
Design of Majority Logic-based Approximate
Booth Multipliers for Error-Tolerant Applications

Tingting Zhang, Student Member, IEEE, Honglan Jiang, Member, IEEE, Hai Mo,
Weiqiang Liu, Senior Member, IEEE, Fabrizio Lombardi, Life Fellow, IEEE,

Leibo Liu, Senior Member, IEEE, and Jie Han, Senior Member, IEEE

Abstract—Approximate computing at the nanoscale provides
sufficiently accurate and often adaptive results to improve hard-
ware efficiency for error-tolerant applications. Differently from
conventional Boolean logic-based designs, many emerging nan-
otechnologies extensively assemble circuits using the voter-based
majority logic (ML). In this paper, we investigate designs of
approximate radix-4 Booth multipliers based on ML. Initially, we
propose two new radix-4 Booth partial product (PP) generation
methods by exploiting the characteristics of ML. Based on these
methods, approximate PP generators are designed to produce
single-sided or double-sided errors. The PPs are then reduced by
using the features of errors to construct approximate multipliers.
Specifically, complementary strategies guided by an analysis of
error effects are developed to compensate for the accuracy loss
and to reduce the hardware overhead during the PP reduction.
The reduced PPs are then compressed by using full adders. Four
approximate multipliers are proposed to offer various accuracy re-
quirements for different applications. These designs show superior
performance in power and area for emerging nanotechnologies.
As case studies, image processing, a multiple-layer perceptron and
a multi-task convolutional neural network are presented to show
the validity and advantages of the proposed designs.

Index Terms—Booth encoding, partial product generator, ap-
proximate multiplier, majority logic, nanotechnologies

I. INTRODUCTION

AS alternatives to CMOS, emerging nanotechnologies have
been considered for digital circuit design by exploiting

their characteristics of high density and low energy dissipation.
Substantially different from conventional Boolean logic, these
nanotechnologies are often based on majority logic (ML) [1],
such as nanomagnetic logic (NML) [2], and magnetic tunnel
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junction (MTJ) devices [3]. An ML function uses an odd
number of inputs; the logic expression of a 3-input majority
gate is given by M(A,B,C) = AB + BC + AC. Due to its
ability of realizing more complex functions, fewer gates are
required when building circuits using majority gates.

As an emerging paradigm of low-power design, approximate
computing can provide a reduction in hardware at a reasonable
accuracy loss without significant negative effects for error-
tolerant applications, such as neural networks (NNs). A major
hurdle in NNs is the energy overhead; so, approximate com-
puting can be used, especially for multiplication, which is one
of the most hardware intensive arithmetic operations [4].

Since both emerging nanotechnologies and approximate
computing benefit from low power and high performance,
approximate designs based on these nanotechnologies can be
symbiotically devised [5]. Unlike approximate designs for
CMOS circuits, approximate ML-based designs have not been
extensively studied. A direct mapping of previous approximate
designs to ML-based nanotechnologies usually does not fully
utilize the specific properties of ML; approximate designs for
ML must be adapted for these new technologies.

Prior research includes the designs of approximate full adders
(AFAs) [6-7], approximate compressors for multipliers [5, 8-
9], array multipliers using approximate partial product (PP)
generation and compressors [10], and an approximate PP gener-
ator (PPG) based on the modified Booth encoding (MBE) with
single-sided errors [11]. Only unsigned approximate multiplier
designs are considered in [10]. Moreover, approximate circuits
with single-sided errors [11] lead to catastrophic results in some
applications with accumulative operations, including NNs [4].

For approximate designs, the errors that make the approx-
imate results always smaller or larger than the exact results
are referred to as negative or positive single-sided errors.
Otherwise, whether the number of negative errors equal to that
of positive errors or not for a particular design, determines if
the errors are called unbiased or biased double-sided errors.

In this paper, radix-4 Booth multipliers based on ML are
designed with approximate PP generation, reduction, and com-
pression. Initially, the ML implementations of two new MBE-
based PPGs are proposed. Then, different approximate PPGs
are designed: some produce negative or positive single-sided er-
rors and others produce biased or unbiased double-sided errors.
In the PP reduction, complementary strategies are considered

Copyright © 2022 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other other purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.



by analyzing the properties of the introduced errors to control
accuracy. To assess the proposed approximate multipliers, we
perform an analytical investigation of hardware complexity,
errors, and the estimate of power dissipation based on nanotech-
nologies. Applications with various accuracy requirements are
also provided to show the validity of the proposed designs.

