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Abstract—Approximate recursive multipliers exhibit low-power operation because they are designed using smaller power-efficient
approximate multiplier blocks. These building blocks can be configured by varying the approximation levels for a wide range of larger
multiplier sizes. However, most of the building blocks proposed for recursive multipliers are either slightly inaccurate or hardware-efficient
with limited accuracy. In this brief, hybrid partial product-based building blocks are proposed by considering the probability distribution
of the input operands. An efficient hardware implementation of approximate 4×4 multipliers is achieved, while maintaining the required
accuracy. Moreover, high-performance approximate NOR-based half adder (NxHA) and full adder (NxFA) cells are proposed for use in a
4×4 multiplier. Three different strategies (Ax8-1/2/3) are further proposed and analyzed for utilizing the 4×4 multipliers when designing
larger multipliers. Ax8-2 provides the best trade-off among the designs with a moderate MRED. A reduction of 30% and 17% in the
MRED is achieved compared to previous best energy-optimized and MRED-optimized designs. Among the designs with higher MREDs,
Ax8-3 exhibits the smallest MRED and PDP. Moreover, it shows an improvement of 7% to 28% in delay compared to existing approximate
recursive designs. As a case study, image multiplication is evaluated; a high peak signal-to-noise ratio (PSNR) with a value close to
50dB is obtained for the proposed multiplier designs.

Index Terms—Approximate recursive multipliers, high-performance, half adder, full adder, NOR gate.
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1 INTRODUCTION

R ECENT research has considered applications, such as
image/video processing, big data analysis, RMS (recog-

nition, mining and synthesis), and communications when
error bounds can be relaxed at acceptable results. Approx-
imate computing exploits this relaxed error requirement to
achieve improvements in area, power and performance [1].
Multiplication is a basic arithmetic operation used com-
monly in many error-tolerant applications; therefore, de-
signs of approximate multipliers (8/16/32 bit) [2], [3] have
been proposed in the last few years. In [4] three approaches
based on approximate rounding, have been proposed for
fixed-width multipliers. [5] has proposed a rich library of
approximate 8-bit adders and 8-bit multipliers using mul-
tiobjective genetic programming. Two 16-bit approximate
multipliers have been proposed in [6] using the concept
of altered partial products. However, [7] has emphasized
the need of cross-layer approximate computing (e.g., at
different levels, such as architecture, high level synthesis,
and system). To introduce approximate computing at dif-
ferent levels of implementation, a systematic approach is
presented; such approach relies on arithmetic modules as
basic building blocks.

• Haroon Waris, Chenghua Wang and Weiqiang Liu are with the College of
Electronic and Information Engineering, Nanjing University of Aeronau-
tics and Astronautics, Nanjing, 211106.
E-mail: (haroonwaris, chwang, liuweiqiang)@nuaa.edu.cn

• Jie Han is with the Department of Electrical and Computer Engineering,
University of Alberta, Edmonton, AB, Canada
E-mail: jhan8@ualberta.ca

• Fabrizio Lombardi is with the Department of Electrical and Computer
Engineering, Northeastern University, Boston, MA USA, 02115.
Email: lombardi@ece.neu.edu

Manuscript received XX XX, 2020; revised XX XX, 2020.

While several approximate adder blocks are available,
very few approximate multiplier blocks have been reported
for assembling larger designs. As cross-layer approximate
computing requires configurability and flexibility, an ex-
tensive library of approximate multiplier blocks is needed.
Therefore, in this brief, a probabilistic analysis of a conven-
tional partial product (PP) array is performed; then, a hybrid
partial product array based 4×4 multiplier is proposed.
Note, [6] has also used the statistical analysis to propose 8bit
and larger multipliers; however, the required performance
gains for small multipliers cannot be achieved. Compared
to [6], this approach leads to a reduction in the partial
product size, thus, reducing the hardware complexity of
a 4×4 building block. Moreover, this statistical analysis is
used to design NOR based high-performance half-adder
(NxHA) and full-adder cells (NxFA). An improvement of
41% in the delay is achieved compared to the approximate
full adder proposed in [6].

