



Abstract—For emerging applications, such as deep learning,

design complexity can be reduced to lower hardware costs by

releasing the strict requirement of computing accuracy. In this

paper, a variable latency Ling adder (VLLA) with reduced

propagation delay is proposed to produce exact results in most

cases through a speculative operation. When an error is detected,

the error detection and correction modules are activated to

generate exact results. All circuits are synthesized in the

Synopsys Design Compiler with a TSMC 65 nm standard cell

library and evaluated for the error probability in MATLAB.

Experimental results show that the proposed VLLA achieves

reductions in power and smallest average delay by up to 17% and

23%, respectively, compared to the original exact Ling adder

(LA). In addition, the proposed VLLA achieves reductions of

8%, 18%, 11.4%, and 7.6% in power, smallest average delay,

area average-delay product, and power average-delay product,

compared to an existing variable latency adder (VLA).

Keywords—Approximate computing, parallel-prefix adder,

Ling adder, error correction

I. INTRODUCTION

Adders are basic building blocks for arithmetic operations
[1]. As the scope of arithmetic applications continues to expand,
high operating speeds are demanded. As a type of fast parallel
prefix adder [2], the Brent-Kung adder has a simpler structure
than adders designed using other topologies [3].

Recently, parallel prefix Ling adders based on Sklansky
and Kogge-Stone topologies have been designed to offer
reduced delays and fanout requirements, compared to
conventional parallel prefix adders [4, 5, 6]. In [7], the variable
latency adder (VLA) uses speculation to reduce the average
delay and achieve a low error rate through efficient error
detection and correction techniques. A novel Brent-Kung
prefix-processing topology has been considered to improve
performance over a traditional one [8].

To maintain high speed and effectively reduce energy
consumption, a 32-bit variable latency Ling adder (VLLA) is
proposed and analyzed in this work. It consists of error
detection and correction modules, and a speculative Ling adder
(LA). The speculative LA is truncated in specific rows to lower
hardware costs according to the distribution patterns of inputs,
while the error detection and correction modules are designed
to recover the induced errors for different input patterns.
Synthesized results demonstrate that the proposed VLLA
achieves significant reductions in power and delay compared
to the exact LA and existing VLA. The main contributions of
this work are summarized as follows: (1) A speculative LA is

P. Guo, G. Xie, X. Chen and Y. Zhang are with the School of

Microelectronics, Hefei University of Technology, Hefei 230009, China (e-

mail: 1739954382@qq.com; gjxie8005@hfut.edu.cn; 1617090911@qq.com;

ahzhangyq@hfut.edu.cn)

proposed, by deleting some intermediate rows of the prefix-
processing unit of an exact LA. (2) Error detection and
correction modules are used to maintain computing accuracy.

The rest of the paper is organized as follows. Section II
reviews the parallel prefix adder and Brent-Kung topology.
Section III describes the circuit structure of the proposed
VLLA. Error probability analysis and hardware overheads are
presented in Section IV. Section V concludes this paper.

II. BACKGROUND

A parallel prefix adder can be divided into three units,
including pre-processing, prefix-processing, and post-
processing [9]. Given an n-bit augend A=an-1an-2…a0 and an n-
bit addend B=bn-1bn-2…b0, it generates an ith carry ci and an n-
bit sum S=sn-1sn-2…s0.

In the pre-processing unit, the generate gi and propagate pi
are given as:

i i i

i i i

g a b

p a b



 
, (1)

where 0≤i≤n-1, and ⊕ denotes the XOR operation.

In the prefix-processing unit, the carry ci+1 is computed
using the generate gi and propagate pi as:

 1 1 1 1 0i i i i i ic g p g p p p g      . (2)

The parallel prefix adders use an associative operator □ to
associate the pairs of generate and propagate, defined as:

      1 1 1 1 1, , ,i i i i i i i i ig p g p g p g p p      . (3)

Thus, the carry ci+1 can be represented as:

        1 1 1 0 0,~ , , ,i i i i ic g p g p g p   . (4)

In the post-processing unit, the sum si is given by:

 i i is p c  . (5)

As shown in Fig. 1, the Brent-Kung parallel prefix
processing unit is one of the connection topologies through
black nodes ● and white nodes ○. The black node ● represents
the associative operator □ above, while the white node ○ is a
buffering component.