This paper is a significant extension of [11]. The contribu-
tions of this paper are as follows:

(1) PP generation: Based on the MBE, in addition to the
classical PP generator (CPPG) [11], the new PPG (NPPG) [12]
and two newly proposed PPGs are considered for efficient ML
implementations.

(2) Approximate PPGs: In addition to the approximate PPG
with positive single-sided errors in [11], seven other approxi-
mate PPGs are designed based on various Booth PP generation
methods by introducing errors towards different directions.

(3) PP reduction and compression: The PPs are reduced by
using complementary strategies based on different error features
and then efficiently compressed.

(4) Various applications: Apart from the image multiplication
considered in [11], the proposed multipliers at different levels
of accuracy are applied to edge detection, classification, joint
face detection and alignment.

The remainder of this paper is organized as follows. Section
II reviews the preliminaries. Section III proposes new PP
generation methods and discusses the ML implementations.
Section IV presents the approximate PPG designs. Section V
and Section VI discuss the PP reduction and compression strate-
gies, and then evaluate the required hardware. Applications are
presented in Section VII. Section VIII concludes the paper.

II. PRELIMINARIES

A. Radix-4 Booth Encoding

The modified Booth algorithm (also known as the radix-4
Booth algorithm) [13] has been widely utilized to solve the sign
correction issue of signed multiplication and reduce the number
of PPs. For an n × n multiplier, let A = an−1an−2...a2a1a0
denote the multiplicand and B = bn−1bn−2...b2b1b0 denote the
multiplier. The most significant bits of A and B are the sign
bits. In the MBE, the multiplier bits are first grouped into sets of
three adjacent bits and the bits on the two sides overlap with the
neighboring sets, except for the first set. Then, the multiplicand
is encoded into −2A, −A, 0, A, or 2A to generate the PP array,
as per Table I [13], where 0 ≤ i ≤ n

2 − 1, 0 ≤ j ≤ n− 1. As
the first step in a Booth multiplier design, the PP generation
plays an important role in the overall circuit design. Compared
with the naive encoding and shift operations, a dedicated PPG
can be more efficient in performance and power consumption.
The CPPG is a common implementation of the MBE [14]. Let
ppij be the PP bit in the ith row and the jth column, as

ppij = (b2i ⊕ b2i−1)(b2i+1 ⊕ aj)

+(b2i ⊕ b2i−1)(b2i+1 ⊕ b2i)(b2i+1 ⊕ aj−1). (1)

The negation operation is performed by inverting every bit of
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Fig. 1: PP and sign bit generation for an 8-bit Booth
multiplier [13].

A (realized by ppij) and adding a ‘1’ to the LSB (implemented
by Negi, given by (2)) to get the 2’s complement.

Negi = b2i+1b2i + b2i+1b2i−1. (2)

The Baugh Wooley algorithm is used to avoid the sign bit
extension. All Booth PP generation methods discussed here are
developed based on the structure of Fig. 1 [13].

Based on the MBE, the NPPG modifies the PP “0” when
b2i+1b2ib2i−1 = 111 in Table I by performing the negation
operation on it: ppij is inverted to ‘1’and Negi is ‘1’ [12].
This enables a simplified Negi by directly using b2i+1 as

Negi = b2i+1, (3)

with a slight increase in the complexity for ppij as

ppij = (b2i ⊕ b2i−1)(b2i+1 ⊕ aj) + b2i+1b2ib2i−1

+(b2i ⊕ b2i−1)(b2i+1 ⊕ b2i)(b2i+1 ⊕ aj−1). (4)

B. Error Metrics

We consider error metrics to evaluate the approximate de-
signs [15]. The error rate (ER) is the percentage of input
assignments that result in errors. The error distance (ED) is
defined as the absolute difference between the approximate
and the exact results, while the relative error distance (RED)
is the difference divided by the exact result. The mean error
distance (MED) and mean relative error distance (MRED) are
the averages of the ED and the RED, respectively. The NMED
is the normalized MED by the maximum exact result.

C. Transformation of Majority Logic Functions

Shannon’s decomposition can be used to reformulate a logic
function for simplifying an ML-based expression [16], by

F = xFx + xFx. (5)

TABLE I: Implementations of the MBE Scheme
using CPPG [14] and NPPG [12]

b2i+1b2ib2i−1 PP CPPG [14] NPPG [12]
ppij Negi ppij Negi

000 0 0 0 0 0
001 +A aj 0 aj 0
010 +A aj 0 aj 0
011 +2A aj−1 0 aj−1 0
100 -2A aj−1 1 aj−1 1
101 -A aj 1 aj 1
110 -A aj 1 aj 1
111 0 0 0 1 1



where F is a Boolean function of a variable x, x is the
complement of x, and Fx and Fx are the positive and negative
Shannon cofactors with x set to ‘1’ and ‘0’, respectively.