The rest of the paper is organized as follows. A literature
survey of recursive multipliers is presented in Section II.
Section III presents the probabilistic analysis of a partial
product array. Section IV discusses the proposed 4×4 mul-
tiplier including NOR-based HA and FA cells. The design
of larger multipliers is considered in Section V. Hardware
and error characteristics of the proposed and state-of-the-
art approximate multipliers are presented in Section VI. The
proposed designs are evaluated in Section VII for image
processing. Section VIII concludes the paper.

2 RECURSIVE MULTIPLIERS

An M -bit recursive multiplier [8], [9], [10], [11], [12] cas-
cades N -bit multiplier blocks at the relevant bit positions,
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Fig. 1: 4×4 (a) conventional PP array (b) equivalent PP array (c) propagate-and-generate (PG) array (d) probabilistic analysis
based PP array (e) approximation of generate elements (f) proposed hybrid PP array

where M = 2kN, k = 0, 1, 2, ..., log2(M/N). Kulkurani
et al. [8] have proposed an approximate 2×2 multiplier
in which the output 1001 is approximated to 111. The
use of 2×2 blocks to design M-bit multipliers reduces
the addition stages. In [9], an inaccurate 4:2 counter has
been proposed and used to design an approximate 4-bit
multiplier. This multiplier uses only one approximate 4:2
counter in the partial product reduction stage; therefore,
it exhibits a low error rate (ER). The 2×2 building blocks
proposed by Rehman et al. [10] have a reduced maximum
error magnitude compared to [8]. Ansari et al. [11] have
proposed a 4×4 multiplier based on three approximate 4:2
compressors; subsequently larger approximate multipliers
are designed. However, these 4:2 compressors have a large
ER; for example, in the truth table for the stage-3 compres-
sor, six sum values have been approximated out of sixteen,
so an ER of 37.5% is introduced. Recently, [12] has proposed
an approximate 4×4 multiplier using inexact half adder
and full adder cells; 8×8 multipliers are then designed.
Although the inexact adders reduce hardware complexity,
they do not improve on the critical path delay compared to
the other approximate adders.

3 PROBABILISTIC ANALYSIS OF PARTIAL PROD-
UCT ARRAY

The probabilistic analysis performed in this brief assumes
that every bit in the binary representation of the multiplier
inputs A and B is 1 or 0 with equal probability. This assump-
tion holds true only if the inputs follow a uniform distribu-
tion, as considered in this analysis. For a 4-bit multiplier,
consider two unsigned input operands c =

∑3
k=0 ck.2

k

and d =
∑3

l=0 dl.2
l. A conventional PP array (Fig. 1a) is

obtained by the AND operation of the bits in c and d. Fig.
1b is an equivalent representation of Fig. 1a by shifting
up the elements in the second half (starting from column
4). Moreover, the elements in columns (2, 3 and 4) are
adjusted so that propagate-and-generate functions can be
applied to the PP array. The PP element ck.dl is obtained by
multiplying two binary inputs; therefore, the possible input
combinations are {00,01,10,11}. The output is ”1” only when
the input combination is {11}. Therefore, the probability
of any PP bit being 1 is 1/4 for statistically independent

and uniformly distributed inputs. An approximation in
the PP bit deteriorates the accuracy; however, the level
of deterioration depends upon two factors: 1) The PP bit
location and 2) The probability of occurrence of a particular
PP bit. Therefore, propagate-and-generate (PG) is utilized
to reduce the probability of occurrence of a particular PP
bit. Specifically, the partial products ck.dl and cl.dk are used
to establish a propagate (e) and generate (f) array (Fig.1c)
from a conventional PP array such that the probability of
occurrence is reduced for certain PP elements. Equations (1)
and (2) are used to design the PG array as shown in Fig. 1c.

ek,l = ck.dl + cl.dk (1)
fk,l = (ck.dl).(cl.dk) (2)

