
0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2653780,
IEEE Transactions on Computers

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 1

Two Approximate Voting Schemes for
Reliable Computing

Ke Chen, Member, Jie Han, Member Fabrizio Lombardi, Fellow IEEE

Abstract— This paper relies on the principles of inexact computing to alleviate the issues arising in static masking by voting for
reliable computing in the nanoscales. Two schemes that utilize in different manners approximate voting, are proposed. The first
scheme is referred to as inexact double modular redundancy (IDMR). IDMR does not resort to triplication, thus saving overhead
due to modular replication. This scheme is crudely adaptive in its operation, i.e. it allows a threshold to determine the validity of
the module outputs. IDMR operates by initially establishing the difference between the values of the outputs of the two modules;
only if the difference is below a preset threshold, then the voter calculates the average value of the two module outputs. The
second scheme (ITDMR) combines IDMR with TMR (triple modular redundancy) by using novel conditions in the comparison of
the outputs of the three modules. Within an inexact framework, the majority is established using different criteria; in ITDMR,
adaptive operation is carried further than IDMR to include approximate voting in a pairwise fashion. So, the validity of the three
inputs is established and when only two of the three inputs satisfy the threshold condition, the IDMR operation is utilized. An
extensive analysis that includes the voting circuits as well as a probabilistic framework is included. The proposed IDMR and
ITDMR schemes improve the power dissipation and tolerance to variations compared to a traditional TMR. To further validate
the applicability of the proposed schemes, inexact voting has been used in two applications (image processing and FIR
filtering); the simulation results show that performance is substantially improved over TMR.

Index Terms— Voting, Approximate computing, Reliable system, Redundancy

——————————  ——————————

1 INTRODUCTION
OFT errors have become a major concern in the design
of nanoscale digital integrated circuits [1]. A soft error

may occur due to a strike by a high-energy particle and
manifests itself as a transient bit reversal in the logic val-
ue of a circuit node. The bit reversal phenomenon (also
commonly referred to as an event upset) can also affect
the data stored in a memory as well as causing the execu-
tion of an erroneous computation. Over the years, differ-
ent techniques have been proposed to protect electronic
circuits against soft errors and to preserve data integrity
[2].

Redundancy techniques are effective to address soft
errors; they are commonly used for designing dependable
systems to ensure high reliability and availability [3] [4].
One of the most effective fault-tolerant design schemes is
the so-called N-modular redundancy (NMR); in a NMR
scheme, N copies of a module are utilized [5]. A majority
voter generates the voted output on the assumption that
the number of erroneous modules is always the minority.
Consider, for example, triple-modular redundancy (TMR)
as the special case of NMR i.e. when N = 3. An error is
detected if the outputs of the modules differ. The error is
corrected by voting, i.e., taking the majority value as the
correct result. This approach is effective when the rate of
occurrence of soft errors is low and therefore, the proba-

bility of two modules both affected by soft errors is un-
likely [6].

 A well-known alternative to TMR is double modular
redundancy (DMR), i.e. the original module is duplicated.
This scheme reduces the cost of redundancy by providing
error detection; however, error correction is not always
possible, because comparison cannot always establish the
erroneous module and therefore, additional circuitry is
needed [5].

In general, redundancy approaches are best applicable
provided failure independence is retained in the opera-
tions of the modules [5]. This assumption avoids the so-
called common mode failure (CMF) [5]. CMF is a cata-
strophic failure that affects multiple modules in the same
way. For example, if the modules are identical, the out-
puts, although erroneous, will be the same and the error
will not be detected, so resulting in an incorrect majority.
Design diversity is needed to resolve this problem, i.e. to
employ different redundant implementations of the orig-
inal module. Thus, when the CMF occurs, the modules
can produce different outputs and the error can be detect-
ed. However, different implementations may cause small
differences among the module values as outputs, thus
resulting in the failure of a voting scheme such as TMR.
This is caused by the strict relationship in finding the ma-
jority from the voter inputs when even slightly different
values are provided. This property is often referred to as
static masking and is one of the major disadvantages of a
redundancy scheme [5]. Therefore, slight changes in
module outputs can be encountered due to diversity,
presence of soft errors and technology scaling.

Computing usually operates with a high degree of re-

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————
• K. Chen is with the Department of Electrical and Computer Engineering,

Northeastern University, Boston, MA 02115. E-mail: chen.ke1@
husky.neu.edu.

• J. Han is with the ECE Department, University of Alberta, Edmonton,
Canada. E-mail: jhan8@ualberta.ca.

• F. Lombardi is with the Department of Electrical and Computer Engineer-
ing, Northeastern University, Boston, MA 02115. E-mail: lombar-
di@ece.neu.edu.

S

0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2653780,
IEEE Transactions on Computers

2 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

liability and precision. However, many applications such
as multimedia and image processing can tolerate errors
and imprecision in computation and still produce mean-
ingful and useful results [7]. Accurate and precise models
and algorithms are not always suitable or efficient for use
in these applications. The paradigm of inexact computa-
tion relies on relaxing fully precise and completely de-
terministic building modules when for example, design-
ing energy-efficient systems. This allows imprecise (or
inexact) computation to redirect the existing design pro-
cess of digital circuits and systems by taking advantage of
a decrease in complexity and cost with possibly a poten-
tial increase in performance and power efficiency [8]. Ap-
proximate (or inexact) computing relies on using this
property to design simplified, yet approximate circuits
operating at higher performance level and/or lower
power consumption compared with precise (exact) logic
circuits [7].

Approximate computing has been extensively applied
to arithmetic circuits. Addition and multiplication are
widely used operations in computer arithmetic; so, full-
adder cells have been analyzed for approximate compu-
ting [9] [10]. [7] has compared these types of adder and
proposed several new metrics for evaluating approximate
and probabilistic adders with respect to unified figures of
merit for design assessment of inexact computing under
various applications. The tradeoff between precision and
power has also been quantitatively evaluated in [7]. Inex-
act voting can be used in a redundant scheme with re-
laxed precision requirements, because an inexact voter
offers advantages for toleranting and approximately cor-
recting errors. However, when exactness and a precise
result are strict requirements, an inexact voter may not be
suitable.

This paper relies on the principles of inexact compu-
ting to alleviate the issues arising in static masking by
voting. Two schemes that utilize in different manners
approximate voting are proposed. The first scheme whose
operation was initially proposed by the same authors in
[11], is referred to as inexact double modular redundancy
(IDMR). IDMR does not resort to triplication, thus saving
overhead due to modular replication; this scheme is
crudely adaptive in its operation, i.e. it allows a threshold
to determine the validity of the module outputs. IDMR
operates by initially establishing the difference between
the values of the outputs of the two modules; only if the
difference is below a preset threshold, then the voter cal-
culates the average value of the two module outputs.

The second scheme combines IDMR with TMR by us-
ing novel conditions in the comparison of the outputs of
the three modules, i.e. ITDMR. Within an inexact frame-
work, the majority is established using different criteria;
in ITDMR, adaptive operation is carried further than
IDMR to include approximate voting in a pair wise fash-
ion. The validity of the three inputs from the modules is
established and if only two of the three inputs satisfy the
threshold condition, then IDMR operation is utilized. Dif-
ferent applications of the proposed voting schemes are
investigated in depth; an assessment of image processing
and filtering using the proposed schemes is presented to

show the quantitative and qualitative features of approx-
imate voting for reliable computing.

