
Design and Evaluation of An Approximate Wallace-

Booth Multiplier

Liangyu Qian1, Chenghua Wang1, Weiqiang Liu1, Fabrizio Lombardi2 and Jie Han3
1College of EIE, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 210016. liuweiqiang@nuaa.edu.cn

2Department of ECE, Northeastern University, Boston, MA, USA, 02115. lombardi@ece.neu.edu
3Department of ECE, University of Alberta, Edmonton, Alberta T6G 1H9, Canada. jhan8@ualberta.ca

Abstract—Approximate or inexact computing has recently

attracted considerable attention due to its potential advantages

with respect to high performance and low power consumption.

This paper presents the design of an approximate multiplier;

this approximate multiplier consists of an approximate Booth

encoder, an approximate 4-2 compressor and an approximate

tree structure. The approximate design is implemented and

verified for 8×8, 16×16 and 32×32-bit signed multiplication

schemes targeting applications in embedded systems.

Simulation results at 45 nm technology are provided and

discussed. Compared with an exact Wallace-Booth multiplier as

well as other approximate multipliers found in the technical

literature, the proposed approximate scheme achieves

significant improvements in power consumption, delay and

combined metrics. These results show the viability of the

proposed design.

Keywords—approximate multiplier; inexact computing; low

power; delay; error analysis.

I. INTRODUCTION

High precision and exactness in the operations of digital
logic circuits are related to the generally accepted requirement
of correctness of information processing. Many applications
such as those related to human brain (such as speech, image
and video processing) do not require complete or exact results
to still be meaningful and useful [1]. Error tolerant
applications are extensive in embedded computing; by
relaxing the requirement of strict accuracy some measures
such as power dissipation and performance can be improved.
This design paradigm is generally known as approximate or
inexact computing [2].

As the basic operations of an arithmetic processor,
addition and multiplication are very important for achieving
high performance. Addition has been extensively studied for
approximate computing to attain reductions in power
consumption and delay. New metrics for evaluating the
operation of an approximate adder have been proposed in [3].
The error distance (ED) is defined as the arithmetic distance
between an erroneous output and the correct output. The
mean error distance (MED) and the normalized error distance
(NED) are also used as both the averaging effect of multiple
inputs and the normalization of multiple-bit adders must be
considered.

Approximate multiplication has not been extensively
studied despite its importance in arithmetic processing and
systems. Several approximate multipliers that use a truncated

multiplication method have been proposed in [4-7]. In [8],
two new approximate 4-2 compressors have been proposed
for designing an approximate array multiplier. This design is
usually better than a truncated scheme, because it overcomes
most of the accuracy and correctness issues due to truncation.

The Wallace-Booth multiplier design is the most popular
design solution because it is significantly faster than array
multipliers, i.e., it reduces the number of partial products by
using a modified Booth encoder (MBE). A Wallace-Booth
multiplier mainly consists of three parts: partial product
generation, partial product compression and final product
generation with a carry propagation adder. Although
approximate compressors have been considered in [8], no
research has been conducted on the approximate design of the
Booth encoder and the tree structure.

In this paper, an approximate Wallace-Booth
approximate multiplier is proposed based on utilizing
approximate modules in the Booth encoder, the 4-2
compressor (proposed in [8]) and the Wallace tree.
Simulation results on area, delay and power consumption at
45 nm CMOS technology show that the proposed
approximate multiplier has better performance in terms of
power consumption and delay compared with the exact
multiplier as well as the approximate Wallace-Booth
multiplier that only uses an approximate 4-2 compressor. An
error analysis using NED is also provided.

The rest of paper is organized as follows. Section 2
reviews the exact Wallace-Booth multipliers. The
approximate Booth encoder and a new tree scheme are
proposed in Section 3. Simulation results for the proposed
approximate Wallace-Booth multiplier are presented in
Section 4. Section 5 concludes the paper.