The probability of being one for any element in the
new PG array is not the same as calculated earlier. The
PG element fk,l has a probability of 1/16 of being 1, i.e.,
6.25%, so substantially less than 25% for the original ck.dl.
The probability of ek,l being one is 7/16, higher than fk,l.
Next, a probabilistic analysis is performed for both the
conventional PP and the transformed PG arrays. In the PP
array, the sum is performed column wise; thus, each column
is analyzed individually for the probability of being one.
Columns 1 and 5 in both the PP and PG array have a
higher probability of being 0’s (Table 1) compared to the
probability of being 1. Therefore, for these two columns, the
transformed PG representation has no obvious advantage.
The probability of being all 1’s (Table 1) decreases by 60%
in the PG representation for columns 2 and 4; moreover,
the probability of occurrence of all 0’s and two 1’s has also
decreased. Similarly, the probability of all 1’s and three 1’s
(Table 1) decreases by 94% and 47%, respectively, in the PG
representation of column 3. Therefore, columns (2, 3 and 4)
are represented using the PG array whereas in columns (1
and 5) a conventional PP array is utilized, because it saves
hardware for the propagate-and-generate logic (Fig. 1d).

The probability of a generate element being one is low
(1/16), two elements being 1 in the same column even de-
creases. The probabilistic analysis-based PP array (Fig. 1d)
have generate elements in columns (2, 3 and 4). Columns 2
and 4 both have one generate element {f0,2 } and {f1,3 }, re-
spectively, whereas column 3 has two generate {f3,0 , f2,1 }
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TABLE 1: Probabilistic Analysis of Conventional and Transformed Partial Product Arrays

Column No Conventional PP Array Transformed PG Array
All 1’s All 0’s single 1 two 1’s three 1’s All 1’s All 0’s single 1 two 1’s three 1’s

(1 & 5)a 0.062 0.562 0.375 - - 0.027 0.527 0.445 - -
(2 & 4)a 0.015 0.421 0.421 0.140 - 0.006 0.395 0.465 0.131 -

3 0.012 0.316 0.421 0.210 0.046 0.0007 0.278 0.469 0.227 0.024
a(1 & 5) , (2 & 4) have similar number of elements in a column.

NOR

AND

S

C

a
NOR S

C

(c)   AHA [8]

b

a

b

(a) NxHA1 cell

NOR

AND

S

C

a
NOR S

C

(c)   AHA [8]

b

a

b

(b) NxHA2 cell

Fig. 2: Logic diagram of approximate HA cells.

TABLE 2: Truth Table of Exact and Approximate HA Cells

Inputs Exact-HA NxHA1 ED NxHA2 EDa b C S C S C S
0 0 0 0 0X 0X 0 0X 0X 0
0 1 0 1 0X 1X 0 0X 1X 0
1 0 0 1 1× 0× 1 0X 0× 1
1 1 1 0 1X 0X 0 1X 0X 0

elements. Then, the probability of generate element being all
1’s in columns (2 and 4) is 1/16, while the probability of the
two generate elements being 1 in column 3 is significantly
low, i.e., 1/256. Therefore, for column 3 one bit can be
reduced by ORing these two bits and for columns (2 and
4), the generate element can be approximated to 0s with no
significant impact on the accuracy (Fig. 1e). The proposed
hybrid PP array with a reduced number of partial products
is shown in Fig. 1f. Furthermore, the design of proposed
approximate half and full adder cells is also based on the
performed probabilistic analysis. The following key features
are considered.

(a) Columns 1 and 5 are based on the conventional
partial product elements (Fig. 1f) and they have a
high probability of all 0’s (Table 1), i.e., the input
combination (00) has the highest probability of oc-
currence; therefore, an approximation should never
be made for these inputs.

(b) Column 3 is based on the propagate-and-generate
(PG) elements (Fig. 1f), they have a high probabil-
ity of a single 1 (Table 1), i.e., input combinations
{001,010,100} have a higher occurrence probability.
Therefore, minimal approximation is to be intro-
duced for these inputs.