2 REVIEW
A brief review of redundant schemes for reliable compu-
ting is then pursued next; previous works on duplication
(as well as majority voting and variants of it) are present-
ed as relevant to the proposed techniques based on ap-
proximate voting.
2.1 DMR Scheme
In DMR, the outputs of two modules are compared as
shown in Fig.1; an error is detected if the outputs differ,
therefore, a traditional DMR does not provide error cor-
rection. [12] Recently, the use of design diversity within
DMR has been investigated to provide low cost detection
and correction of radiation-induced soft errors [13]. The
principle of this approach is that the two modules are

implemented using designs that provide different output
error patterns when a soft error hits. These error patterns
can be detected as a series of mismatches between the
module outputs; by recognizing these patterns, the mod-
ule-in-error can be identified and the output from the
other module is used as the final error-protected output.
Thus, this approach is application dependent, because
error detection and correction require a dedicated unit
that intelligently assesses the outputs of the two redun-
dant modules.

2.2 Majority Voter
Triple modular redundancy (TMR) uses three copies of
the original module [5]. In a TMR, each module operates
in a disjoint (independent) mode; so, the three modules
compute in parallel. If a module produces an output that
is different from the outputs of the other two modules,
then the system output is established by voting. Voting
assumes the majority of the modules to have the correct
output; hence, the single disagreeing module (corre-
sponding to the erroneous output) is masked by utilizing
a voter.

TABLE I
EXAMPLES OF VOTING IN A TMR

Module

Error-free Scenar-
io

Output Value
(Z1 Z2)

Erroneous Scenar-
io Output Value

(Z1 Z2)

1 01 10
2 01 11
3 01 01

Bit-wise Voting 01 11
Word-wise Voting 01 No majority

In a bit-wise voter, majority voting is performed on a

Fig. 1. DMR Scheme

0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2653780,
IEEE Transactions on Computers

AUTHOR ET AL.: TITLE 3

bit-by-bit basis; as an example, the TMR outputs are listed
in Table I for two-bit module outputs. In bit-wise voting,
the voter compares each bit; it then finds the majority of
each bit to form the final output value (in Table I, the cor-
rect output is 01). So if for example there are bit errors in
modules 1 and 2, then the output of the bit-wise voter is
11. It is well known that the bit-wise TMR voter has bad
performance for data integrity [14].

A word-voter has been proposed in [14] (Fig.2); in this
scheme, voting considers the entire word, i.e. a word ma-
jority voter requires the output signals to be exactly the
same when calculating the majority (as its output). The

MATCH module compares every pair of the 3 input
words. If the signals in an input pair are exactly the same,
the MATCH module generates a match signal. Only when
none of the three pairs generates a match signal, then the
error signal is ‘1’. Otherwise, the output is given by the
majority of the inputs; however, this type of voter is not
efficient when there are slight variations in the outputs of
the modules (as often occurring in the nanoscales).

2.3 Other Approximate TMR Schemes
In a conventional TMR scheme, three modules compute
the same function (albeit implementation diversity is
usually employed to ensure statistical independence). In
[15], a diversity-based TMR scheme is proposed; it em-
ploys three different implementations of a module with
the same function to prevent the so-called common mode
failure. In [16][17], a novel TMR scheme is proposed; un-
like a conventional TMR, only a module computes the
original function, the other two additional modules im-
plement approximate functions. The first (second) mod-
ule computes a so-called under-approximation (over-
approximation) of the original function.

Therefore, the outputs from the modules with the ap-
proximations combined with the output of the original
function module are used to mask an error that occurs in
the two approximate modules and some errors of the
original function module. This technique is generalizing
method which is particularly suitable for FPGAs for im-
plementing the under/over-approximations required for
the two modules; good reductions in implementation area
and power have been reported, while still retaining a high
reliability. However, this approach is only suitable for
programmable systems due to the requirement of the un-
der/over-approximations.

3 INEXACT DMR (IDMR)
In this section, the first inexact voting scheme is consid-

ered; an initial analysis was pursued in [11]. This scheme
is referred to as inexact double modular redundancy (IDMR)
[11]. The basic principle of the IDMR is to initially estab-

lish the difference between the outputs of two modules. If
the difference is less than a preset threshold, the voter cal-
culates the average value of the two module outputs as
outcome. If the difference is larger than the threshold, the
voter generates an error signal. The value of the threshold
is dependent on the level of accuracy that is required as

output in a reliable computing system. This scheme is
crudely adaptive [11] in its operation, i.e. it allows a
threshold to determine the validity of the module outputs.
The averaging of the two module outputs ensures that
variation in values is mediated by adjusting the final val-
ue as outcome. IDMR does not resort to triplication, thus
saving overhead due to a smaller modular replication.

Let the input (parallel) data word be denoted by S; this
word is made of n bits. Let the subset of the lower k bits
be denoted as S' , while the upper n-k bits be given by the
subset S" , i.e. S=(S",S') as shown in Fig.3. The block dia-
gram of the IDMR scheme [11] is shown in Fig.4; IDMR
consists of the blocks as discussed next.

3.1 Detector

The function of the detector block is to compare its two
input signals corresponding to the two received outputs
from the modules. An error signal is generated if the dif-
ference of the two values (denoted as Input A and Input
B) is larger than the threshold. Else, the detector considers
the two values to be valid and the following two cases are
applicable:

• When the upper n-k bits of Input A and Input B
are the same (i.e. A"=B"), then the largest possi-
ble difference between them is k2 -1 .

Fig. 5. Subtractor structure

Fig. 3. Input data S

Fig. 2. Word-wise voter proposed in [14]

Fig. 4. IDMR voting scheme hardware

0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2653780,
IEEE Transactions on Computers

4 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

• If the absolute value of A"-B" (i.e A"-B")is 1,
then the largest difference is k+12 -1 .

Thus, the detector is designed by utilizing a n-k bit
subtractor (Fig. 5) to find A"-B" . Three scenarios are pos-
sible as validity conditions.

• A"-B"=0 : In this case, the value of the borrow of
the first bit is ‘0’. The difference of each bit is also
‘0’.

• A"-B"=1 : In this case, the value of the borrow of
the first bit is ‘0’. The difference of each bit is ‘0’
except the last bit.

• -A"-B"= 1 : In this case, the value of the borrow of
the first bit is ‘1’. The difference of each bit is also
‘1’.

Consider n=8, k=4; three examples for A" and B" are
shown in Table II.

TABLE II
Examples of IDMR

 Example 1 Example 2 Example 3
A” 1010 1011 1010
B” 1010 1010 1011
A”-B” B=0,D=0000 B=0,D=0001 B=1,D=1111

Let " " "

n-1 n-1 n-2 k+1 kD =A -B =(B) D D ... D D    where n-1B is the
borrow bit of the most significant bit; for the inputs to be
valid, the following condition must be met.

n-1 n-1 n-2 k+10=B +D +D ...+D for scenarios 1 and 2 or

n-1 n-1 n-2 k+1 k1=B D D ... D D   for scenario 3

Thus,
 n-1 n-1 n-2 k+1 n-1 n-1 n-2 k+1 kB +D +D ...+D +B D D ... D D =1    (1)
If the two inputs are valid, then the error signal is ne-

gated, i.e. it is given by ‘0’.

3.2 Passing Array
If following subtraction there is no error signal, the input
must be propagated for further processing. Thus, an array
made of AND gates (referred to as the passing array) is
needed; this array is controlled by the Enable signal
(Fig.6). When the Enable signal is ‘1’, the inputs are prop-
agated; else, no propagation is allowed.