II. EXACT WALLACE-BOOTH MULTIPLICATION

Multiplication can be thought as a series of shifted
additions. In the past, it has been implemented sequentially
using adders and multiple cycles, hence at a lower speed.
With advancements in the VLSI technology, multiplication
recoding and the Wallace tree are widely utilized in a
multiplier design at significantly better performance. A
multiplier consists of three steps: partial product generation,
partial product compression and final product generation.
The usual focus of an approximate multiplier design is on the
first two steps due to that the multiplication recoding and tree
structure can be improved. Modified Booth Encoder and 4-2

This work is supported by grants from National Natural Science Foundation of

China (61401197) and Natural Science Foundation of Jiangsu Province
(BK20151477).

mailto:chwang%7d@nuaa.edu.cn

compressor are widely utilized for their relatively mature
structures.

A. The Modified Booth Encoder

The generation of the partial products is the first step of
multiplication, and Booth encoding is very efficient for this
process. Booth encoding reduces the number of rows for the
partial products (PPj) in a multiplier. The complexity of a
Booth encoder significantly affects the delay and power
consumption of the entire multiplier, because it determines
the number of partial products.

The modified Booth encoding (MBE) algorithm was
introduced in [9]; the MBE algorithm is easier to implement
and has a lower delay than the original Booth encoder. Let X
be the multiplicand and Y the multiplier. The output of the
Booth encoder is given by

𝑃𝑃𝑗 = (𝑋2𝑖 ⊕ 𝑋2𝑖−1)(𝑋2𝑖+1⨁𝑌𝑗) +

(𝑋2𝑖⨁𝑋2𝑖−1)(𝑋2𝑖+1⨁𝑋2𝑖)(𝑋2𝑖+1⨁𝑌𝑗−1) (1)

Fig. 1 shows the gate level design of the modified Booth
algorithm [9].

1_X b

1_X b

1-i2X

1-i2X

i2X

1+i2X

i2X

i2X

1-i2X
_b2X

_b2X
Z

Z

Neg
Neg

jY 1-jY

jPP

Fig. 1. The encoder circuit of the MBE scheme of [9].

B. Exact 4-2 Compressor

Generally, N-2 compressors are widely used in the design
of digital multipliers. However, not every N-2 compressor is
suitable for partial product reduction in a multiplier.

The 4-2 compressor is very efficient and widely used in
computer arithmetic. Two full adders are combined into the
compressor [10]; therefore, it has five inputs (i.e., Cin, P1, P2,
P3, P4) and three outputs (i.e., Sum, Cout, Carry). Cin, P1, P2,
P3, P4 and Sum have the same weight of 1, while Cout and
Carry have a weight of 2.

III. APPROXIMATE WALLACE-BOOTH MULTIPIIER

In this section, an approximate Wallace-Booth multiplier
is proposed. This approximate multiplier consists of an
approximate modified Booth encoder, an approximate 4-2
compressor (that was proposed in [8]) and an approximate
Wallace tree.

A. The Approximate MBE Algorithm

As shown in (1), five inputs generate a partial product.
The Karnaugh map of the MBE is shown in Table I.

TABLE I. KARNAUGH MAP OF MBE

 X2i+1X2iX2i-

1

YjYj-1

000 001 011 010 110 111 101 100

00 0 0 0 0 1 0 1 □1

01 0 0 □1 0 1 0 1 0

11 0 1 □1 1 0 0 0 0

10 0 1 0 1 0 0 0 □1

The complexity of the PPj function is related to the
symmetry of the K-map; the design of the new approximate

modified Booth encoder (AMBE) is achieved by replacing □1

with 0 (Table I), thus making the K-map of the MBE more
symmetrical. The function in the proposed approximate
Booth encoder is as follows:

𝑃𝑃𝑗 = (𝑋2𝑖 ⊕ 𝑋2𝑖−1)(𝑋2𝑖+1⨁𝑌𝑗) (2)

By using (2) only four inputs are used to produce one
partial product. Table II shows the truth table of the AMBE
algorithm. It also shows the difference between the outputs
of exact Booth encoding (PPj) and the outputs of approximate
Booth encoding (APPj). As shown in Table II, the proposed
AMBE only introduces two incorrect outputs out of sixteen
outputs (i.e., error rate of 12.5%).