4 4×4 MULTIPLIER DESIGN

In the proposed 4×4 multiplier, PPs are generated using
AND gates. The design of the approximate HA and FA cells
to be used in the partial product reduction step is pursued
using the analysis presented in Section 3. In the proposed

a

NOR

C

S

c

b

NOR

NOR

Fig. 3: Logic diagram of an approximate FA.

approximate HA, the input combination {00} is not approx-
imated. Similarly, in the approximate FA, only the Sum (S)
for one input combination {001} is approximated, so that a
very small error is introduced. The normalized gate delay
is usually used for CMOS gate level analysis; the NOR gate
has the smallest delay (0.5) compared to other CMOS logic
gates. Therefore, to achieve high-performance, NOR gates
are used to design the approximate half adder (NxHA) and
full adder (NxFA).

4.1 NOR-based Approximate Half-Adder (NxHA)
Two approximate HA designs of variable accuracy, denoted
as NxHA1 and NxHA2, are proposed. Generally, XOR gates
have a higher delay and area; therefore, in NxHA1, the sum
is obtained by using NOR gates, instead of XOR gates. For
both designs, the error difference between the exact and
approximate outputs is kept as one and shown in Table 2.
NxHA1 uses a larger approximation as the carry is also ap-
proximated. Fig. 2 shows the gate level diagrams. Equations
(3) and (4) below describe the output of the NxHA1 and
NxHA2 cells, respectively.

SumNxHA1 = a+ b
CarryNxHA2 = a

}
(3)

SumNxHA2 = a+ b
CarryNxHA1 = ab

}
(4)

4.2 NOR-based Approximate Full-Adder (NxFA)
The NxFA cell uses three NOR gates and one NOT gate as
shown in Fig. 3. An error in the carry has a large impact,
because it has twice the binary weight of the sum, so the
approximation for carry is only considered for one input.
Moreover, the difference between the exact and approximate
outputs is kept to one as shown in Table 3. [7] has proposed
a library of approximate 1-bit full-adders (five designs);
truth tables are used to describe the gate-level logic circuits.
In this paper, the same implementation approach is adopted
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Fig. 4: Hybrid partial product array-based 4×4 multipliers designed using approximate half-adder and full-adder cells (a)
MxA (NxHA1/NxFA) (b) LxA (NxHA2/NxFA)

TABLE 3: NxFA Truth Table

Inputs Exact-FA NxFA EDa b c C S C S
0 0 0 0 0 0X 0X 0
0 0 1 0 1 0X 0× 1
0 1 0 0 1 0X 1X 0
0 1 1 1 0 1X 0X 0
1 0 0 0 1 0X 1X 0
1 0 1 1 0 1X 0X 0
1 1 0 1 0 0× 1× 1
1 1 1 1 1 1X 0× 1

TABLE 4: Critical Path Delay and Hardware Complexity

FA Logic Gates DelayXOR AND/OR NOR NOT Delay
Exact 2 3 0 0 2.4
NxFA 0 0 3 1 1.0
AFA [6] 1 2 0 0 1.7
AA1 [7] 0 6 0 2 2.1
AA2 [7] 0 4 0 1 2.3
AA3 [7] 0 2 0 4 1.8
IFA [12] 1 4 0 0 2.4

for comparative evaluation of the proposed NxFA. Three
designs (AA1, AA2 and AA3) from [7] are considered for
comparison. AA2 and AA4 have very similar area, but AA2
offers a reduced power consumption and better accuracy;
therefore, it is selected. AA5 offers the best area and power
efficiency, but it has the lowest accuracy in terms of error
cases; thus, it is not considered. The critical path delay
of NxFA is reduced to 1.0 unit delay compared to 2.4
(for the exact design) and 1.7 (for the previous best high-
performance based approximate FA design [6]) unit delays,
respectively. Therefore, improvement of 58% and 41% are
achieved (Table 4). The Boolean functions of NxFA are given
in (5).

