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Abstract—For emerging applications, such as deep learning, 

design complexity can be reduced to lower hardware costs by 

releasing the strict requirement of computing accuracy. In this 

paper, a variable latency Ling adder (VLLA) with reduced 

propagation delay is proposed to produce exact results in most 

cases through a speculative operation. When an error is detected, 

the error detection and correction modules are activated to 

generate exact results. All circuits are synthesized in the 

Synopsys Design Compiler with a TSMC 65 nm standard cell 

library and evaluated for the error probability in MATLAB. 

Experimental results show that the proposed VLLA achieves 

reductions in power and smallest average delay by up to 17% and 

23%, respectively, compared to the original exact Ling adder 

(LA). In addition, the proposed VLLA achieves reductions of 

8%, 18%, 11.4%, and 7.6% in power, smallest average delay, 

area average-delay product, and power average-delay product, 

compared to an existing variable latency adder (VLA). 

Keywords—Approximate computing, parallel-prefix adder, 

Ling adder, error correction 

I. INTRODUCTION 

Adders are basic building blocks for arithmetic operations 
[1]. As the scope of arithmetic applications continues to expand, 
high operating speeds are demanded. As a type of fast parallel 
prefix adder [2], the Brent-Kung adder has a simpler structure 
than adders designed using other topologies [3]. 

Recently, parallel prefix Ling adders based on Sklansky 
and Kogge-Stone topologies have been designed to offer 
reduced delays and fanout requirements, compared to 
conventional parallel prefix adders [4, 5, 6]. In [7], the variable 
latency adder (VLA) uses speculation to reduce the average 
delay and achieve a low error rate through efficient error 
detection and correction techniques. A novel Brent-Kung 
prefix-processing topology has been considered to improve 
performance over a traditional one [8]. 

To maintain high speed and effectively reduce energy 
consumption, a 32-bit variable latency Ling adder (VLLA) is 
proposed and analyzed in this work. It consists of error 
detection and correction modules, and a speculative Ling adder 
(LA). The speculative LA is truncated in specific rows to lower 
hardware costs according to the distribution patterns of inputs, 
while the error detection and correction modules are designed 
to recover the induced errors for different input patterns. 
Synthesized results demonstrate that the proposed VLLA 
achieves significant reductions in power and delay compared 
to the exact LA and existing VLA. The main contributions of 
this work are summarized as follows: (1) A speculative LA is 
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proposed, by deleting some intermediate rows of the prefix-
processing unit of an exact LA. (2) Error detection and 
correction modules are used to maintain computing accuracy. 

The rest of the paper is organized as follows. Section II 
reviews the parallel prefix adder and Brent-Kung topology. 
Section III describes the circuit structure of the proposed 
VLLA. Error probability analysis and hardware overheads are 
presented in Section IV. Section V concludes this paper. 

II. BACKGROUND 

A parallel prefix adder can be divided into three units, 
including pre-processing, prefix-processing, and post-
processing [9]. Given an n-bit augend A=an-1an-2…a0 and an n-
bit addend B=bn-1bn-2…b0, it generates an ith carry ci and an n-
bit sum S=sn-1sn-2…s0. 

In the pre-processing unit, the generate gi and propagate pi 
are given as: 

 
i i i

i i i

g a b

p a b



 
, (1) 

where 0≤i≤n-1, and ⊕ denotes the XOR operation. 

In the prefix-processing unit, the carry ci+1 is computed 
using the generate gi and propagate pi as: 

 1 1 1 1 0i i i i i ic g p g p p p g      . (2) 

The parallel prefix adders use an associative operator □ to 
associate the pairs of generate and propagate, defined as: 

      1 1 1 1 1, , ,i i i i i i i i ig p g p g p g p p      . (3) 

Thus, the carry ci+1 can be represented as: 

        1 1 1 0 0,~ , , ,i i i i ic g p g p g p   . (4) 

In the post-processing unit, the sum si is given by: 

 i i is p c  . (5) 

As shown in Fig. 1, the Brent-Kung parallel prefix 
processing unit is one of the connection topologies through 
black nodes ● and white nodes ○. The black node ● represents 
the associative operator □ above, while the white node ○ is a 
buffering component. 

III. THE PROPOSED VARIABLE LATENCY LING ADDER 

As shown in Fig. 2, a 32-bit VLLA can be divided into five 
units, including pre-processing, prefix-processing, post-
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processing, error detection, and error correction. If the error 
detection signal Es is false, the VLLA needs one clock cycle to 
produce the exact results, or, it produces the exact results 
through the error correction module in the next clock cycle. 
Thus, the average adder delay Tavg is 

  2 1avg Es clk Es clkT P T P T     , (6) 

where Tclk is the clock period and PEs is the probability that the 
error detection signal Es is true. 

