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Abstract—Approximate or inexact computing has recently 

attracted considerable attention due to its potential advantages 

with respect to high performance and low power consumption. 

This paper presents the design of an approximate multiplier; 

this approximate multiplier consists of an approximate Booth 

encoder, an approximate 4-2 compressor and an approximate 

tree structure. The approximate design is implemented and 

verified for 8×8, 16×16 and 32×32-bit signed multiplication 

schemes targeting applications in embedded systems. 

Simulation results at 45 nm technology are provided and 

discussed. Compared with an exact Wallace-Booth multiplier as 

well as other approximate multipliers found in the technical 

literature, the proposed approximate scheme achieves 

significant improvements in power consumption, delay and 

combined metrics. These results show the viability of the 

proposed design. 

Keywords—approximate multiplier; inexact computing; low 

power; delay; error analysis. 

I.  INTRODUCTION 

High precision and exactness in the operations of digital 
logic circuits are related to the generally accepted requirement 
of correctness of information processing. Many applications 
such as those related to human brain (such as speech, image 
and video processing) do not require complete or exact results 
to still be meaningful and useful [1]. Error tolerant 
applications are extensive in embedded computing; by 
relaxing the requirement of strict accuracy some measures 
such as power dissipation and performance can be improved. 
This design paradigm is generally known as approximate or 
inexact computing [2]. 

As the basic operations of an arithmetic processor, 
addition and multiplication are very important for achieving 
high performance. Addition has been extensively studied for 
approximate computing to attain reductions in power 
consumption and delay. New metrics for evaluating the 
operation of an approximate adder have been proposed in [3]. 
The error distance (ED) is defined as the arithmetic distance 
between an erroneous output and the correct output. The 
mean error distance (MED) and the normalized error distance 
(NED) are also used as both the averaging effect of multiple 
inputs and the normalization of multiple-bit adders must be 
considered.  

Approximate multiplication has not been extensively 
studied despite its importance in arithmetic processing and 
systems. Several approximate multipliers that use a truncated 

multiplication method have been proposed in [4-7]. In [8], 
two new approximate 4-2 compressors have been proposed 
for designing an approximate array multiplier. This design is 
usually better than a truncated scheme, because it overcomes 
most of the accuracy and correctness issues due to truncation.  

The Wallace-Booth multiplier design is the most popular 
design solution because it is significantly faster than array 
multipliers, i.e., it reduces the number of partial products by 
using a modified Booth encoder (MBE). A Wallace-Booth 
multiplier mainly consists of three parts: partial product 
generation, partial product compression and final product 
generation with a carry propagation adder. Although 
approximate compressors have been considered in [8], no 
research has been conducted on the approximate design of the 
Booth encoder and the tree structure. 

In this paper, an approximate Wallace-Booth 
approximate multiplier is proposed based on utilizing 
approximate modules in the Booth encoder, the 4-2 
compressor (proposed in [8]) and the Wallace tree. 
Simulation results on area, delay and power consumption at 
45 nm CMOS technology show that the proposed 
approximate multiplier has better performance in terms of 
power consumption and delay compared with the exact 
multiplier as well as the approximate Wallace-Booth 
multiplier that only uses an approximate 4-2 compressor. An 
error analysis using NED is also provided. 

The rest of paper is organized as follows. Section 2 
reviews the exact Wallace-Booth multipliers. The 
approximate Booth encoder and a new tree scheme are 
proposed in Section 3. Simulation results for the proposed 
approximate Wallace-Booth multiplier are presented in 
Section 4. Section 5 concludes the paper. 

II. EXACT WALLACE-BOOTH MULTIPLICATION 

Multiplication can be thought as a series of shifted 
additions. In the past, it has been implemented sequentially 
using adders and multiple cycles, hence at a lower speed. 
With advancements in the VLSI technology, multiplication 
recoding and the Wallace tree are widely utilized in a 
multiplier design at significantly better performance. A 
multiplier consists of three steps: partial product generation, 
partial product compression and final product generation. 
The usual focus of an approximate multiplier design is on the 
first two steps due to that the multiplication recoding and tree 
structure can be improved. Modified Booth Encoder and 4-2 
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compressor are widely utilized for their relatively mature 
structures. 