SumNxFA = a+ b+ c

CarryNxFA = a+ b+ c

}
(5)

4.3 Basic-Building Block Variants

Two variants (i.e., the so-called more-approximated (MxA)
and less-approximated (LxA) 4×4 elementary multipliers)
are designed as shown in Fig. 4. They differ in the way
sum (S3) is generated and in the use of an approximate HA

TABLE 5: Hardware Resource Consumption of MxA/LxA

Multiplier Area (um2) Delay (ns) Power (uW) PDP (fJ)
Exact 105.41 0.32 41.25 13.20
MxA 40.73 0.25 19.35 4.83
LxA 61.95 0.28 30.87 8.64

TABLE 6: MxA/LxA based 8×8 Multipliers

Architecture PP4 PP3 PP2 PP1

Ax8-1 accurate accurate accurate MxA
Ax8-2 accurate accurate LxA MxA
Ax8-3 accurate LxA LxA MxA

cell. NxHA1, NxHA2 and NxFA cells are used for partial
product reduction. The utilization of two proposed HA
cells in the 4×4 multipliers is systematically pursued. In
MxA (Fig. 4a), the circuit latency is reduced by breaking
the carry propagation path. Moreover, as it aims to achieve
low-power, this scheme uses the less-accurate (NxHA1) cell.
LxA achieves better accuracy than MxA by using the more-
accurate (NxHA2) cell. In LxA, the computation of S3 (Fig.
4b) requires the addition of three pp(i,j) terms and the carry
(c2) from previous stage. This is achieved by merging two
(F3+c2) of these four signals and reducing them to three, as
in (Fig. 4b). Table 5 shows the hardware savings of MxA
and LxA compared to an exact 4×4 multiplier. MxA has
less delay than LxA because the carry propagation path is
truncated; an improvement of 22% in the critical path delay
is achieved. Although LxA is less-approximated, the use of
NOR-based HA and FA cells results in a reduced PDP of
35% compared to its exact counterpart.

5 DESIGN OF LARGER MULTIPLIERS

Recursive partitioning is used to achieve faster implementa-
tions for a larger multiplier. In the same cycle, multiple 4×4
basic modules (proposed previously in Section 4.3) are used
to design 8×8 multipliers. Consider two 8-bit operands x
and y, as a combination of two 4-bit operands (xh, xl) and
(yh, yl), respectively. Note, xh and yh corresponds to the 4
MSBs whereas xl and yl indicate the 4 LSBs of the input
operands. This partition of large input operands into 4-bit
operands allows the use of 4×4 modules for multiplication.
Four 4×4 multipliers are used in parallel to generate the
partial products {pp4, pp3, pp2, pp1}. In [11], it has been
shown that pp4 has the greatest impact on the multiplier
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TABLE 7: Comparative Performance Analysis of 8×8 Approximate Recursive Multipliers

Design Area (um2) Delay (ns) Power (uW) Energy (uW.ns) MRED (%) NMED (10−3) ER (%)
Ax8-1 419.23 0.84 181.65 152.58 0.10 0.46 30.47
Ax8-2 323.97 0.80 156.70 125.36 1.26 1.64 48.35
Ax8-3 301.65 0.77 143.54 110.64 2.83 6.12 69.73
mul8u 125K [5] 674.90 1.42 384.00 545.28 0.02 .015 17.19
mul8u ZFB [5] 590.40 1.13 304.00 343.52 0.80 1.27 69.26
Multiplier1 [6] 460.91 0.87 233.54 203.17 3.20 8.50 98.43
Multiplier2 [6] 583.25 0.98 458.71 449.53 0.01 .003 97.12
UDM [8] 391.28 1.00 176.35 176.35 3.28 14.2 47.09
IWM [9] 426.50 0.93 183.70 170.84 0.06 0.29 5.45
ApproxMul2 [10] 412.89 1.06 187.46 198.70 1.51 6.90 81.44
M8-1 [11] 313.75 0.82 151.20 123.98 6.49 19.0 73.17
M8-3 [11] 351.15 0.83 169.40 140.60 1.70 2.10 66.36
M8-5 [11] 458.30 0.91 204.35 185.95 0.13 0.06 36.22
LOAM [12] 279.81 0.93 112.78 104.88 1.81 2.00 75.91

output, thus, the least errors should be introduced for this
computation. Therefore, in this brief, the accuracy-energy
trade-off for large multipliers is assessed by considering the
following three cases (Table 6).