TABLE II. TRUTH TABLE OF AMBE

 𝒀𝒋 𝑿𝟐𝒊+𝟏 𝑿𝟐𝒊 𝑿𝟐𝒊−𝟏 𝑷𝑷𝒋 𝑨𝑷𝑷𝒋 Diff.

0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 1 1 0 0 0
0 1 0 0 1 0 -1
0 1 0 1 1 1 0
0 1 1 0 1 1 0
0 1 1 1 0 0 0
1 0 0 0 0 0 0
1 0 0 1 1 1 0
1 0 1 0 1 1 0
1 0 1 1 0 0 0
1 1 0 0 1 0 -1
1 1 0 1 0 0 0
1 1 1 0 0 0 0
1 1 1 1 0 0 0

The gate level design of the proposed AMBE is shown in
Fig. 2. The conventional design of a MBE (Fig. 1) [9] consists
of four XNOR gates, one NOR gate, two AND gates and one
OR gate. Therefore, the critical path of an exact MBE has a
delay of 4τ, where τ is the unitary delay through any gate in
the design. The proposed design of AMBE consists of only
two XOR gates and one AND gate. Therefore, its critical path

delay is reduced to 2τ.

B. Approximate 4-2 Compressor

Two approximate 4-2 compressors have been proposed in
[8]; they are both designed by changing few values in the

truth table of the compressor. However, the very first
approximate design generates fifteen inexact outputs out of
thirty two. The error rate of this design is rather high, i.e.,
46.9%. The second 4-2 compressor is a very efficient design
and is used in this work. The logic functions of this
approximate 4-2 compressor are given by [8]:

𝑆𝑢𝑚′ = (𝑃1 ⊕ 𝑃2 + 𝑃3⨁𝑃4) (3)

𝐶𝑎𝑟𝑟𝑦′ = (𝑃1𝑃2 + 𝑃3𝑃4) (4)

At gate level, the critical path delay of this design is 2τ;
this design requires only two XNOR gates, two NAND gates,
one NOR gate and one OR gate.

i2b 1-i2b ja 1+i2b

ijPP

Fig. 2. The encoder circuit of AMBE.

C. Approximate Wallace Tree

A tree is used to perform the reduction of the partial
product rows until only two rows remain. Fig. 3 shows the
MBE partial product arrays for an 8×8 multiplier [9], where
𝑁𝑒𝑔and the sign extension term appear in the partial product
array. 𝑁𝑒𝑔 is determined by the LSB of the y signal
combined with the x signals. The sign extension term is
determined by the MSB of the y signal combined with the x
signals; refer to [9] for more details on these terms.

Due to the presence of the fifth row 𝑁𝑒𝑔 term which is
represented as △, two stages are needed in the exact
compression of the partial product array for an 8 × 8 bit
multiplier; however, in the design of an approximate Wallace
tree, △ can be ignored because it is the least significant bit of
the final partial product vector; therefore, sixteen carry save
adders are not needed in the approximate tree structure.

The equation for △is given by

𝑃𝑃𝑛/2−1 = 𝑏𝑛𝑏𝑛−1𝑏𝑛−2, (5)

where n is the size of multiplier and b is the multiplicand of
the multiplier. The error rate is then equal to 37.5%.

D. Approximate Wallace-Booth Multiplier

The design of an approximate Wallace-Booth multiplier
is divided into two parts by the position of △. AMBE and the
approximate 4-2 compressor are used in the n/2 least
significant bits (LSBs) (i.e., there are 8 LSBs for the 8×8 bit
multiplier), the most significant bits (MSBs) use an exact
MBE and 4-2 compressors. △ is also ignored.