A. The Modified Booth Encoder 

The generation of the partial products is the first step of 
multiplication, and Booth encoding is very efficient for this 
process. Booth encoding reduces the number of rows for the 
partial products (PPj) in a multiplier. The complexity of a 
Booth encoder significantly affects the delay and power 
consumption of the entire multiplier, because it determines 
the number of partial products.  

The modified Booth encoding (MBE) algorithm was 
introduced in [9]; the MBE algorithm is easier to implement 
and has a lower delay than the original Booth encoder. Let X 
be the multiplicand and Y the multiplier. The output of the 
Booth encoder is given by 

𝑃𝑃𝑗 = (𝑋2𝑖 ⊕ 𝑋2𝑖−1)(𝑋2𝑖+1⨁𝑌𝑗) + 

(𝑋2𝑖⨁𝑋2𝑖−1)(𝑋2𝑖+1⨁𝑋2𝑖)(𝑋2𝑖+1⨁𝑌𝑗−1)  (1) 

Fig. 1 shows the gate level design of the modified Booth 
algorithm [9].  
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Fig. 1. The encoder circuit of the MBE scheme of [9]. 

B. Exact 4-2 Compressor 

Generally, N-2 compressors are widely used in the design 
of digital multipliers. However, not every N-2 compressor is 
suitable for partial product reduction in a multiplier.  

The 4-2 compressor is very efficient and widely used in 
computer arithmetic. Two full adders are combined into the 
compressor [10]; therefore, it has five inputs (i.e., Cin, P1, P2, 
P3, P4) and three outputs (i.e., Sum, Cout, Carry). Cin, P1, P2, 
P3, P4 and Sum have the same weight of 1, while Cout and 
Carry have a weight of 2. 

III. APPROXIMATE WALLACE-BOOTH MULTIPIIER 

In this section, an approximate Wallace-Booth multiplier 
is proposed. This approximate multiplier consists of an 
approximate modified Booth encoder, an approximate 4-2 
compressor (that was proposed in [8]) and an approximate 
Wallace tree. 

A. The Approximate MBE Algorithm 

As shown in (1), five inputs generate a partial product. 
The Karnaugh map of the MBE is shown in Table I. 

TABLE I. KARNAUGH MAP OF MBE  

       X2i+1X2iX2i-

1  

 

YjYj-1 

000 001 011 010 110 111 101 100 

00 0 0 0 0 1 0 1 □1  

01 0 0 □1  0 1 0 1 0 

11 0 1 □1  1 0 0 0 0 

10 0 1 0 1 0 0 0 □1  

 

The complexity of the PPj function is related to the 
symmetry of the K-map; the design of the new approximate 

modified Booth encoder (AMBE) is achieved by replacing □1  

with 0 (Table I), thus making the K-map of the MBE more 
symmetrical. The function in the proposed approximate 
Booth encoder is as follows: 

𝑃𝑃𝑗 = (𝑋2𝑖 ⊕ 𝑋2𝑖−1)(𝑋2𝑖+1⨁𝑌𝑗)                     (2) 

By using (2) only four inputs are used to produce one 
partial product. Table II shows the truth table of the AMBE 
algorithm. It also shows the difference between the outputs 
of exact Booth encoding (PPj) and the outputs of approximate 
Booth encoding (APPj). As shown in Table II, the proposed 
AMBE only introduces two incorrect outputs out of sixteen 
outputs (i.e., error rate of 12.5%). 

TABLE II. TRUTH TABLE OF AMBE 

 
 𝒀𝒋                𝑿𝟐𝒊+𝟏          𝑿𝟐𝒊             𝑿𝟐𝒊−𝟏         𝑷𝑷𝒋          𝑨𝑷𝑷𝒋      Diff. 

 
0                0                0                0               0              0               0 
0                0                0                1               0              0               0 
0                0                1                0               0              0               0 
0                0                1                1               0              0               0 
0                1                0                0               1              0              -1 
0                1                0                1               1              1               0 
0                1                1                0               1              1               0 
0                1                1                1               0              0               0 
1                0                0                0               0              0               0 
1                0                0                1               1              1               0 
1                0                1                0               1              1               0 
1                0                1                1               0              0               0 
1                1                0                0               1              0              -1 
1                1                0                1               0              0               0 
1                1                1                0               0              0               0 
1                1                1                1               0              0               0 

 
 

The gate level design of the proposed AMBE is shown in 
Fig. 2. The conventional design of a MBE (Fig. 1) [9] consists 
of four XNOR gates, one NOR gate, two AND gates and one 
OR gate.  Therefore, the critical path of an exact MBE has a 
delay of 4τ, where τ is the unitary delay through any gate in 
the design. The proposed design of AMBE consists of only 
two XOR gates and one AND gate. Therefore, its critical path 

delay is reduced to 2τ. 