• In the first case (Ax8-1), the MxA block is used for
the generation of the least significant pp1 while all
other PPs are accurately computed. The worst-case
error (WCE) for this design is given by:

WCEAx8−1 = WCEMxA (6)

• In the second case (Ax8-2), the LxA block is used for
the generation of pp2 while the MxA block is used
for pp1. The WCE for this design is given by:

WCEAx8−2 = 2nWCELxA +WCEMxA (7)

• In the third case (Ax8-3), both pp2 and pp3 are gen-
erated using LxA blocks while the MxA is used for
pp1. The WCE for this design is given by:

WCEAx8−3 = 2× 2nWCELxA +WCEMxA (8)

The four partial products generated by each proposed
multiplier are added using a Wallace tree at the relevant bit-
positions. The objectives of Ax8-1 and Ax8-2 are to achieve
a small error distance at a reduced power consumption. The
improvement in delay for these designs is dependent on
the exact PPs that are on the critical path. However, the
proposed Ax8-3 has a large error distance because three PPs
are approximated; therefore, reductions in delay and area
are expected. While the first two designs have a lower error
distance, the third design is expected to have a relatively
higher error distance with better performance in terms of
hardware complexity and delay.

6 PERFORMANCE EVALUATION

The proposed and existing approximate recursive multi-
pliers are synthesized using Synopsys Design Compiler
(DC) at 45nm. The Synopsys VCS is used for functional
verification of the generated netlist. Power is found using
the Primetime tool; SAIF (Switching Activity Interchange
Format) and VCD (Value Change Dump) files are used as
an input. The equivalent behavioral models are developed

for error analysis. The error rate (ER), the normalized mean
error distance (NMED) and the mean relative error distance
(MRED) are calculated over the entire input space of 8×8
multipliers, i.e., 65,536.

Compared multipliers include EvoApprox8b designs [5],
altered partial product based multipliers [6] and state-of-
the-art approximate recursive multipliers [8], [9], [10], [11],
[12]. Table 7 shows the delay, area, power, power-delay
product (PDP) and error characteristics of the considered
multipliers. The implementations of Ax8-1/2/3 designs
include the propagate-and-generate logic used to achieve
a hybrid partial product array. Ax8-3 has the least delay
among all approximate designs; an improvement of 7% to
28% is achieved. This occurs because MxA and LxA in large
multipliers are constructed from high-performance NOR
gates. Moreover, the Ax8-1/2/3 designs have a reduced
MRED of 23% to 56%, compared to the most recent state-
of-the-art approximate recursive M8-5/3/1 [11] designs. All
considered approximate multipliers are further compared
with respect to the MRED and PDP as shown in Fig. 5. Based
on the MRED metric the multipliers, are categorized in three
groups. Among the designs with lower MREDs, IWM has
the least MRED at the cost of a higher PDP, as only one
approximate 4:2 counter is used in the design of 4×4 mul-
tiplier. However, the Ax8-1 has a comparable MRED with
IWM and achieves a PDP saving of 18%. Ax8-2 provides the
best trade-off among the designs with moderate MREDs. A
reduction of 30% and 17% in the MRED is achieved com-
pared to previous best energy-optimized (LOAM) and pre-
vious best MRED-optimized (ApproxMul2) designs. Among
the higher MRED-based designs, Ax8-3 has the smallest
MRED as well as the PDP. Ax8-3 uses a combination of MxA
and LxA; therefore, an improvement of 56% and 11% in the
MRED and PDP is achieved compared to previous best PDP-
optimized (Mul8-1) design. The considered EvoApprox8b
(mul8u 125K and mul8u ZFB) are from the Pareto-optimal
subset of MRE vs power. Although they exhibit low MREDs,
they also have a large delay, thus making them not favorable
for applications that require a lower MRED and PDP. For
an n-bit multiplier, multiplier 1 exhibits a high MRED with
a reduced PDP, whereas Multiplier 2 has a high power
consumption because it approximates only n−1 least signif-
icant columns. ApproxMul2 has a reduced maximum error
compared to a previous 2×2 based design (UDM); therefore,
it lies in the set of multipliers with moderate MREDs. M8-
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Design NMED (10-3) PDP (fJ)