As the approximate (exact) designs are used in the least
(most) significant columns, improvements in delay and
power consumption can be achieved at reasonable accuracy.

Fig. 4 shows the approximate Wallace-Booth multiplier.
Consider the 8×8 bit multiplier as an example. A box with a
solid line represents the use of an exact 4-2 compressor; a box
with the dotted line represents an approximate 4-2
compressor, while the exact partial product is represented by
▲ and the approximate partial product is represented by ■. In
the first stage, △is ignored; in the second stage, a 16-bit carry
look-ahead adder is used to generate the final product.

Fig. 3. A conventional 8×8 MBE partial product array, where ● denotes the
ppij term, ○ denotes the sign extension term, ◎ denotes the Neg term and

△ is the ignored Neg term.

■■■■■■■

■■■■■

■■■

■

Stage1

△

■ ■

■

■

■

■

■

Stage2

●●●●

●●●●●●●

●●

●

●

●●●●●●

Stage3

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

■■■■■■■

■■■■■

■

■

■

■■■■■■■ ■■■

Fig. 4. Diagram of an approximate 8×8 multiplier. (● represents the exact

data, and ■ represents the approximate data.)

IV. SIMULATION RESULTS

The proposed approximate Wallace-Booth multipiler is

initially designed at gate level in verilog HDL; then it is

synthesized by the Synopsys Design Complier using the

Nangate 45nm Open Cell Library. In the simulation of each

design, a supply voltage of 1.25V and room tempareature are

assumed; the power consumption is evaluated by using the

Synopsys Power Complier.

Table III summarizes the delay, area and power

consumption of exact and approximate multipliers.

 The first design is the exact Wallace-Booth multiplier

(EWBM) [9].

 The second design is the approximate Wallace-

Booth multiplier (AWBM-I) that only use the

approximate 4-2 compressors in n/2 LSBs.

 The third design is the approximate Wallace-Booth

multiplier (AWBM-II) proposed in Section III.

Delay

AWBM-I has the same number of reduction stages as

the exact multiplication; however the use of the approximate

4-2 compressors in n/2 LSBs reduces the delay. In AWBM-

II, the approximate tree structure reduces the number of

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

◎

◎

◎

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

○○○

○○

○○

○

●

●

●

●
△

reduction stages, while the approximate Booth encoding and

the approximate 4-2 compressors also contribute to a

reduction of the delay. So as shown in Table III, AWBM-II

has the best performance in terms of delay.

Power Consumption

The power consumption of each multiplier is dependent

on the number and type of the Booth encoding cells and the

4-2 compressors. In Table III, AWBM-I has the power

consumption significantly lower than EWBM by using the

approximate 4-2 compressors. AWBM-II has better

performance in power consumption than AWBM-I due to the

approximate Booth encoding and the approximate tree.

TABLE III. MULTIPLIER DESIGNS AND COMPARISON
 (USING NANGATE 45NM OPEN CELL LIBRARY)

N-

bit

Type of

Multiplier

Delay

(ns)

Area

(μm2)

Power

(μW)

PDP

(aJ)

8

EWBM [9] 1.26 699 173 0.218

AWBM-I 1.13 629 159 0.180

AWBM-II 1.04 457 110 0.114

16

EWBM [9] 1.53 2615 629 0.962

AWBM-I 1.26 2183 526 0.663

AWBM-II 1.19 1613 373 0.444

32

EWBM [9] 1.97 10225 2540 5.003

AWBM-I 1.63 8920 2208 3.599

AWBM-II 1.54 6776 1684 2.593

Error Distance

Signed approximate multipliers (8 × 8, 16 × 16 and

32×32 bit) are analyzed using the NED as the metric [3].

NED is defined as the average distance over all inputs and

normalized by the maximum possible error. The maximum

high (low) NED is also defined in [8]. AWBM-II multipliers

use AMBE in n/2 LSBs, the approximate compressors, and

the approximate tree structure. Both AWBM-I and AWBM-

II are compared using NED. Table IV shows the NED of the

8×8 bit AWBM-I and AWBM-II multipliers.