B. Approximate 4-2 Compressor 

Two approximate 4-2 compressors have been proposed in 
[8]; they are both designed by changing few values in the 



truth table of the compressor. However, the very first 
approximate design generates fifteen inexact outputs out of 
thirty two. The error rate of this design is rather high, i.e., 
46.9%. The second 4-2 compressor is a very efficient design 
and is used in this work. The logic functions of this 
approximate 4-2 compressor are given by [8]:  

𝑆𝑢𝑚′ = (𝑃1 ⊕ 𝑃2 + 𝑃3⨁𝑃4)                         (3) 

𝐶𝑎𝑟𝑟𝑦′ = (𝑃1𝑃2 + 𝑃3𝑃4)              (4) 

At gate level, the critical path delay of this design is 2τ; 
this design requires only two XNOR gates, two NAND gates, 
one NOR gate and one OR gate. 
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Fig. 2. The encoder circuit of AMBE. 

 

C. Approximate Wallace Tree 

A tree is used to perform the reduction of the partial 
product rows until only two rows remain. Fig. 3 shows the 
MBE partial product arrays for an 8×8 multiplier [9], where 
𝑁𝑒𝑔and the sign extension term appear in the partial product 
array. 𝑁𝑒𝑔  is determined by the LSB of the y signal 
combined with the x signals. The sign extension term is 
determined by the MSB of the y signal combined with the x 
signals; refer to [9] for more details on these terms. 

Due to the presence of the fifth row 𝑁𝑒𝑔 term which is 
represented as △, two stages are needed in the exact 
compression of the partial product array for an 8 × 8 bit 
multiplier; however, in the design of an approximate Wallace 
tree, △ can be ignored because it is the least significant bit of 
the final partial product vector; therefore, sixteen carry save 
adders are not needed in the approximate tree structure.  

The equation for △is given by 

𝑃𝑃𝑛/2−1 = 𝑏𝑛𝑏𝑛−1𝑏𝑛−2,                 (5) 

where n is the size of multiplier and b is the multiplicand of 
the multiplier. The error rate is then equal to 37.5%. 

D. Approximate Wallace-Booth Multiplier 

The design of an approximate Wallace-Booth multiplier 
is divided into two parts by the position of △. AMBE and the 
approximate 4-2 compressor are used in the n/2 least 
significant bits (LSBs) (i.e., there are 8 LSBs for the 8×8 bit 
multiplier), the most significant bits (MSBs) use an exact 
MBE and 4-2 compressors. △ is also ignored. 

As the approximate (exact) designs are used in the least 
(most) significant columns, improvements in delay and 
power consumption can be achieved at reasonable accuracy. 

Fig. 4 shows the approximate Wallace-Booth multiplier. 
Consider the 8×8 bit multiplier as an example. A box with a 
solid line represents the use of an exact 4-2 compressor; a box 
with the dotted line represents an approximate 4-2 
compressor, while the exact partial product is represented by 
▲ and the approximate partial product is represented by ■. In 
the first stage, △is ignored; in the second stage, a 16-bit carry 
look-ahead adder is used to generate the final product. 

Fig. 3. A conventional 8×8 MBE partial product array, where ● denotes the 
ppij term, ○ denotes the sign extension term, ◎ denotes the Neg term and 

△ is the ignored Neg term. 
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Fig. 4. Diagram of an approximate 8×8 multiplier. (● represents the exact 

data, and ■ represents the approximate data.) 

IV. SIMULATION RESULTS 

The proposed approximate Wallace-Booth multipiler is 

initially designed at gate level in verilog HDL; then it is 

synthesized by the Synopsys Design Complier using the 

Nangate 45nm Open Cell Library. In the simulation of each 

design, a supply voltage of 1.25V and room tempareature are 

assumed; the power consumption is evaluated by using the 

Synopsys Power Complier. 