A. Pre-Processing 

Given an augend A=a31a30…a0 and an addend 
B=b31b30…b0, the proposed 32-bit VLLA produces a carry c32 
and a 32-bit sum S=s31s30…s0. In the pre-processing stage, the 
half-sum di, generate gi, and propagate pi are generated [10], as 
defined as: 

 

i i i

i i i
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 



 

, (7) 

where 0≤i≤31. 

The proposed VLLA produces the intermediate generate Gi 
and propagate Pi to reduce the number of fanouts in the parallel 
prefix processing unit. The intermediate generate Gi and 
propagate Pi are defined as: 
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
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B. Prefix-Processing 

In contrast to the general parallel prefix adders, a LA 
generates the Ling carry Hi instead of generating the carry ci+1 
in the prefix-processing unit [10], as: 

 1i i iH c c  . (9) 

According to (3), (7), (8), and (9), the Ling carry Hi can be 
rewritten as: 
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, (10) 

where 0≤k<16, and it is defined that P-1=0.  

The prefix-processing unit of an exact LA with Brent-Kung 
topology has a total of 8 rows in Fig. 3(a). The proposed prefix-
processing unit breaks the carry chain by deleting the middle 
three rows of the prefix-processing unit in the exact LA, 
surrounded by a dashed box, as shown in Fig. 3(b). If only one 
row is removed, the smallest Tavg is too large; if five rows are 
removed, the error correction module will become more 
complicated, requiring excessive area and power. We observe 
that the lower 14 bits are exact and the higher 18 bits are 
speculative in Fig 3(b). The Ling carries H* of the higher 18 
bits can be obtained by deleting some specific intermediate 
generate and propagate pairs from (10). For example, the 
expressions for the 14th and 15th Ling carries are 
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C. Post-Processing 

For the prefix-processing unit, the carry c32 and 32-bit sum 
S are generated. Due to (7) and (9), the sum S for each bit can 
be further rewritten as: 

  1 1i i i is d p H   , (12) 

and the carry c32 can be written as: 

 32 31 31c p H . (13) 

D. Error Detection 

To simplify the expressions of error detection signals, 
several definitions are proposed as in (14) and (15). 
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Figure 1. An 8-bit Brent-Kung prefix-processing unit. 

  
Figure 2. The proposed 32-bit variable latency Ling adder. 
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where 0≤m<j≤k<16. 

1) Unsigned Operands 
It is acceptable to approximate a real case to conform to a 

uniform distribution if the inputs of an adder are unsigned 
numbers. The maximum carry chain length for 32-bit inputs is 
mostly less than 7 [7]. Hence, the smallest carry chain length 
for the proposed VLLA is set to 7 in Fig. 3(b), which is longer 
than the maximum one for inputs in most cases. Thus, in most 
cases, the proposed VLLA produces exact results. However, 
the proposed VLLA is likely to generate errors, if the 
maximum carry chain length exceeds 7. For these cases, the 
error detection signal for each sum si can be obtained from (10), 
(11), and (12) as: 
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Thus, the error detection signal Eu for the proposed 
speculative LA can be expressed as: 

 
31

14

u i i
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E p H

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According to (14), (15), and (17), the error detection signal 
Eu can be further simplified to: 

            
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  
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. (18) 

2) Signed Operands 
If the inputs are signed numbers, it is more accurate to 

approximate a real case to conform to a Gaussian distribution. 
The maximum carry chain length for 32-bit inputs is 
concentrated not only less than 7 but also larger than 25 [7]. 

If the carry chain length is less than 7, the proposed VLLA 
produces exact results. The maximum carry chain length 
exceeds 25 if two inputs with opposite signs are added and the 
generated result is a positive number. For example, if adding 
the two numbers 29 and -26, the carry chain length is 29. In 
this case, the proposed VLLA has a large error rate and average 
adder delay Tavg. Moreover, the half-sums d3 ~ d31 are all 1 and 
the sums s3 ~ s31 are all 0. As a result, the error detection signal 
Eu can be optimized to Er, as: 

 31 30 14r uE d d d E . (19) 

 
(a) 

 
(b) 

Figure 3. Prefix-processing unit. (a) LA. (b) The proposed 32-bit VLLA. 

 



  

According to (18), (19) can be rewritten to 

 
 31 30 14 13 13:1rE d d d p G . (20) 

However, if the carry chain length is larger than 7 and less 
than 25, the proposed VLLA produces errors. These errors can 
be detected through the error detection signal Es as: 

 
31 30 14s uE d d d E . (21) 

E. Error Correction 

In the error correction unit, if Eu=1 and Er=1, the sums are 
directly grounded. If Eu=1 and Er=0, the three rows of the 
prefix-processing unit removed in Fig. 3(b) are complemented 
in the error correction unit to obtain the exact results. 