III. THE PROPOSED VARIABLE LATENCY LING ADDER

As shown in Fig. 2, a 32-bit VLLA can be divided into five
units, including pre-processing, prefix-processing, post-

J. Han is with the Department of Electrical and Computer Engineering,
University of Alberta, Edmonton, AB T6G 1H9, Canada (e-mail:

jhan8@ualberta.ca)

A Variable Latency Ling Adder Based on Brent-Kung Parallel-

Prefix Topology

Pixia Guo, Guangjun Xie, Xiaoyue Chen, Jie Han, Yongqiang Zhang

mailto:1617090911@qq.com
mailto:ahzhangyq@hfut.edu.cn

processing, error detection, and error correction. If the error
detection signal Es is false, the VLLA needs one clock cycle to
produce the exact results, or, it produces the exact results
through the error correction module in the next clock cycle.
Thus, the average adder delay Tavg is

  2 1avg Es clk Es clkT P T P T     , (6)

where Tclk is the clock period and PEs is the probability that the
error detection signal Es is true.

A. Pre-Processing

Given an augend A=a31a30…a0 and an addend
B=b31b30…b0, the proposed 32-bit VLLA produces a carry c32
and a 32-bit sum S=s31s30…s0. In the pre-processing stage, the
half-sum di, generate gi, and propagate pi are generated [10], as
defined as:

i i i

i i i

i i i

d a b

g a b

p a b

 



 

, (7)

where 0≤i≤31.

The proposed VLLA produces the intermediate generate Gi
and propagate Pi to reduce the number of fanouts in the parallel
prefix processing unit. The intermediate generate Gi and
propagate Pi are defined as:

1

1

i i i

i i i

G g g

P p p





 


. (8)

B. Prefix-Processing

In contrast to the general parallel prefix adders, a LA
generates the Ling carry Hi instead of generating the carry ci+1
in the prefix-processing unit [10], as:

 1i i iH c c  . (9)

According to (3), (7), (8), and (9), the Ling carry Hi can be
rewritten as:

       

       

2 2 2 1 2 2 2 3 0 1

2 1 2 1 2 2 1 2 2 1 0

,~ , , ,

,~ , , ,

k k k k k

k k k k k

H G P G P G P

H G P G P G P

   

   




, (10)

where 0≤k<16, and it is defined that P-1=0.

The prefix-processing unit of an exact LA with Brent-Kung
topology has a total of 8 rows in Fig. 3(a). The proposed prefix-
processing unit breaks the carry chain by deleting the middle
three rows of the prefix-processing unit in the exact LA,
surrounded by a dashed box, as shown in Fig. 3(b). If only one
row is removed, the smallest Tavg is too large; if five rows are
removed, the error correction module will become more
complicated, requiring excessive area and power. We observe
that the lower 14 bits are exact and the higher 18 bits are
speculative in Fig 3(b). The Ling carries H* of the higher 18
bits can be obtained by deleting some specific intermediate
generate and propagate pairs from (10). For example, the
expressions for the 14th and 15th Ling carries are

         

         

14 14 13 12 11 10 9 8 7

15 15 14 13 12 11 10 9 8

,~ , , , ,

,~ , , , ,

H G P G P G P G P

H G P G P G P G P








. (11)

C. Post-Processing

For the prefix-processing unit, the carry c32 and 32-bit sum
S are generated. Due to (7) and (9), the sum S for each bit can
be further rewritten as:

  1 1i i i is d p H   , (12)

and the carry c32 can be written as:

 32 31 31c p H . (13)

D. Error Detection

To simplify the expressions of error detection signals,
several definitions are proposed as in (14) and (15).

 

       

 

     

2 :2

2

2 :2 2 1:2 1 2 1 :2

2 :2

2

2 :2 2 1 :2

: 0

: 0

k k j

k

k k m k k m k m k j

k k j

k

k k m k m k j

G

G for j

G P G otherwise

P

P for j

P P otherwise

  

                

  

         




 








. (14)

Figure 1. An 8-bit Brent-Kung prefix-processing unit.

Figure 2. The proposed 32-bit variable latency Ling adder.

 

       

 

     

2 1:2 1

2 1

2 1:2 1 2 :2 2 1:2 1

2 1:2 1

2 1

2 1:2 1 2 1:2 1

: 0

: 0

k k j

k

k k m k k m k m k j

k k j

k

k k m k m k j

G

G for j

G P G otherwise

P

P for j

P P otherwise

    



                 

    



            




 








, (15)

where 0≤m<j≤k<16.

