
obtain the larger value of PX and PY :

P [Pout = 1] = P [(PX > RN) ∨ (PY > RN)]

= P [max{PX , PY } > RN].
(26)

The output stochastic sequence can be used for fur-
ther comparing and swapping with the values in another
stochastic sequence generated from the same RNG such that
(25) is satisfied. Hence, a sorting network can be constructed
by using just one RNG generating the stochastic sequences

RNG

Comp

Comp

PX

PY

Pout=min(PX,PY)

Pout=max(PX,PY)

RN

Fig. 27. Stochastic sorter circuit. The stochastic sequence encoding a
larger value is moved downward.

for all the input data and the AND and OR gates for
comparing and swapping the stochastic sequences.

A median filter (MF) is often used to reduce the salt-
and-pepper noise in images without losing the edges. It
replaces each pixel in an image with the median value of
the surrounding pixels. A 3× 3 MF can be implemented by
a sorting network [18]. A design is shown in Fig. 28 with the
stochastic sorter as its basic unit.

Since the input sequences are required to be generated
by the same RNG as per (25), only one RNG is used for the
first layer of the sorters as shown in Fig. 29. Passing through
the first layer of sorters, the output sequences are still the
original stochastic sequences with the same permutations of
’0’s and ’1’s for a certain value, but with a different order.
It means that the output sequences can be directly used
as the input sequences in the next compare-swap layers
instead of being re-generated by an SNG. As a result, only
one RNG is required for the stochastic MF. Additionally,
the low-discrepancy characteristic is maintained after stages
of computations. Both Sobol sequences and pseudorandom
sequences can be used for this scheme.

6.2 Experimental results of the median filter

This stochastic MF design is tested on the 8-bit grey image
“cameraman” polluted by salt & pepper noise with a density
of 0.1. A conventional binary design is also considered for
comparison. Different levels of approximation are applied
to the binary design by truncating the bit width. Since there
are in total 8 layers of comparing and sorting, the binary MF
takes 8 clock cycles to produce the final result. The original
and polluted images are depicted in Fig. 30 and the filtering
results are shown in Fig. 31.

It can be seen that both binary and stochastic circuits
can filter the noise with a high quality. However, when
the sequence length is reduced to 16 bit for a stochastic
design or the bit width is reduced to 4 for a binary design,
some severe distortion is present. For the stochastic MF
using LFSR-generated sequences, the image can be either
darker or brighter than the original image due to random
fluctuations. There is a loss of detail in Figs. 31(f) and (g) for
16-bit and 32-bit stochastic designs using LFSRs.

The quality of the output image is measured by the peak-
signal-to-noise-ratio (PSNR). The results are illustrated in
Fig. 32. Because of the random noise and random fluctu-
ations in LFSR-based stochastic circuits, 100 Monte-Carlo
simulation runs are carried out to measure the mean and

(c) A sorting network
implementing median filter

sorterY

X min{X,Y}

max{X,Y}

(a) The function of a
sorter

(b) The symbol for
a sorter

Layer 1
Layer 2 ...

Output

Fig. 28. The basic unit for implementing a median filter.

12

RNG
Comp

Comp
P2

P1

Comp
P7

...

Comp

Comp
P9

P8

1

...

Layer 1
Layer 2 ...

2

...

3

4

Output
sequence

...
...

...

...

Fig. 29. Stochastic median filter based on the sorting network in Fig.
28(c). Since the output stochastic sequences from gates 1, 2, 3 and 4
are not used, they can be removed for saving hardware. Each sorter unit
is marked by a rectangle.

standard deviation of the PSNRs. For both the Sobol and
binary designs, the deviation is purely introduced by the
randomly added noise rather than the design itself due to
their deterministic nature, thus the deviation is very small.
As can be seen, the LFSR-based stochastic design results
in the lowest PSNR because of the randomness in the gen-
eration of the random sequences. The Sobol-based design
has overall the best PSNR even over the binary design,
because a simple truncation in the binary design introduces
a bias and the resulting value is equal to or smaller than
its actual value. Since a base-2 Halton sequence is the same
as a one-dimensional Sobol sequence, they produce results
with a similar accuracy. The efficiency of the hardware
implementation is again measured by EPO, TPA and run
time. The results are shown in Figs. 33, 34 and 35.