If no error occurs, the output for the upper n-k bits of
the AND gates is given by O"=A"=B" , i.e. each of the up-
per n-k bits at the output (denoted by Out) is equal to the

corresponding Input A (or B) bit. So,
 n nOut =Enable Input (2)

3.3 Full Adder
Let O' denote the average value of A' and B' . In the pro-
posed design, full adders are used to calculate the sum of
A' and B' . The average is found by shifting right the sum.
However, the shift circuit is not necessary, because the
first k bits (inclusive of the carry bit for k-1) can be used
as result for this operation. For the last bit, only the carry
bit needs to be considered; thus, a NAND gate is used to
replace the last full adder. Fig.7 shows the adder structure
when k=2.

4 PROPOSED INEXACT TMR-DMR (ITDMR)
The second proposed scheme combines IDMR with TMR,

but it uses novel conditions in the comparison of the out-
puts of the three modules. Different from a DMR voter, a
TMR voter compares three inputs to establish the majori-
ty as the correct output. Within an inexact framework, the
majority is established using different criteria. As for
IDMR, the validity of the inputs must be established first;
in the proposed scheme, if the differences between all
three pairs of inputs are not larger than the threshold,
then the three inputs are considered valid. However, in
some cases, only two of the three inputs satisfy the
threshold condition, so a different scheme must be used.
Hence in ITDMR, adaptive operation involves TMR with
approximate voting in a pair-wise fashion followed by
IDMR as a further voting configuration. Fig.8 shows
ITDMR in block diagram form.

4.1 Detector
The detector compares the upper bits for the three mod-
ule outputs (A, B and C). They are given by (A" , B"), (
B" , C") and (C" , A"), i.e. on a pair-wise basis. For each
pair, if the absolute value of the difference is less than 1,
then the corresponding detection signal (AB, BC and CA)
is generated (of ‘0’ value in this design). The following
cases are therefore possible for the operation of the detec-
tor.

• If A"-B" 1≤ , A"-C" 1≤ , B"-C" 1≤ , the passing ar-
ray propagates all three of these signals as inputs

Fig. 8. Inexact TMR-DMR (ITDMR) voting scheme hardware

Fig. 7. Word-wise voter proposed in [14]

Fig. 6. AND gate in passing array

0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2653780,
IEEE Transactions on Computers

AUTHOR ET AL.: TITLE 5

to the TMR voter. The k bits majority voter de-
termines the lower k bits; the mismatch and error
signals are both ‘0’.

• If A"-B" 1≤ , A"-C" >1 , B"-C" >1 , the detector
identifies the validity of A" and B" and gener-
ates the signal AB. This is provided to the 3-2
MUX. The mismatch signal is ‘1’, while the ena-
ble signal is ‘0’; so, the TMR is disabled, i.e. there
is no error and therefore, the error signal is ‘0’.

• If two of the three detection signals are valid, the
following rules are used: (1) If AB and BC are
valid, AB is chosen; (2) If AB and CA are valid,
CA is chosen; (3) If BC and CA are valid, BC is
chosen. The mismatch signal is ‘1’ and the error
signal is ‘0’.

• If A"-B" >1 , A"-C" >1 , B"-C" >1 , the error signal
is ‘1’.

4.2 3-2 MUX
The 3-2 MUX is enabled when the mismatch signal is ‘1’
and the error signal is ‘0’. The 3-2 MUX utilizes the three
module outputs (A, B, C) and the three flag signals (A=B ,
B=C , C=A) as inputs. The outputs are two equality sig-
nals based on the values of the three flag signals (A=B ,
B=C , C=A). There are two scenarios when the 3-2 MUX
is used: 1. Only one detection signal is valid. For example,
the flag A=B is ’0’ (0 is the valid condition), then the two
outputs are A and B. 2. Two detection signals are valid.
The 3-2 MUX follows the rules presented in Section 4.1.
The output for each case is listed in Table III.

4.3 2-1 MUX
The 2-1 MUX is controlled by the mismatch signal; if the
mismatch signal is ‘1’, the final output is the voted output
by the DMR. Otherwise, the final output is the TMR out-
put.

TABLE III
Output of 3-2 MUX

AB BC CA Output
0 1 1 AB
0 0 1 AB
1 0 1 BC
1 0 0 BC
1 1 0 CA
0 1 0 CA

5 SIMULATION RESULTS
The designs of the proposed inexact voting schemes are
evaluated in the section; PTMs at different CMOS feature
sizes are used in HSPICE for the transistors.

5.1 Delay
Consider the following definitions for the delay.

• Output delay: The output delay is defined as the
largest delay of each bit when no error is detect-
ed; so, the delay is the timing latency from inputs
to the outputs of the voting hardware.

• Enable delay. The enable delay is defined as the
time latency from the comparator to the Enable sig-

nal when no error is detected, i.e. the Enable signal
is ‘1’.

The largest delay occurs when -A"-B"= 1 ; in this case,
D"=11...1 ; each bit in the difference between Input A and
Input B (as calculated by the subtractor) must be ‘1’. Ta-
bles IV to VI show the output delays for IDMR, ITDMR
and WordTMR by varying k and n.

TABLE IV
IDMR OUTPUT DELAY

 n=8 n=16 n=24 n=32

32nm (ns)
k=1 10.99 12.39 15.18 20.51
k=2 8.66 10.14 13.75 18.17
k=4 6.06 7.85 11.50 15.64
k=8 - 6.72 9.94 14.28

22nm (ns)
k=1 8.92 10.06 12.33 16.65
k=2 7.03 8.23 11.17 14.75
k=4 4.92 6.37 9.34 12.70
k=8 - 5.46 8.07 11.60

16nm (ns)
k=1 7.19 8.10 9.93 13.41
k=2 5.66 6.63 8.99 11.88
k=4 3.96 5.13 7.52 10.23
k=8 - 4.39 6.50 9.34

TABLE V
ITDMR OUTPUT DELAY

 n=8 n=16 n=24 n=32

32nm (ns)
k=1 16.74 23.07 27.65 31.07
k=2 14.44 21.88 26.12 30.35
k=4 10.66 19.87 25.74 29.36
k=8 - 18.49 24.11 28.79

22nm (ns)
k=1 13.88 19.13 22.92 25.76
k=2 11.97 18.14 21.65 25.16
k=4 8.84 16.47 21.34 24.34
k=8 - 15.33 19.99 23.87

16nm (ns)
k=1 11.35 15.64 18.75 21.07
k=2 9.79 14.83 17.71 20.58
k=4 7.23 13.47 17.45 19.91
k=8 - 12.54 16.35 19.52

TABLE VI
WORD-BASED TMR DELAY

 n=8 n=16 n=24 n=32

32nm (ns) 9.45 10.66 13.05 17.64
22nm (ns) 7.67 8.65 10.60 14.32
16nm (ns) 6.18 6.97 8.54 11.53

5.2 Power
Power dissipation has also been evaluated for IDMR,
ITDMR and WordTMR. Tables VII-IX show the simula-
tion results at different values of feature size, n and k. As
expected, due to its more complex operation and sophis-
ticated voting scheme, ITDMR incurs a nearly 100% over-
head in power consumption compared to IDMR.