Ax8-1 0.1 152.58

Ax8-2 1.26 125.36

AM8-3 2.83 110.64

UDM 3.28 176.35

IWM 0.06 170.84

M8-1 6.49 123.98

M8-3 1.7 140.6

M8-5 0.13 185.95

LOAM 1.81 104.88

Evoapprox8b 0.02 545.28

Evoapprox8b 0.8 343.52

Multiplier1 3.2 203.17

Multiplier2 0.01 449.53

ApproxMul2 1.51 198.7

Ax8-1
Ax8-2

M8-3

UDMIWM

M8-1
Ax8-3

M8-5

LOAM

mul8u_125K

mul8u_ZFB

Multiplier1

Multiplier2

ApproxMul2

50
80
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140
170
200
230
260
290
320
350
380
410
440
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500
530
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P
D

P
 (

fJ
)

MRED (%)

Lower MRED
Higher MRED

Categorization of multipliers
based on MRED

Moderate MRED

Fig. 5: PDP vs MRED analysis of approximate recursive
multipliers.

TABLE 8: Performance metrics computed form image pro-
cessing results

Multiplier MED (10−2) MSE (10−3) PSNR (dB) SSIM
Ax8-1 0.045 0.023 53.78 0.97
Ax8-2 0.069 0.042 49.31 0.91
Ax8-3 1.05 0.465 39.46 0.85

5/3/1 have a relatively moderate delay compared to other
approximate designs; however, the use of three approximate
4:2 compressors in a single 4×4 building block results in a
higher PDP.

7 CASE STUDY: IMAGE PROCESSING

An application of the proposed approximate multipliers
is illustrated using image multiplication. Pixels by pixel
multiplication of two images result in a new output image.
Fig. 6 shows the results obtained by multiplying two images
using approximate (Ax8-1/2/3) multipliers. The mean error
distance (MED), mean squared error (MSE), structural sim-
ilarity index (SSIM) and PSNR are used as quality metrics
to quantify the output image. The result shows that Ax8-
1 and Ax8-2 result in a high PSNR (close to 50dB). Ax8-3
has the highest MED and MSE metrics (Table 8) as the three
PP blocks are approximated, thus consistent with the design
analysis presented in Section 5.

8 CONCLUSION

This paper has presented a hybrid partial product array
based 4×4 (MxA and LxA) multipliers using a proba-
bilistic analysis. High-performance NOR-based half-adder
(NxHA) and full-adder (NxFA) cells have been proposed
for use in the 4×4 multiplier. The proposed NxFA cell
achieves an improvement of 41% in critical path delay.
Three 8×8 multipliers (Ax8-1/2/3) are then designed using
different configurations of MxA and LxA. Ax8-2 shows
an improvement of 30% and 17% in the MRED compared
to previous best energy-optimized (LOAM) and previous
best MRED-optimized (ApproxMul2) designs. Ax8-3 is the
fastest design; an improvement of 7% to 28% in the de-
lay is achieved compared to existing approximate recur-
sive designs. Moreover, it also exhibits the smallest MRED
and PDP among the multipliers with higher MREDs. The

(a) (b) (c)

(d) (e) (f)

Fig. 6: Image multiplication (a) image1, (b) image2, (c)
accurate multiplier, (d) Ax8-1, (e) Ax8-2, (f) Ax8-3

proposed approximate multipliers have been applied to
image multiplication and two of them achieved a PSNR
close to 50 dB, thus suitable for error-resilient applica-
tions with no significant loss of quality. The synthesiz-
able Verilog files are provided as open-source libraries at
https://sourceforge.net/projects/approxarithmeticlib/.
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