As can be seen from Fig. 33, the energy efficiency is
improved by using parallel Sobol-based designs. The EPO
of the 8× parallel stochastic MFs are smaller than its binary
counterparts except for the 8-bit binary design. For the same
resolution, the hardware efficiency in terms of EPO, TPA
and run time for the binary circuits is proportional to the bit
width N , whereas it is proportional to 2N for the stochastic
circuits. Therefore, the slope of the EPO curve in Fig. 33 for

(a) Original image (b) Polluted image

Fig. 30. Original and polluted “cameraman” images.

the binary circuits is less steep than those for the stochastic
circuits.

However, the TPA and run time are still the shortcom-
ings of a stochastic MF. The stochastic MF is only faster with
16-bit sequences and 8× parallelization than 4-bit binary
design. Due to the extra hardware cost of the comparators
and the increased critical path delay, the TPA of a Sobol
MF design is not significantly improved by parallelization.
However, all parallel Sobol designs consistently show ad-
vantages over the LFSR-based designs for all considered
metrics with a better image processing quality. The Halton-
based designs require a similar EPO as 2× parallel Sobol
designs, while it is not as efficient as Sobol-based designs
with 4× or a larger parallelization.

7 CONCLUSION

The use of parallel Sobol sequences in stochastic comput-
ing achieves higher energy efficiency, higher throughput
and shorter run time than the use of conventional LFSR-
generated sequences and the Halton sequence, another type
of LD sequences. The parallelization exploits the regular
patterns of the LSZ positions of continuous non-negative
integers. As a result, it only imposes a small hardware
overhead of a few XOR gates.

The proposed stochastic circuits using parallel Sobol
sequences are utilized in a sorting network and a MF.
The Sobol-based MF shows a higher energy efficiency than
its binary counterparts and it consistently outperforms an
LFSR-based MF with a higher filtering quality.

REFERENCES

[1] B. R. Gaines, Stochastic Computing Systems. Boston, MA: Springer
US, 1969, pp. 37–172.

[2] P. K. Gupta and R. Kumaresan, “Binary multiplication with PN
sequences,” IEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing, vol. 36, no. 4, pp. 603–606, 1988.

[3] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM
Transactions on Embedded computing systems (TECS), vol. 12, no. 2s,
p. 92, 2013.

[4] J. Han, H. Chen, J. Liang, P. Zhu, Z. Yang, and F. Lombardi,
“A stochastic computational approach for accurate and efficient
reliability evaluation,” IEEE Transactions on Computers, vol. 63,
no. 6, pp. 1336–1350, 2014.

[5] A. Alaghi and J. P. Hayes, “Fast and accurate computation using
stochastic circuits,” in Proceedings of the conference on Design, Au-
tomation & Test in Europe (DATE). IEEE, 2014, p. 76.

[6] S. Liu and J. Han, “Energy efficient stochastic computing with
Sobol sequences,” in Proceedings of the conference on Design, Au-
tomation & Test in Europe (DATE). IEEE, 2017.

[7] H. Niederreiter, Random Number Generation and quasi-Monte Carlo
Methods. Philadelphia, PA, USA: Society for Industrial and
Applied Mathematics, 1992.

[8] D. P. Kroese, T. Taimre, and Z. I. Botev, Handbook of Monte Carlo
methods. John Wiley & Sons, 2013, vol. 706.

[9] P. Bratley and B. L. Fox, “Algorithm 659: Implementing Sobol’s
quasirandom sequence generator,” ACM Trans. Math. Softw.,
vol. 14, no. 1, pp. 88–100, Mar. 1988.

[10] I. L. Dalal, D. Stefan, and J. Harwayne-Gidansky, “Low discrep-
ancy sequences for Monte Carlo simulations on reconfigurable
platforms,” in International Conference on Application-Specific Sys-
tems, Architectures and Processors. IEEE, 2008, pp. 108–113.

[11] P.-S. Ting and J. P. Hayes, “Stochastic logic realization of matrix
operations,” in Digital System Design (DSD), 17th Euromicro Confer-
ence on. IEEE, 2014, pp. 356–364.

[12] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja, “An
architecture for fault-tolerant computation with stochastic logic,”
IEEE Transactions on Computers, vol. 60, no. 1, pp. 93–105, 2011.