Table III summarizes the delay, area and power 

consumption of exact and approximate multipliers.  

 The first design is the exact Wallace-Booth multiplier  

(EWBM) [9].  

 The second design  is the approximate Wallace-

Booth multiplier (AWBM-I) that only use the 

approximate 4-2 compressors in n/2 LSBs.  

 The third design is the approximate Wallace-Booth 

multiplier (AWBM-II) proposed in Section III. 

Delay 

AWBM-I has the same number of reduction stages as 

the exact multiplication; however the use of the approximate 

4-2 compressors in n/2 LSBs reduces the delay. In AWBM-

II, the approximate tree structure reduces the number of 
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reduction stages, while the approximate Booth encoding and 

the approximate 4-2 compressors also contribute to a 

reduction of the delay. So as shown in Table III, AWBM-II 

has the best performance in terms of delay. 

Power Consumption 

The power consumption of each multiplier is dependent 

on the number and type of the Booth encoding cells and the 

4-2 compressors. In Table III, AWBM-I has the power 

consumption significantly lower than EWBM by using the 

approximate 4-2 compressors. AWBM-II has better 

performance in power consumption than AWBM-I due to the 

approximate Booth encoding and the approximate tree. 
 

TABLE III. MULTIPLIER DESIGNS AND COMPARISON 
 (USING NANGATE 45NM OPEN CELL LIBRARY) 

 

N-

bit 

Type of 

Multiplier 

Delay  

(ns) 

Area 

(μm2) 

Power 

(μW) 

PDP 

(aJ) 

8 

EWBM [9] 1.26 699 173 0.218 

AWBM-I  1.13 629 159 0.180 

AWBM-II 1.04 457 110 0.114 

16 

EWBM [9] 1.53 2615 629 0.962 

AWBM-I  1.26 2183 526 0.663 

AWBM-II 1.19 1613 373 0.444 

32 

EWBM [9] 1.97 10225 2540 5.003 

AWBM-I  1.63 8920 2208 3.599 

AWBM-II 1.54 6776 1684 2.593 

 

Error Distance 

Signed approximate multipliers (8 × 8, 16 × 16 and 

32×32 bit) are analyzed using the NED as the metric [3]. 

NED is defined as the average distance over all inputs and 

normalized by the maximum possible error. The maximum 

high (low) NED is also defined in [8]. AWBM-II multipliers 

use AMBE in n/2 LSBs, the approximate compressors, and 

the approximate tree structure. Both AWBM-I and AWBM-

II are compared using NED. Table IV shows the NED of the 

8×8 bit AWBM-I and AWBM-II multipliers. 

Overall Performance  

The product of the power-delay product and the average 

NED (PDPE) is used as a combined measure of an 

approximate multiplier. The PDPE of AWBM-I is 0.054, 

while the PDPE of AWBM-II is 0.025 for the 8 × 8 bit 

multiplier. AWBM-II using the proposed approximate Booth 

encoder reduces the PDPE by 53.7% compared with AWBM-

I, thus confirming the advantages of the proposed AWBM-II 

multiplier in terms of overall performance. 

 

 

TABLE IV. NED OF TWO APPROXIMATE WALLACE-BOOTH MULTIPLIERS 

FOR N=8. 

Design  
Ave 

NED 

Max High 

NED 

Max Low 

NED 

Correct 

Outputs 

AWBM-I 0.30 0.178 0.445 3976 

AWBM-II 0.18 0.1018 0.2598 2358 

 

V. CONCLUSION 

The paper has proposed an approximate Wallace-Booth 
multiplier; this design has shown considerable savings for 
power consumption and delay while incurring a modest loss 
in accuracy. Approximate Booth encoders, approximate 4-2 
compressors and approximate trees are used in the n/2 LSBs 
of the multiplier. Compared with an exact signed multiplier, 
the new approximate multiplier has up to 22% improvement 
in delay for the 16 × 16 bit scheme and up to 37% 
improvement in power consumption for the 8×8 bit. Schemes 
employing different types of inexact circuits have been 
analyzed. The proposed 8 ×  8 bit approximate Wallace-
Booth multiplier reduces the combined metric of PADNP by 
over 50% compared with AWBM-I that only uses a 
previously proposed approximate 4-2 compressor.  
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