1) Unsigned Operands
It is acceptable to approximate a real case to conform to a

uniform distribution if the inputs of an adder are unsigned
numbers. The maximum carry chain length for 32-bit inputs is
mostly less than 7 [7]. Hence, the smallest carry chain length
for the proposed VLLA is set to 7 in Fig. 3(b), which is longer
than the maximum one for inputs in most cases. Thus, in most
cases, the proposed VLLA produces exact results. However,
the proposed VLLA is likely to generate errors, if the
maximum carry chain length exceeds 7. For these cases, the
error detection signal for each sum si can be obtained from (10),
(11), and (12) as:

2

2 2

2 1

2 1 2 1

0 : 0 7

: 7 16

0 : 0 7

: 7 16

k

k k

k

k k

for k
e

p H for k

for k
e

p H for k


 

 
 

 

 
 

 

. (16)

Thus, the error detection signal Eu for the proposed
speculative LA can be expressed as:

31

14

u i i

i

E p H


 . (17)

According to (14), (15), and (17), the error detection signal
Eu can be further simplified to:

            

           

31 23 1530:24 23:17 22:16 15:9 14:8 7:1

30 22 1429:23 22:16 21:15 14:8 13:7 6:0

uE p P G p P G p P G

p P G p P G p P G

  

  
. (18)

2) Signed Operands
If the inputs are signed numbers, it is more accurate to

approximate a real case to conform to a Gaussian distribution.
The maximum carry chain length for 32-bit inputs is
concentrated not only less than 7 but also larger than 25 [7].

If the carry chain length is less than 7, the proposed VLLA
produces exact results. The maximum carry chain length
exceeds 25 if two inputs with opposite signs are added and the
generated result is a positive number. For example, if adding
the two numbers 29 and -26, the carry chain length is 29. In
this case, the proposed VLLA has a large error rate and average
adder delay Tavg. Moreover, the half-sums d3 ~ d31 are all 1 and
the sums s3 ~ s31 are all 0. As a result, the error detection signal
Eu can be optimized to Er, as:

 31 30 14r uE d d d E . (19)

(a)

(b)

Figure 3. Prefix-processing unit. (a) LA. (b) The proposed 32-bit VLLA.

According to (18), (19) can be rewritten to

 31 30 14 13 13:1rE d d d p G . (20)

However, if the carry chain length is larger than 7 and less
than 25, the proposed VLLA produces errors. These errors can
be detected through the error detection signal Es as:

31 30 14s uE d d d E . (21)

E. Error Correction

In the error correction unit, if Eu=1 and Er=1, the sums are
directly grounded. If Eu=1 and Er=0, the three rows of the
prefix-processing unit removed in Fig. 3(b) are complemented
in the error correction unit to obtain the exact results.

IV. ERROR ANALYSIS AND HARDWARE OVERHEADS

VLA, LA, and the proposed VLLA are designed in Verilog
HDL language and synthesized in the Synopsys Design
Compiler with a TSMC 65 nm standard cell library. The
analysis of the error probability (PEs) for the proposed VLLA
and existing VLA is implemented through MATLAB.

A. Error Analysis

The error probability is analyzed using Monte Carlo
simulations, with a 2% relative error and a 99% confidence
level. To obtain the input distributions of the real workloads in
2’s complement, software programs running on a physical
machine are traced in [11]. Three mathematical models are
used to approximate the inputs in the real workloads as follows:
(1) The inputs are taken from a uniform distribution; (2) Half
of the inputs are taken from a uniform distribution and half
from a Gaussian distribution with a standard deviation σ=256;
(3) Half of the inputs are taken from a uniform distribution and
half from a Gaussian distribution with σ=30000. The first
distribution means that the inputs represent unsigned numbers
in the workloads. The second distribution means that more
operations are between small signed numbers, which is a

frequent occurrence in practical workloads [11]. The third
distribution means that the inputs represent signed numbers in
the workloads.

The error probabilities of the proposed and existing designs
are compared in TABLE I, where r represents the percentage
of the inputs coming from a uniform distribution. For example,
r=100% means that the inputs are taken from a uniform
distribution in the range [0, 232-1]. It can be found that the error
probabilities are less than 10% for both the proposed VLLA
and existing VLA, for three distributions [7]. It can also be
found that the error probability is the smallest compared to the
other two distributions if the inputs come from the second
distribution. It shows that the proposed VLLA can cope well
with cases where more inputs are small signed numbers in the
workloads.

B. Hardware Overheads

The inputs following the second mathematical distribution
are used to evaluate the performance of the proposed VLLA.
Thus, the average adder delay Tavg is computed using the error
probability PEs with the second distribution, according to (6).