13

(a) Sobol 16-bit length (b) Sobol 32-bit length (c) Sobol 64-bit length (d) Sobol 128-bit length (e) Sobol 256-bit length

(f) LFSR 16-bit length (g) LFSR 32-bit length (h) LFSR 64-bit length (i) LFSR 128-bit length (j) LFSR 256-bit length

(k) Binary 4-width (l) Binary 5-width (m) Binary 6-width (n) Binary 7-width (o) Binary 8-width

Fig. 31. Experimental results using the stochastic and binary implementations of a median filter.

Resolution (2N-bit length or N-bit width)
3 4 5 6 7 8

PS
N

R
 (d

B
)

14

16

18

20

22

24

26 LD stochastic

LFSR stochastic

Binary

6 8

25.8

26

26.2

Fig. 32. PSNR comparison of different median filter implementations.

[13] B. D. Brown and H. C. Card, “Stochastic neural computation. I.
computational elements,” IEEE Transactions on computers, vol. 50,
no. 9, pp. 891–905, 2001.

[14] N. Saraf, K. Bazargan, D. J. Lilja, and M. D. Riedel, “IIR filters
using stochastic arithmetic,” in Design, Automation and Test in
Europe Conference and Exhibition (DATE). IEEE, 2014, pp. 1–6.

[15] R. Wang, J. Han, B. F. Cockburn, and D. G. Elliott, “Stochastic
circuit design and performance evaluation of vector quantization
for different error measures,” IEEE Trans. on VLSI Systems, vol. 24,

4 5 6 7 8

Resolution (2 N-bit length or N-bit width)

103

104

105

EP
O

 (f
J)

1

2

4
8

Binary

Halton
LFSR

Fig. 33. EPO comparison of different median filter implementations.

no. 10, pp. 3169–3183, Oct 2016.
[16] D. E. Knuth, The art of computer programming: sorting and searching.

Pearson Education, 1998, vol. 3.
[17] K. E. Batcher, “Sorting networks and their applications,” in Pro-

ceedings of the April 30–May 2, 1968, spring joint computer conference.
ACM, 1968, pp. 307–314.

[18] S. Wolfram, A New Kind of Science. Wolfram Media, 2002.
[Online]. Available: http://www.wolframscience.com

14

4 5 6 7 8

Resolution (2 N-bit length or N-bit width)

10-5

10-4

10-3

TP
A

 (w
or

d/
um

2 /n
s)

1

2
4

8

Binary

Halton
LFSR

Fig. 34. TPA comparison of different median filter implementations.

4 5 6 7 8

Resolution (2 N-bit length or N-bit width)

100

101

102

103

Ti
m

e
(n

s) 1
2
4
8

Binary

Halton
LFSR

Fig. 35. Run time comparison of different median filter implementations.

Siting Liu received the B.Eng. and M.Eng. de-
gree in electrical engineering and automation
from Harbin Institute of Technology, Harbin, Hei-
longjiang, China, in 2012 and 2014, respectively.
He is currently a Ph.D. candidate in the Depart-
ment of Electrical and Computer Engineering,
University of Alberta, Edmonton, Canada. His
current research interest is stochastic comput-
ing.

Dr. Jie Han received the B.Sc. degree in elec-
tronic engineering from Tsinghua University, Bei-
jing, China, in 1999 and the Ph.D. degree from
Delft University of Technology, The Netherlands,
in 2004. He is currently an associate professor
in the Department of Electrical and Computer
Engineering at the University of Alberta, Edmon-
ton, AB, Canada. His research interests include
approximate computing, stochastic computation,
reliability and fault tolerance, nanoelectronic cir-
cuits and systems, novel computational models

for nanoscale and biological applications.
Dr. Han and coauthors received the Best Paper Award at the Interna-

tional Symposium on Nanoscale Architectures 2015 (NanoArch 2015)
and Best Paper Nominations at the 25th Great Lakes Symposium on
VLSI 2015 (GLSVLSI 2015) and NanoArch 2016. He was nominated
for the 2006 Christiaan Huygens Prize of Science by the Royal Dutch
Academy of Science. His work was recognized by Science, for develop-
ing a theory of fault-tolerant nanocircuits (2005).

He is currently an associate editor for IEEE Transactions on Emerging
Topics in Computing (TETC) and IEEE Transactions on Nanotechnology.
He served as a General Chair for GLSVLSI 2017 and the IEEE Interna-
tional Symposium on Defect and Fault Tolerance in VLSI and Nanotech-
nology Systems (DFT 2013), and a Technical Program Committee Chair
for GLSVLSI 2016 and DFT 2012.