0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2653780,
IEEE Transactions on Computers

6 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

TABLE VII
IDMR POWER

 n=8 n=16 n=24 n=32

32nm (uW)
k=1 7.9 8.7 9.8 10.4
k=2 8.6 9.7 11 12.8
k=4 10.1 10.9 13.5 19.9
k=8 - 12.6 15.8 20.8

22nm (uW)
k=1 6.49 7.14 8.05 8.54
k=2 7.06 7.96 9.03 10.51
k=4 8.29 8.95 11.08 16.34
k=8 - 10.34 12.97 17.9

16nm (uW)
k=1 4.91 5.4 6.09 6.46
k=2 5.34 6.02 6.83 7.95
k=4 6.27 6.77 8.38 12.36
k=8 - 7.82 9.81 14.5

TABLE VIII
ITDMR POWER

 n=8 n=16 n=24 n=32

32nm (uW)
k=1 14 15.39 17.31 18.36
k=2 15.43 16.87 18.85 19.93
k=4 17.45 18.98 20.12 21.35
k=8 - 19.88 21.1 22.59

22nm (uW)
k=1 11.84 13.02 14.64 15.53
k=2 13.05 14.27 15.95 16.86
k=4 14.76 16.06 17.02 18.06
k=8 - 16.82 17.85 19.11

16nm (uW)
k=1 8.41 9.25 10.4 11.03
k=2 9.27 10.14 11.33 11.98
k=4 10.49 11.41 12.09 12.83
k=8 - 11.95 12.68 13.58

TABLE IX
WORDTMR POWER

 n=8 n=16 n=24 n=32

32nm (uW) 16.58 18.22 20.50 21.74
22nm (uW) 14.02 15.42 17.33 18.39
16nm (uW) 9.96 10.95 12.31 13.06

This overhead is also due to the larger number of

modules required for ITDMR and TMR versus IDMR, i.e.
3 versus 2. TMR incurs in the largest power dissipation
(static and dynamic) as reflected by the larger circuit
complexity (analyzed next).

5.3 Circuit Complexity
Consider an input of n-bits from each of the modules to
the voting hardware and a k-bit threshold for the approx-
imate schemes. Table X (XI) shows the number of transis-
tors for each circuit in IDMR (ITDMR) as function of n
and k. Table XII shows the complexity of WordTMR.

TABLE X
IDMR COMPLEXITY

Circuit Circuit count # of transistors

Subtractor n-k 8 [18]
AND 1 2(n-k+1)
NOR 1 2(n-k)
Inverter 1 2
2-input NOR 1 4
2-input AND n+k+1 6
Full adder k-1 8 [18]

Thus, the circuit complexity of IDMR (as measured by
the number of transistors required in its design) is given
by

 T(IDMR)=18n+2k+6 (3)
TABLE X

IDMR COMPLEXITY

Circuit Circuit count # of transistors

Subtractor n-k 8 [18]
AND 1 2(n-k+1)
NOR 1 2(n-k)
Inverter 1 2
2-input NOR 1 4
2-input AND n+k+1 6
Full adder k-1 8 [18]

The circuit complexity of ITDMR is given by
 T(ITDMR)=54n+2k+26 (4)

TABLE XII
WORDTMR COMPLEXITY

Circuit Circuit count # of transistors

2 input AND 2n 6
2 input OR n 6

3 input NOR 1 6
2 input XNOR 3n 14

n input OR 3 2n

The circuit complexity of a Word-based TMR is given

by
 T(WordTMR)=66n+6 (5)

TABLE XIII
VOTING CIRCUIT COMPLEXITY

 Circuit Complexity (transistor
count)

WordTMR 66n+6
IDMR 18n+2k+6

ITDMR 54n+2k+26

Table XIII shows the expressions for the circuit com-

plexity of the proposed schemes as well as WordTMR.
The proposed schemes incur in a complexity smaller than
TMR; the reduction is more pronounced at higher values
of n. As linear with n, the circuit complexity of both pro-
posed schemes decreases (slightly increases) with higher
values of k for ITDMR (IDMR). Not surprisingly, ITDMR
has a complexity higher than IDMR (but still less than
TMR).

5.4 Process and supply voltage variations
Next, variations in the MOSFETs of the proposed

0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2653780,
IEEE Transactions on Computers

AUTHOR ET AL.: TITLE 7

schemes are evaluated using Monte Carlo simulation. For
Monte Carlo simulation, the process variations of a
MOSFET consider the channel length and the threshold
voltage. The variations in percentage for these parameters
have been reported in [19] and shown in Table XIV at a
32nm feature size; as the most relevant metric in most
high performance applications, the variability (in per-
centage) of the output delay is measured when all transis-
tors are subject to variation. The simulation results (Table
XV) show that the threshold voltage has a more pro-
nounced effect than the channel length in the operation of
an approximate or exact voting system.

Also as ITDMR is more complex than IDMR, its varia-
bility is larger too; however, the variation in output delay
is mitigated by the approximate nature of the voting pro-
cess in the proposed schemes. TMR has the largest per-
centage for variability, hence this is yet another negative
feature that static masking causes.

TABLE XIV
VARIATION PERCENTAGE

 Vth L

32nm 3% 2%
TABLE XV

VARIABILITY PERCENTAGE ON GLOBAL BEHAVIOR (OUTPUT DELAY)

𝟑𝟑𝟑𝟑/𝛍𝛍(%) IDMR ITDMR WordTMR

L 28.97% 33.54% 36.73%
Vth 36.91% 45.95% 47.18%

Another variation that has been analyzed for the pro-

posed schemes, is the supply voltage, i.e. at 32nm feature
size, the nominal value of the supply voltage is 0.9V. Ta-
ble XVI shows the so-called critical value of the supply
voltage, i.e. the least value (lower than the nominal sup-
ply value) such that the voting scheme can continue to
operate correctly. Compared to IDMR, ITDMR shows a
larger value of critical supply voltage, hence more de-
pendent on this parameter. This is caused by the more
complex operational modes of this scheme compared
with the simpler adaptive mode of approximate operation
of IDMR. However, TMR has the largest critical voltage
as the worst performance.

TABLE XVI
CRITICAL SUPPLY VOLTAGE FOR 32NM

 IDMR ITDMR TMR

Vcritical 0.778v 0.803v 0.815v

6 PROBABILITY ANALYSIS
Next, a probabilistic analysis is pursued for the proposed
inexact schemes to assess the impact of bit- and value-
wise errors on the functionality of the voting process. In
the proposed approximate voters, if the difference of out-
puts from two modules is smaller than the threshold (as
set by k) that the voters can tolerate, then the output is
said to be valid. Only valid results are useful for voting in
reliable computing.

6.1 Bit-wise Error
Let the number of bits of a module (as inputs to the voter)
be given by n; in this analysis, it is assumed that each bit
has the same probability to change (i.e. to flip due to a
soft error) and every bit is independent. The flip probabil-
ity is denoted by fP . In the proposed inexact voters, only
the upper bits are considered and the last k bits can be
ignored. So, the validity of the inputs to the voter is as-
sessed by calculating the difference in their upper bits, i.e.
if the absolute value of the difference is less than or equal
to 1, then the inputs to the voter are valid. Let A" and B"
be the upper bits of the two inputs. There are 4 cases for
the valid inputs.

• If A"=B" , then all n-k bits of A" and B" are the
same. Thus, the probability is n-k

f(1-P)
• If A"-B"=1and the last bit of B" is ‘0’, then the

other n-k-1 bits of A" and B" are the same and
the last bit of A" becomes ‘1’. Thus, the probabil-
ity is n-k-1

f fP (1-P) .
• If -A"-B"= 1 and the last bit of A" is ‘0’, then the

other n-k-1 bits of A" and B" are the same and
the last bit of B" becomes ‘1’. Thus, the probabil-
ity is n-k-1

f fP (1-P) .
• For the other cases (such as A"-B"=1 and the last

bit of A" is ‘0’ or -A"-B"= 1 and the last bit of B"
is ‘0’), the other bits of A" and B" are totally dif-
ferent. In these scenarios, the probability is very
small; so, these cases can be ignored as a first ap-
proximation.