IV. ERROR ANALYSIS AND HARDWARE OVERHEADS 

VLA, LA, and the proposed VLLA are designed in Verilog 
HDL language and synthesized in the Synopsys Design 
Compiler with a TSMC 65 nm standard cell library. The 
analysis of the error probability (PEs) for the proposed VLLA 
and existing VLA is implemented through MATLAB.  

A. Error Analysis 

The error probability is analyzed using Monte Carlo 
simulations, with a 2% relative error and a 99% confidence 
level. To obtain the input distributions of the real workloads in 
2’s complement, software programs running on a physical 
machine are traced in [11]. Three mathematical models are 
used to approximate the inputs in the real workloads as follows: 
(1) The inputs are taken from a uniform distribution; (2) Half 
of the inputs are taken from a uniform distribution and half 
from a Gaussian distribution with a standard deviation σ=256; 
(3) Half of the inputs are taken from a uniform distribution and 
half from a Gaussian distribution with σ=30000. The first 
distribution means that the inputs represent unsigned numbers 
in the workloads. The second distribution means that more 
operations are between small signed numbers, which is a 

frequent occurrence in practical workloads [11]. The third 
distribution means that the inputs represent signed numbers in 
the workloads. 

The error probabilities of the proposed and existing designs 
are compared in TABLE I, where r represents the percentage 
of the inputs coming from a uniform distribution. For example, 
r=100% means that the inputs are taken from a uniform 
distribution in the range [0, 232-1]. It can be found that the error 
probabilities are less than 10% for both the proposed VLLA 
and existing VLA, for three distributions [7]. It can also be 
found that the error probability is the smallest compared to the 
other two distributions if the inputs come from the second 
distribution. It shows that the proposed VLLA can cope well 
with cases where more inputs are small signed numbers in the 
workloads. 

B. Hardware Overheads 

The inputs following the second mathematical distribution 
are used to evaluate the performance of the proposed VLLA. 
Thus, the average adder delay Tavg is computed using the error 
probability PEs with the second distribution, according to (6). 

In Fig. 4, the hardware costs are compared between the 
VLLA, VLA, and LA. The power dissipation of three circuits 
is measured at different Tavg, by adjusting the clock period Tclk. 
It can be found that the smallest Tavg for the proposed VLLA is 
the smallest at 0.81 ns, the next is the existing VLA, and then 
the exact LA. The smallest Tavg of the proposed VLLA is 18% 
and 23%, respectively, less than those of VLA and LA. If the 
average adder delay Tavg is selected as a fixed value, it can be 
found that the power of the proposed VLLA is the lowest, the 
next is VLA, and then LA. The power of the proposed VLLA 
is 8% and 17%, respectively, less than those of VLA and LA. 

To further compare the performance of the three circuits at 
the smallest Tavg. In Fig. 5, the area average-delay product 
(ADavg.P) and power average-delay product (PDavg.P) are 
shown. 

The ADavg.P is given as: 

 .avg avgAD P area T  , (22) 

where Tavg is the average adder delay. 

The PDavg.P is defined as: 

 .avg avgPD P power T  . (23) 

 
Figure 5. The circuit measurements of the proposed VLLA, VLA, and LA. (a) 
Power Average-Delay product. (b) Area Average-Delay product. 

 

TABLE I. THE ERROR PROBABILITY VALUES OF ADDERS 

Adders 
Error probability (%) 

r=100% r=50%, σ=256 r=50%, σ=30000 

VLLA 0.77 0.40 9.21 

VLA 0.42 0.19 0.25 

 

 
Figure 4. The power of the proposed VLLA, VLA, and LA, as a function of 

timing constraint. 

 



  

As shown in Fig. 5, the PDavg.P of the proposed VLLA is 
reduced by 11.4% and 26% compared to those of VLA and LA, 
while the ADavg.P is reduced by 7.6% and 8% in comparison. 

V. CONCLUSION 

In this paper, a VLLA based on the Brent-Kung parallel 
prefix topology is proposed. Its delay and power are reduced 
by using a speculative LA and error detection and correction 
modules. Simulation results show that the proposed adder 
reduces the smallest Tavg and power by 23% and 17%, 
compared to the original exact LA. The proposed VLLA 
achieves reductions of 8%, 18%,11.4%, and 7.6% in power, the 
smallest Tavg, PDavg.P, and ADavg.P, respectively, compared to 
an existing VLA. 
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