Overall Performance

The product of the power-delay product and the average

NED (PDPE) is used as a combined measure of an

approximate multiplier. The PDPE of AWBM-I is 0.054,

while the PDPE of AWBM-II is 0.025 for the 8 × 8 bit

multiplier. AWBM-II using the proposed approximate Booth

encoder reduces the PDPE by 53.7% compared with AWBM-

I, thus confirming the advantages of the proposed AWBM-II

multiplier in terms of overall performance.

TABLE IV. NED OF TWO APPROXIMATE WALLACE-BOOTH MULTIPLIERS

FOR N=8.

Design
Ave

NED

Max High

NED

Max Low

NED

Correct

Outputs

AWBM-I 0.30 0.178 0.445 3976

AWBM-II 0.18 0.1018 0.2598 2358

V. CONCLUSION

The paper has proposed an approximate Wallace-Booth
multiplier; this design has shown considerable savings for
power consumption and delay while incurring a modest loss
in accuracy. Approximate Booth encoders, approximate 4-2
compressors and approximate trees are used in the n/2 LSBs
of the multiplier. Compared with an exact signed multiplier,
the new approximate multiplier has up to 22% improvement
in delay for the 16 × 16 bit scheme and up to 37%
improvement in power consumption for the 8×8 bit. Schemes
employing different types of inexact circuits have been
analyzed. The proposed 8 × 8 bit approximate Wallace-
Booth multiplier reduces the combined metric of PADNP by
over 50% compared with AWBM-I that only uses a
previously proposed approximate 4-2 compressor.

REFERENCES

[1] S. Venkataramani, S. T. Chakradhar, K. Roy. “Computing
approximately, and efficiently,” Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2015, pp.748-751.

[2] S. Venkataramani, V. K. Chippa, S. T. Chakradhar. “Quality
programmable vector processors for approximate computing,”
Proceedings of the 46th Annual IEEE and ACM International
Symposium on MicroarchitectureACM, 2013,pp.1-12.

[3] J. Liang, J. Han, and F. Lombardi, “New metrics for the reliability of
approximate and probabilistic adders,” IEEE Transactions on
Computers, vol. 63, pp. 1760-1771, Sep. 2013.

[4] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas, “Bio-
inspired imprecise computational blocks for efficient VLSI
implementation of soft-computing applications,” IEEE Transactions
on Circuits and Systems-I: Regular Papers, vol. 57, no. 4, pp. 850-862,
Apr. 2010.

[5] M. J. Schulte and E. E. Swartzlander Jr., “Truncated multiplication
with correction constant,” in Proc. Workshop on VLSI Signal
Processing, 1993, pp. 388-396.

[6] E. J. King and E. E. Swartzlander Jr., “Data dependent truncated
scheme for parallel multiplication,” in Proc. 31st Asilomar Conference
on Signals, Systems and Computers, 1998, pp. 1178-1182.

[7] P. Kulkarni, P. Gupta, and M. D. Ercegovac, “Trading accuracy for
power in a multiplier architecture,” Journal of Low Power Electronics,
vol. 7, pp. 490-501, 2011.

[8] A. Momeni, J. Han, P. Montuschi, and F. Lombardi, “Design and
analysis of approximate compressors for multiplication”. IEEE
Transactions on Computers, 2015, pp. 984- 994.

[9] W. C. Yeh, and C. W. Jen. “High-speed booth encoded parallel
multiplier design.” IEEE Transactions on Computers, pp.692- 701,
2000.

[10] C. Chang, J. Gu, and M. Zhang, “Ultra low-voltage low- power CMOS
4-2 and 5-2 compressors for fast arithmetic circuits,” IEEE
Transactions on Circuits and Systems-I: Regular Papers, vol. 51, pp.
1985-1997, Oct. 2004.