Therefore, the probability of a module to generate a
valid result is given by

n-k n-k-1

m,bit-wise f f f

n-k-1
f f

1P =(1-P) +2 P (1-P)
2

 =P (1-P)

×
 (6)

6.2 Value-wise Error
In this case, the value of each input from a module to the
voter must be considered in its entirety, i.e. all n bits. As-
sume that the error-free value of an input to the voter is
equal to Q; in the presence of a soft error, a module may
generate an output (then becoming an input to the voter),
that is different from Q. Assume that the distribution of
the output space of a module is normally distributed with
mean Q and variance σ. Therefore, the probability of a
module to generate a valid result is given by

 m,value-wise
x-Q T

P = P(x)
≤
∑ (7)

where T is the threshold (i.e. the difference in the val-
ues of the inputs) and P(x) is the probability density of a
normal distribution. The following cases can be distin-
guished for the inexact voting schemes proposed in this
manuscript

• For IDMR, the probability to generate a valid
output result is given by

 2 2(n-k-1)
IDMR,bit-wise m fP =P =(1-P) (8)

2

2
IDMR,value-wise m

x-Q T
P =P = P(x)

≤

 
 
  
∑ (9)

• For ITDMR, the probability of generating a valid

0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2653780,
IEEE Transactions on Computers

8 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

result is given by

3(n-k-1)

ITDMR,bit-wise f

2(n-k-1) n-k-1
f f

P =(1-P)

 +3(1-P) 1-(1-P) ×  
 (10)

3

ITDMR,value-wise
x-Q T

2

x-Q T x-Q T

P = P(x)

 +3 P(x) 1- P(x)

≤

≤ ≤

 
 
  

     
    
        

∑

∑ ∑
 (11)

This probability (as defined above for the inexact
schemes) is hereafter referred to as the correct probability
of generating an output result from voting.

TABLE XVII
CORRECT PROBABILITY FOR BIT-WISE ERRORS

 PF =1% PF =5% PF =10% PF =15%

ITDMR k=1 0.990 0.827 0.547 0.319
ITDMR k=2 0.993 0.870 0.634 0.416
ITDMR k=3 0.995 0.910 0.727 0.533
ITDMR k=4 0.997 0.945 0.819 0.668
IDMR k=1 0.886 0.540 0.282 0.142
IDMR k=2 0.904 0.599 0.349 0.197
IDMR k=3 0.923 0.663 0.430 0.272
IDMR k=4 0.941 0.735 0.531 0.377

TABLE XVIII
CORRECT PROBABILITY FOR VALUE-WISE ERRORS

 σ=1 σ=2 σ=4 σ=8

ITDMR k=1 0.999 0.775 0.615 0.338
ITDMR k=2 1.000 1.000 0.937 0.651
ITDMR k=3 1.000 1.000 1.000 0.947
ITDMR k=4 1.000 1.000 1.000 0.977
IDMR k=1 1.000 0.870 0.669 0.265
IDMR k=2 1.000 1.000 0.989 0.719
IDMR k=3 1.000 1.000 1.000 0.992
IDMR k=4 1.000 1.000 1.000 0.998

Tables XVII-XVIII show the correct probability for n=8
for the bit- and value-wise errors in ITDMR and IDMR;
different values are utilized for the standard deviation
and fP respectively. The correct probability increases at
higher values of k and lower variance; both ITDMR and
IDMR have a higher correct probability under bit-wise
errors (even at a variance of 2) than value-wise errors (for
example at a fP of 0.01), thus showing their applicability
to improve existing (exact) voting schemes. The results
confirm that an inexact voting scheme on a probabilistic
basis is very effective in providing a voted output, thus
overcoming the static masking feature of an exact voter.

7 APPLICATIONS
7.1 Image Processing
In this section, image processing is considered as a first ap-
plication of the proposed voting schemes. For analysis and
ease of simulation, the system model is slightly changed to
allow a controlled insertion of errors in module outputs. This
allows a better understanding of the voting process for the
underlying operations of the three modules in a redundant
system, while still accounting for diversity in output values

for voting. The block diagram of this model for a voting
scheme is shown in Fig.9. Therefore, a noise source is intro-
duced at the outputs of each module prior to the voter. The
noise sources are useful in introducing errors; if there is no
error and noise, each module in a TMR generates the exact
(correct) result.

7.1.1 Bit-wise noise
Bit-wise noise is defined as the noise affecting each bit of
the inputs of the voting scheme with the same probability
to flip (change) values. This probability is denoted by fP
(it is assumed that each bit is independent). For simula-
tion, a random variable with a 0-1 uniform distribution is
generated: if the value of this random variable is less or
equal to fP , then the corresponding bit of the input word
is changed. The range of fP in the simulations is from
0.01% to 10%. These values are higher than for example
those currently encountered for soft error occurrence;
however, at nanoscales bit-wise noise is not only due to
external noise (such as soft and radiation-induced errors),
but also to unavoidable variations in the fabrication pro-
cess due to technology scaling. In either case, the increase
in probability causes the occurrence of multiple errors, so
the selected range is pessimistic but useful in validating
the proposed schemes under very stringent conditions.

Fig. 10. PSNR of different approximate voting schemes (ITDMR and
IDMR) with bit-wise noise vs fP and variable k

Fig. 9. Noise model of a voting scheme

0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2653780,
IEEE Transactions on Computers

AUTHOR ET AL.: TITLE 9

For example, an error seldom occurs at the output of a
module when fP is less than 0.01%, so this is of limited
usefullness for evaluation. The peak signal-to-noise ratio
(PSNR) [19] is established for the final output of the voter
with respect to the error-free result; Fig.10 shows the
simulation results for the PSNR of the voting schemes at
the same bit-wise noise and for an 8-bit image (i.e. n=8).
From these results, the following conclusions can be drawn.

• When the value of k increases, the PSNR increas-
es for IDMR or ITDMR, i.e. when k increases,
then more inexactness is encountered in the op-
eration of the approximate voter and thus, the
probability of each module to generate a valid re-
sult increases too. However, by increasing k,
there are few extreme scenarios (such as when all
MSBs change) in which the PSNR will experience
a significant decrease too.

• The ITDMR scheme always outperforms the
TMR, because the probability of a module with
an error-free (exact) output for a TMR n

f(1-P) ,
while for the ITDMR it is n-k-1

f(1-P) TMR is better
than IDMR at a low value of fP .

Based on the probabilistic analysis in Table XVII, the cor-
rect probability increases by increasing the value of k (at a
constant fP value); in Fig.10, the PSNR decreases with fP (it
still increases with k for both ITDMR and IDMR). These re-
sults are in agreement to show the effectiveness of the pro-
posed approximate schemes.

7.1.2 Value-wise noise
Also in this case (with a normally distributed noise), the
PSNR is established for an 8-bit image. Fig.11 shows the
error-free image as well as the results at σ=1 for TMR, at
k=1 for IDMR and ITDMR.

These results are plotted in Fig.12 versus the variance.
From the simulation results, several conclusions can be
drawn.

• At the same k, if the variance increases, the PSNR

decreases, because the error probability increas-
es.

• ITDMR and IDMR have higher PSNRs compared
to TMR (the PSNR of the TMR is nearly constant,
so nearly independent of the variance). This oc-
curs, because a value-wise error impacts in most
cases the lower bits. The operation of a TMR is
static, because it can only establish the strict ma-
jority; however, the proposed schemes can toler-
ate small differences in values, while still produc-
ing a voted output, thus achieving impressive
improvements over the TMR scheme.