The following transformation rules are considered to
simplify ML-based implementations using a reduced num-
ber of majority gates and a shorter critical path: inverter
propagation Ω.I. M(x, y, z) = M(x, y, z), distributivity
Ω.D. M(x, y,M(u, v, z)) = M(M(x, y, u),M(x, y, v), z)
and complementary associativity Ψ.C. M(x, y,M(y, u, z)) =
M(x, u,M(y, x, z)) [16]. In addition, if the appearance of the
minterms or maxterms in the K-map looks like the letter “T”,
it is said to have a “T shape”, which can be implemented by
using a 3-input majority gate [17].

For the ease of reading, the acronyms of the PPG designs
are listed in Table II.

III. FORMULATION AND DESIGN OF ML-BASED PPGS

This section first formulates the CPPG and NPPG for ML im-
plementations, referred to as MLCG and MLNG, respectively,
and then discusses the ML implementations of two new PPGs
based on the MBE, namely MLGA and MLGB.

A. ML Implementation of Partial Product Generators

1) MLCG: AND or OR gates can be directly mapped
into ML by setting one input of the 3-input majority gate
to ‘0’ or ‘1’. ppij and Negi are obtained by using sixteen
and three majority gates, respectively [11]. However, such a
naive mapping does not fully leverage the capabilities of ML.
Initially, the expression of ppij can be divided into two sections
using Shannon’s decomposition at b2i+1 [16]. There is a T
shape for the maxterms (eight out of ten cases) in the K-map
when b2i+1 = 0 and 1, respectively (see Table A1 [14] in the
supplementary document; the same for other tables indexed
with “A” unless otherwise noted). The terms in T shapes
can be implemented by using M(b2i, b2i−1, aj) for b2i+1 and
M(b2i, b2i−1, aj) for b2i+1, as

ppij =
{
b2i+1M(b2i, b2i−1, aj)

}
(b2i + b2i−1 + aj−1) +{

b2i+1M(b2i, b2i−1, aj)
}
(b2i + b2i−1 + aj−1). (6)

TABLE II: Acronyms of Partial Product Generator Designs

Category Acronyms Meaning
Boolean logic
based PPGs

CPPG classical partial product generator in [14]
NPPG new partial product generator in [12]

Majority logic
based PPG designs

MLCG majority logic based classical
partial product generator design

MLNG majority logic based new
partial product generator design

MLGA majority logic based partial
product generator design A

MLGB majority logic based partial
product generator design B

Approximate
majority logic

based PPG designs

AMLCG approximate majority logic based
classical partial product generator design

AMLNG approximate majority logic based new
partial product generator design

AMLGA approximate majority logic based partial
product generator type A

AMLGB approximate majority logic based partial
product generator type B

Consider Ω.D, Negi can be simplified to

Negi = M(M(b2i+1, b2i, 0),M(b2i+1, b2i−1, 0), 1)

= M(b2i+1, 0,M(b2i, b2i−1, 1)). (7)

Consider Ω.I , when j = 0, M(b2i, b2i−1, aj) in (6) is equal
to M(b2i, b2i−1, 1) that can be reused in (7).

2) MLNG: MLNG can be interpreted as a variant of MLCG.
Negi is given by (3). For ppij , the minterms for MLNG are
the same as for MLCG when b2i+1 = 0; thus the expression is
the same as (6). When b2i+1 = 1, there is a T shape for eight
out of ten minterms in the K-map (see Table A2 [12]) which
can be implemented using M(b2i, b2i−1, aj) as

ppij = b2i+1

{
M(b2i, b2i−1, aj) + b2ib2i−1aj−1

}
+{

b2i+1M(b2i, b2i−1, aj)
}
(b2i + b2i−1 + aj−1)(8)

3) MLGA: Consider that PP is also encoded to “0” when
b2i+1b2ib2i−1 = 000 in Table I. Like MLNG, MLGA mod-
ifies the PP “0” when b2i+1b2ib2i−1 = 000. The results
of b2i+1b2ib2i−1 = 000 are then changed to ‘1’s (as per
Tables A3 and A4) to realize the negation operation. For
ppij , the expression is the same as (6) when b2i+1 = 1 and
M(b2i, b2i−1, aj) can cover eight out of ten minterms (see
Table A3) when b2i+1 = 0, as

ppij = (b2i ⊕ b2i−1)(b2i+1 ⊕ aj) + b2i+1b2ib2i−1

+(b2i ⊕ b2i−1)(b2i+1 ⊕ b2i)(b2i+1 ⊕ aj−1)