In Fig. 4, the hardware costs are compared between the
VLLA, VLA, and LA. The power dissipation of three circuits
is measured at different Tavg, by adjusting the clock period Tclk.
It can be found that the smallest Tavg for the proposed VLLA is
the smallest at 0.81 ns, the next is the existing VLA, and then
the exact LA. The smallest Tavg of the proposed VLLA is 18%
and 23%, respectively, less than those of VLA and LA. If the
average adder delay Tavg is selected as a fixed value, it can be
found that the power of the proposed VLLA is the lowest, the
next is VLA, and then LA. The power of the proposed VLLA
is 8% and 17%, respectively, less than those of VLA and LA.

To further compare the performance of the three circuits at
the smallest Tavg. In Fig. 5, the area average-delay product
(ADavg.P) and power average-delay product (PDavg.P) are
shown.

The ADavg.P is given as:

 .avg avgAD P area T  , (22)

where Tavg is the average adder delay.

The PDavg.P is defined as:

 .avg avgPD P power T  . (23)

Figure 5. The circuit measurements of the proposed VLLA, VLA, and LA. (a)
Power Average-Delay product. (b) Area Average-Delay product.

TABLE I. THE ERROR PROBABILITY VALUES OF ADDERS

Adders
Error probability (%)

r=100% r=50%, σ=256 r=50%, σ=30000

VLLA 0.77 0.40 9.21

VLA 0.42 0.19 0.25

Figure 4. The power of the proposed VLLA, VLA, and LA, as a function of

timing constraint.

As shown in Fig. 5, the PDavg.P of the proposed VLLA is
reduced by 11.4% and 26% compared to those of VLA and LA,
while the ADavg.P is reduced by 7.6% and 8% in comparison.

V. CONCLUSION

In this paper, a VLLA based on the Brent-Kung parallel
prefix topology is proposed. Its delay and power are reduced
by using a speculative LA and error detection and correction
modules. Simulation results show that the proposed adder
reduces the smallest Tavg and power by 23% and 17%,
compared to the original exact LA. The proposed VLLA
achieves reductions of 8%, 18%,11.4%, and 7.6% in power, the
smallest Tavg, PDavg.P, and ADavg.P, respectively, compared to
an existing VLA.

REFERENCES

[1] K. Shilpa, M. Shwetha, B. Geetha, D. Lohitha, Navya, and N. Pramod,
“Performance analysis of parallel prefix adder for datapath VLSI

design,” in Proceedings of the 2018 Second International Conference

on Inventive Communication and Computational Technologies,
Coimbatore, India, 2018, pp. 1552-1555.

[2] G. Thakur, H. Sohal, and S. Jain, “Design and analysis of high-speed

parallel prefix adder for digital circuit design applications,” in
International Conference on Computational Performance Evaluation

(Compe-2020), Shillong, India, 2020, pp. 95-100.

[3] M. Veena, P. Akkamanchi, and V. Uttarkar, “Low power high speed

brent kung adder using spst,” in IEEE 3rd Global Conference for
Advancement in Technology (GCAT), 2022, pp. 1-6.

[4] G. Dimitrakopoulos, and D. Nikolos, “High-speed parallel-prefix VLSI

ling adders,” IEEE Trans. Comput., vol. 54, no. 2, pp. 225-231, Feb.
2005.

[5] T. Ene, and J. Stine, “Point-targeted sparseness and ling transforms on

parallel prefix adder trees,” in IEEE 29th Symposium on Computer
Arithmetic (ARITH), Lyon, France, 2022, pp. 68-75.

[6] C. Simsek, and K. Turk, "Hardware optimization for belief propagation

polar code decoder with early stopping criteria using high-speed
parallel-prefix ling adder." pp. 182-185.

[7] D. Esposito, D. De Caro, and A. G. M. Strollo, “Variable latency

speculative parallel prefix adders for unsigned and signed operands,”
IEEE Trans. Circuits Syst. I-Regul. Pap., vol. 63, no. 8, pp. 1200-1209,

Aug. 2016.

[8] G. Thakur, H. Sohal, and S. Jain, “FPGA-based parallel prefix
speculative adder for fast computation application,” in Sixth

International Conference on Parallel, Distributed and Grid Computing

(PDGC), Waknaghat, India, 2020, pp. 206-210.
[9] I. Brzozowski, “Software tool aiding analysis and design of low-power

parallel prefix adders,” in 28th International Conference on Mixed

Design of Integrated Circuits and System, Lodz, Poland, 2021, pp. 141-
146.

[10] H. Ling, “High-speed binary adder,” IBM J. Res. Dev., vol. 25, no. 3,

pp. 156-166, May 1981.
[11] A. Cilardo, “A new speculative addition architecture suitable for two's

complement operations,” in Design, Automation & Test in Europe

Conference & Exhibition, Nice, France, 2009, pp. 664-669.