• At a small value of variance compared to the tol-
erance threshold of ITDMR, the PSNR of ITDMR
increases by decreasing k. For example, when
σ=1, the PSNRs for k=1, 2, 3 and 4 are 48.41dB,
47.73dB, 47.69dB and 47.69dB. At k=1, this
scheme can tolerate most errors for σ=1; as a
smaller value of k implies more exact bits, a
three-module arrangement such as ITDMR is bet-
ter at higher values of k than IDMR.

A comparison between the results of Fig.12 and Table
XVIII yields the following additional conclusions.

• In Table XVIII, the correct probability increases
by increasing the value of k (at the same vari-
ance). Fig.12 shows a similar trend.

• If the variance is smaller than the tolerance
threshold, the correct probability is close to 1; in
this case, the PSNR value is nearly constant, so
showing modest improvements with respect to k.

• In all cases, the PSNRs decrease when the vari-
ance increases; therefore, an increasing variance
makes the final result more inexact for an ap-

Fig. 11. (a) Error-free image; (b) TMR with σ=1(PSNR=10.17dB); (c)
IDMR with σ=1(PSNR=18.80dB) (k=1, n=8); (d) ITDMR with σ
=1(PSNR=48.41dB) (k=1, n=8)

Fig. 12. PSNR of different approximate voting schemes (ITDMR and
IDMR) with value-wise noise vs variance and variable k (8 bit image)

0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2653780,
IEEE Transactions on Computers

10 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

proximate voting scheme, such as ITDMR.
A 16-bit image has also been considered. Tables XIX-

XX show the results and confirm that at a higher number
of bits in an image, the improvements in PSNR by the
proposed approximate voting schemes are more pro-
nounced. The scalability of approximate voting is excel-
lent, because performance is improved with n for all cases
dealt in this manuscript.

TABLE XIX
PSNR OF VOTERS WITH BIT-WISE NOISE (16-BIT IMAGE)

 PF=0.01% PF=0.1
% PF =1% PF =5% PF =10%

Word TMR 55.21 dB 38.13 dB 21.88 dB 10.00 dB 6.32 dB
ITDMR k=1 58.00 dB 39.06 dB 24.53 dB 12.02 dB 7.81 dB
ITDMR k=2 76.90 dB 41.77 dB 26.20 dB 13.42 dB 8.92 dB
ITDMR k=3 82.31 dB 43.36 dB 28.21 dB 15.12 dB 10.37 dB
ITDMR k=4 89.79 dB 48.44 dB 30.71 dB 17.62 dB 12.58 dB
IDMR k=1 29.77 dB 20.83 dB 13.22 dB 7.22 dB 5.34 dB
IDMR k=2 30.59 dB 21.44 dB 13.99 dB 7.80 dB 5.77 dB
IDMR k=3 31.86 dB 22.01 dB 14.87 dB 8.59 dB 6.39 dB
IDMR k=4 32.69 dB 23.32 dB 16.09 dB 9.66 dB 7.26 dB

TABLE XX

PSNR OF VOTERS WITH VALUE-WISE NOISE (16-BIT IMAGE)

 σ=1 σ=2 σ=4 σ=8

Word TMR 8.49 dB 6.06 dB 5.03 dB 4.63 dB
ITDMR k=1 48.54 dB 22.58 dB 11.61 dB 7.56 dB
ITDMR k=2 47.91 dB 42.33 dB 22.75 dB 11.82 dB
ITDMR k=3 47.86 dB 41.95 dB 36.84 dB 22.62 dB
ITDMR k=4 47.84 dB 41.92 dB 36.03 dB 30.96 dB
IDMR k=1 17.36 dB 9.42 dB 6.29 dB 5.03 dB
IDMR k=2 37.21 dB 17.50 dB 9.63 dB 6.44 dB
IDMR k=3 43.76 dB 35.70 dB 17.71 dB 9.83 dB
IDMR k=4 41.36 dB 38.06 dB 32.78 dB 18.15 dB

7.1.3 Uneven noise
In this section, uneven noise is considered under the fol-
lowing three scenarios for the three modules of the model
of Fig.9.

• Modules A and B are error-free; module C has a
large noise.

• Module A is error-free, module B has a small
noise and module C has a large noise.

• Modules A and B have small noise; module C
has a large noise.

TABLE XXI

PSNR OF VOTERS WITH VALUE-WISE UNEVEN NOISE

𝛔𝛔𝐀𝐀 = 𝟎𝟎
𝛔𝛔𝐁𝐁 = 𝟎𝟎
𝛔𝛔𝐂𝐂 = 𝟖𝟖

𝛔𝛔𝐀𝐀 = 𝟎𝟎
𝛔𝛔𝐁𝐁 = 𝟏𝟏
𝛔𝛔𝐂𝐂 = 𝟖𝟖

𝛔𝛔𝐀𝐀 = 𝟏𝟏
𝛔𝛔𝐁𝐁 = 𝟏𝟏
𝛔𝛔𝐂𝐂 = 𝟖𝟖

Word TMR Infinity 6.56 dB 5.82dB
ITDMR k=1 Infinity 28.75dB 15.53dB
ITDMR k=2 Infinity 48.31dB 47.40dB
ITDMR k=3 Infinity 44.45dB 43.60dB.
ITDMR k=4 Infinity 42.05dB 41.92dB

Note that for an error-free module, σ=0, while for a large

(small) noise σ=8 (σ=1) for value-wise voting and fP = 0, 1 and
15 % for error-free, small and large noise respectively in bit-

wise voting. Tables XXI and XXII show the simulation results
for the PSNRs of bit-wise and value-wise voting schemes.

TABLE XXII
PSNR OF VOTERS WITH BIT-WISE UNEVEN NOISE

𝐏𝐏𝐟𝐟𝐟𝐟 = 𝟎𝟎
𝐏𝐏𝐟𝐟𝐟𝐟 = 𝟎𝟎

𝐏𝐏𝐟𝐟𝐟𝐟 = 𝟏𝟏𝟏𝟏%

𝐏𝐏𝐟𝐟𝐟𝐟 = 𝟎𝟎
𝐏𝐏𝐟𝐟𝐟𝐟 = 𝟏𝟏%
𝐏𝐏𝐟𝐟𝐟𝐟 = 𝟏𝟏𝟏𝟏%

 𝐏𝐏𝐟𝐟𝐟𝐟 = 𝟏𝟏%
𝐏𝐏𝐟𝐟𝐟𝐟 = 𝟏𝟏%
𝐏𝐏𝐟𝐟𝐟𝐟 = 𝟏𝟏𝟏𝟏%

Word TMR Infinity 16.40 dB 13.60dB
ITDMR k=1 Infinity 18.53dB 16.98dB
ITDMR k=2 Infinity 19.96dB 18.32dB
ITDMR k=3 Infinity 21.82dB 20.00dB
ITDMR k=4 Infinity 24.39dB 23.41dB

As three modules are considered in the model of Fig.9,

IDMR is not evaluated for these three uneven noise cases. The
following conclusions can then be drawn.

• As expected, if only two modules are error-free,
the final output is still error-free.

• For bit-wise noise, if the value of k increases, the
PSNR increases; in this case, TMR can be regard-
ed as k=0. A larger k means more errors can be
tolerated leading to a higher PSNR.

• Consider the relation between k and the variance
σ for value-wise noise; a small value for k means
that a smaller error can be tolerated and more ac-
curacy is achieved (provided the variance is
within the tolerable value). Hence, ITDMR has
the largest PSNR at k=2; this occurs, because the
variance is out of bound for the error that ITDMR
with k=1 can tolerate. For k=3 and 4 the variance
is within the tolerable value, but at higher values
of k, more errors appear.

7.2 FIR Filter
In signal processing, a finite impulse response (FIR) filter
is defined as a filter whose impulse response is of a finite
duration. The output y of a linear time invariant system is
determined by convolution of its input signal x with its
impulse response b. For a discrete-time FIR filter, the out-
put is a weighted sum of the current value and a finite
number of previous values of the input. Therefore, a FIR
filter implements the following equation:

 [] [] []
N-1

i=0
y n = x n-i b i∑  (12)

where x[n] is the input signal, y[n] is the output, and b[i] is
the filter coefficient. An implementation in block form of a
FIR filter is shown in Fig.13.

In this manuscript, the FIR filter is designed using the
FDA tool in Matlab [20]. Initially, a 10th order transposed
low-pass filter is considered.

To evaluate the effectiveness of the proposed voting
schemes, the input signal is randomly generated in the

Fig. 13. FIR filter implementation using the transposed of the direct
form

0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2653780,
IEEE Transactions on Computers

AUTHOR ET AL.: TITLE 11

range [-0.5, 0.5] [13]; the input data, the filter coefficients
and the output of the filters are quantized in terms of 16
and 32 bits.

Similar to the images considered previously, bit-wise
and value-wise noises are inserted in the inputs. Bit-wise
noise is defined as the noise affecting each bit of the in-
puts to the voter with the same probability to change (flip)
its value. The flip probability is denoted by fP and each
bit is independent. Value-wise noise is defined as the
normally distributed noise, the variance of the noise is
denoted by σ. Noise is inserted starting at a sufficiently
low rate and an error-free state is assumed prior to insert-
ing each error. The PSNR between the error-free output of
the filter and the output of the voter is measured over
1000 simulation runs.

TABLE XXIII
AVERAGE PSNR OF VOTERS WITH BIT-WISE NOISE FOR THE FIR FILTER

(16BIT)

 PF=0.01% PF=0.1
% PF =1% PF =5% PF =10%

Word TMR 81.52 dB 77.64 dB 68.71 dB 59.05 dB 55.51 dB
ITDMR k=1 74.33 dB 70.79 dB 62.65 dB 56.61 dB 54.79 dB
ITDMR k=2 74.88 dB 71.31 dB 63.11 dB 56.93 dB 55.03 dB
ITDMR k=3 75.34 dB 71.76 dB 63.50 dB 57.31 dB 55.29 dB
ITDMR k=4 76.03 dB 72.41 dB 64.08 dB 57.81 dB 55.66 dB
IDMR k=1 82.63 dB 78.69 dB 69.64 dB 60.54 dB 56.61 dB
IDMR k=2 82.79 dB 78.85 dB 69.78 dB 61.27 dB 57.15 dB
IDMR k=3 83.24 dB 79.28 dB 70.16 dB 62.22 dB 57.85 dB
IDMR k=4 83.79 dB 79.80 dB 70.62 dB 63.09 dB 58.66 dB

TABLE XXIV

AVERAGE PSNR OF VOTERS WITH VALUE-WISE NOISE FOR THE FIR FILTER
(16BIT)

 σ=2 σ=4 σ=8 σ=16

Word TMR 56.60 dB 54.99 dB 54.24 dB 53.89 dB
IDMR k=1 61.99 dB 57.00 dB 55.08 dB 54.28 dB
IDMR k=2 75.14 dB 61.95 dB 56.99 dB 55.09 dB
IDMR k=3 138.12 dB 75.43 dB 61.98 dB 57.00 dB
IDMR k=4 135.69 dB 132.26 dB 75.46 dB 61.94 dB

ITDMR k=1 141.55 dB 135.86 dB 71.27 dB 60.49 dB
ITDMR k=2 141.35 dB 108.67 dB 64.95 dB 58.32 dB
ITDMR k=3 141.01 dB 135.47 dB 105.17 dB 65.01 dB
ITDMR k=4 141.02 dB 135.14 dB 129.45 dB 100.95 dB

TABLE XXV
AVERAGE PSNR OF VOTERS WITH BIT-WISE NOISE FOR THE FIR FILTER

(32BIT)

 PF=0.01% PF=0.1
% PF =1% PF =5% PF =10%

Word TMR 79.45 dB 75.66 dB 66.96 dB 58.25 dB 55.02 dB
ITDMR k=1 73.25 dB 69.77 dB 61.74 dB 55.95 dB 54.36 dB
ITDMR k=2 73.27 dB 69.78 dB 61.75 dB 55.94 dB 54.36 dB
ITDMR k=3 73.30 dB 69.81 dB 61.78 dB 56.04 dB 54.43 dB
ITDMR k=4 73.66 dB 70.15 dB 62.08 dB 56.12 dB 54.54 dB
IDMR k=1 91.57 dB 87.21 dB 77.18 dB 59.02 dB 55.63 dB
IDMR k=2 91.62 dB 87.26 dB 77.22 dB 59.01 dB 55.62 dB
IDMR k=3 91.74 dB 87.37 dB 77.32 dB 59.30 dB 55.80 dB
IDMR k=4 92.00 dB 87.62 dB 77.54 dB 59.52 dB 55.92 dB

The average PSNRs of the different voting schemes for

this application are given in Tables XXIII through XXVI.

TABLE XXVI
AVERAGE PSNR OF VOTERS WITH VALUE-WISE NOISE FOR THE FIR FILTER

(32BIT)

 σ=2 σ=4 σ=8 σ=16

Word TMR 56.58 dB 54.99 dB 54.24 dB 53.89 dB
IDMR k=1 63.62 dB 60.58 dB 57.73 dB 55.59 dB
IDMR k=2 74.89 dB 61.97 dB 57.02 dB 55.09 dB
IDMR k=3 234.44 dB 75.02 dB 61.97 dB 57.02 dB
IDMR k=4 232.06 dB 228.63 dB 76.30 dB 61.97 dB

ITDMR k=1 153.21 dB 64.84 dB 58.35 dB 55.73 dB
ITDMR k=2 237.65 dB 147.95 dB 64.92 dB 58.30 dB
ITDMR k=3 237.37 dB 231.79 dB 136.58 dB 64.94 dB
ITDMR k=4 237.33 dB 231.44 dB 225.77 dB 148.83 dB

From these results, the following conclusions can be
drawn.

• When the value of k increases, the PSNR increas-
es for IDMR or ITDMR, because the probability
of each module to generate a valid result increas-
es.

• Also in this case, ITDMR always outperforms
TMR for bit-wise noise; the IDMR scheme some-
times performs worse than the TMR scheme, es-
pecially for bit-wise noise.

• For the value-wise noise, IDMR and ITDMR per-
form better than the TMR scheme because a val-
ue-wise error impacts in most cases the lower
bits. TMR can only establish the strict majority,
while the proposed schemes can tolerate differ-
ences in values.

In the implementation of a FIR filter, the filter coeffi-
cients are stored in registers and soft errors may affect the
contents of these registers and therefore, the output value

Fig. 12. Average PSNR for voting schemes (n=16) of different or-
ders: (a) bit-wise error of ITDMR and TMR; (b) bit-wise error of ITMR
and TMR.

0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2653780,
IEEE Transactions on Computers

12 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

(similar to a bit-wise error as defined previously) may
change. Hence, this possible scenario is also evaluated.
The 10, 15 and 20th order FIR filters are considered; the
FIR filter coefficients are always given by a word length
of 16 bits. Among these registers, each bit has a flip prob-
ability given by fP . A bit-wise error is introduced for each
filter coefficient; the error free input signal for each FIR
filter is randomly generated in the range [-0.5, 0.5], while
the quantification of the input signal is specified by the
coefficient.

Fig.14 shows the average PSNR values of ITDMR,
ITMR and TMR at n=16 and k=4 for different FIR orders
and bit-wise errors in the filter coefficients. Performance
is affected at high values of fP and with increasing filter
order (i.e. the PSNR decreases). However, in all cases, an
approximate voting scheme is still better than a TMR.

The PSNR value of a voter decreases when the order of
the FIR filter increases; however, at a higher order, the
coefficient registers have a larger probability to be affect-
ed by a soft error, hence the decrease of the PSNR at an
increase of the FIR order.

7 CONCLUSION
This paper has presented the analysis and design of novel
voting schemes whose operations are based on approxi-
mate computing. Approximate computing relaxes the
strict static voting and masking that modular redundancy
schemes utilize to generate a correct output. The first
proposed scheme is referred to as inexact double modular
redundancy (IDMR) while the second scheme (ITDMR)
combines IDMR with TMR. Both these schemes utilize
approximate criteria when comparing and assessing the
outputs of at least two modules for reliable computing.
IDMR and ITDMR voters have been designed at nano-
metric features sizes and simulated using Hspice to assess
different figures of merit, such as delay, power dissipa-
tion, circuit complexity, process variability and critical
supply voltage. TMR has the least delay, but consumes
more power and its process variability is worse than the
proposed schemes. Image processing and FIR filters have
been analyzed as possible applications of the proposed
approximate voters; the PSNR has been measured and in
most case, the proposed schemes perform better than
TMR.

However, the proposed scheme still has the limitation.
In control flow dominated applications, taking average of
input may lead to chaos. In the data flow applications, the
proposed scheme has better performance.

In conclusion, approximate voting by IDMR and
ITDMR shows the following advantages over a TMR with
static masking and exact voting.

• Except the delay, approximate voting hardware
for both IDMR and ITDMR improves over all cir-
cuit-level figures of merit, such as power dissipa-
tion and tolerance to variations.

• Probabilistic measures based on bit-wise and
word-wise voting confirm the viability of the
proposed schemes to reach a voted output in the
presence of differences in the output values of

the modules.
• For the considered applications (image pro-

cessing and FIR filters), the proposed schemes
show higher PSNR values, thus consistently and
significantly improving on an exact voting
scheme such as TMR.

REFERENCES
[1] R. Baumann, ‘‘Soft errors in advanced computer systems,’’ IEEE

Design Test of Computers., vol. 22, no. 3, pp. 258–266, May–
Jun. 2005.

[2] M. Nicolaidis, ‘‘Design for soft error mitigation,’’ IEEE Trans.
Device Mater. Reliabil., vol. 5, no. 3, pp. 405–418, Sep. 2005.

[3] Von Neumann, J., “Probabilistic Logics and the Synthesis of
Reliable Organisms from Unreliable Components,” Automata
Studies, Ann. Of Math. Studies, no. 34, C. E. Shannon and J.
McCarthy, Eds., Princeton University Press, pp. 43-98, 1956.

[4] N. Vaidya and D. Pradhan, “Fault-Tolerant Design Strategies
for High Reliability and Safety,” IEEE Trans. Computer, vol. 42,
no. 10, pp. 1195-1206, Oct. 1993.

[5] W. H. Pierce, Failure-Tolerant Computer Design, Academic
Press, 1965.

[6] Samudrala, P.K.; Ramos, J.; Katkoori, S. "Selective Triple Modu-
lar redundancy (STMR) based single-event upset (SEU) tolerant
synthesis for FPGAs," Nuclear Science, IEEE Transactions on ,
vol.51, no.5, pp. 2957- 2969, Oct. 2004.

[7] J. Liang, J. Han, and F. Lombardi, “New metrics for the reliabil-
ity of approximate and probabilistic adders,” Computers, IEEE
Transactions on, vol. 62, no. 9, pp. 1760–1771, 2013.

[8] S.-L. Lu, “Speeding up processing with approximation cir-
cuits,” Computer, vol. 37, no. 3, pp. 67–73, 2004.

[9] K. Du, P. Varman, and K. Mohanram, “High performance reli-
able variable latency carry select addition,” in Design, Automa-
tion Test in Europe Conference Exhibition (DATE), 2012, 2012,
pp. 1257–1262.

[10] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K.
Roy, “Impact: imprecise adders for low-power approximate
computing,” in Low Power Electronics and Design (ISLPED)
2011 International Symposium on. IEEE, 2011, pp. 409–414.

[11] K. Chen, J. Han and F. Lombardi, “An Approximate Voting
Scheme for Reliable Computing,” Proc. DATE, pp. 293-296,
Grenoble, March 2015.

[12] P. Reviriego, Bleakley, C.J.; Maestro, J.A., "Diverse Double
Modular Redundancy: A New Direction for Soft-Error Detec-
tion and Correction," Design & Test, IEEE , vol.30, no.2,
pp.87,95, April 2013

[13] P. Reviriego, C. Bleakley, and J. A. Maestro, "Structural DMR: A
technique for implementation of soft error tolerant FIR filters, "
IEEE Trans. Circuits Syst. II, vol. 58, no. 8, pp. 512–516, Aug.
2011.

[14] S. Mitra, McCluskey, E.J., "Word-voter: a new voter design for
triple modular redundant systems," VLSI Test Symposium,
2000. Proceedings. 18th IEEE , vol., no., pp.465,470, 2000

[15] L. A. Tambara, F. L. Kastensmidt, P. Rech and C. Frost, "De-
creasing FIT with diverse triple modular redundancy in SRAM-
based FPGAs," 2014 IEEE International Symposium on Defect
and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT), Amsterdam, 2014, pp. 153-158.

[16] A. Sanchez-Clemente, L. Entrena and M. Garcia-Valderas, "Par-
tial TMR in FPGAs Using Approximate Logic Circuits," 2015

0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2653780,
IEEE Transactions on Computers

AUTHOR ET AL.: TITLE 13

15th European Conference on Radiation and Its Effects on
Components and Systems (RADECS), Moscow, 2015, pp. 1-4.

[17] S. Venkataraman, R. Santos and A. Kumar, "A flexible inexact
TMR technique for SRAM-based FPGAs," 2016 Design, Auto-
mation & Test in Europe Conference & Exhibition (DATE),
Dresden, 2016, pp. 810-813.

[18] S. R. Chowdhury, A. Banerjee, A. Roy, H. Saha, “A high speed 8
transistor full adder design using novel 3 transistor XOR
gates”, World Academy of Sciences, Vol.22, 2008.

[19] A. Rubio, Figueras Pàmies, J.; Vatajelu, E.; Canal Corretger, R.,
“Process variability in sub-16nm bulk CMOS technology”, Pro-
ject: Terascale Reliable Adaptive Memory Systems,FP7-
INFSO–IST -248789, 2012. 12.

[20] Matlab documentation Center ‘Using FDAtool’:
http://www.mathworks.com/help/signal/ug/opening-
fdatool.html

First A. Author All biographies should be limited to one paragraph
consisting of the following: sequentially ordered list of degrees, in-
cluding years achieved; sequentially ordered places of employ con-
cluding with current employment; association with any official jour-
nals or conferences; major professional and/or academic achieve-
ments, i.e., best paper awards, research grants, etc.; any publication
information (number of papers and titles of books published); current
research interests; association with any professional associations.
Author membership information, e.g., is a member of the IEEE and
the IEEE Computer Society, if applicable, is noted at the end of the
biography.

Second B. Author Jr. biography appears here.

Third C. Author biography appears here.