=
{
b2i+1M(b2i, b2i−1, aj)

}
(b2i + b2i−1 + aj−1) +{

b2i+1M(b2i, b2i−1, aj) + b2i+1b2ib2i−1aj−1

}
(9)

In this case, a T shape occurs for the minterms in the K-map
of Negi (as per Table A4). Thus, Negi is given by

Negi = b2i, b2i+1 + b2i−1b2i+1 + b2i−1b2i

= M(b2i+1, b2i, b2i−1) = M(b2i+1, b2i, b2i−1)(10)

4) MLGB: MLGB can be considered as a combination of
MLNG and MLGA to modify the PP “0” when b2i+1b2ib2i−1 =
000 and 111 in Table I. Thus, the results in both cases are
set to ‘1’s (see Tables A5 and A6). As discussed above, ppij
employs b2i+1M(b2i, b2i−1, aj) and b2i+1M(b2i, b2i−1, aj) to
include sixteen out of all twenty true cases, as given by

ppij = (b2i ⊕ b2i−1)(b2i+1 ⊕ aj) + (b2i ⊕ b2i−1)(b2i+1 ⊕ b2i)

(b2i+1 ⊕ aj−1) + b2i+1b2ib2i−1 + b2i+1b2ib2i−1

= b2i+1M(b2i, b2i−1, aj) + b2i+1M(b2i, b2i−1, aj) +{
b2ib2i−1aj−1 + b2ib2i−1aj−1

}
. (11)

Consider Ψ.C, for Negi, the fully-utilized majority gate
M(b2i+1, b2i, b2i−1) is converted into a partially-utilized ma-
jority gate M(b2i, b2i−1, 0), as described in

Negi = M(b2i+1, b2i, b2i−1) + b2i+1

= M(b2i, b2i−1, 0) + b2i+1. (12)

Moreover, consider Ω.I , M(b2i, b2i−1, 0) in (12) is equal to
M(b2i, b2i−1, aj) when j = 0, which can be reused in (11).



TABLE III: Comparison of ML Implementations for Different
Partial Product Generation Methods

PPGs Equations MV INV D

MLCG

ppij = M(M(M(b2i+1, 0,M(b2i, b2i−1, aj)),
M(b2i, 1,M(b2i−1, aj−1, 1)), 0),

M(b2i+1, 0,M(b2i, b2i−1, aj)),

M(aj−1, 1,M(b2i−1, b2i, 1)), 0), 1)

10 6 4

Negi = M(b2i+1, 0,M(b2i, b2i−1, 1)) 2 2 2

MLNG

ppij = M(M(b2i+1,M(M(b2i, b2i−1, aj),

M(b2i,M(b2i−1, aj−1, 0), 0), 1), 0),

M(M(b2i+1,M(b2i, b2i−1, aj), 0),

M(b2i,M(b2i−1, aj−1, 1), 1), 0), 1)

11 5 5

Negi = b2i+1 0 0 0

MLGA

ppij = M(M(M(b2i+1, 0,M(b2i, b2i−1, aj)),
M(b2i, 1,M(b2i−1, aj−1, 1)), 0),M(

M(b2i+1, 0,M(b2i, b2i−1, aj)),M(

M(b2i+1, b2i, 0),M(b2i−1, aj−1, 0), 0), 1), 1)

12 5 4

Negi = M(b2i+1, b2i, b2i−1) 1 2 1

MLGB

ppij = M(M(M(M(b2i, b2i−1, aj), b2i+1, 0),

M(M(b2i, b2i−1, aj), b2i+1, 0), 1),

M(M(aj−1,M(b2i−1, b2i, 0), 0),
M(b2i,M(b2i−1, aj−1, 0), 0), 1), 1)

10 6 4

Negi = M(b2i+1, 1,M(b2i, b2i−1, 0)) 2 2 2

B. Comparison of Different Partial Product Generators

Table III presents the ML-based equations and the required
logic gates for different PP generation methods evaluated by
the number of utilized majority voters (MVs), the number of
utilized inverters (INVs), and the critical path delay (D). The
critical path delay is measured by the number of majority gates
on the critical path since the delay for inverters is often very
small for ML-based nanotechnologies [18].

All PP generation methods use the inversion of every input
operand bit. Moreover, MLCG and MLGB use one more
inverter when computing ppij due to the reuse of a majority
gate. Compared with MLCG and MLGB, MLNG requires one
more majority gate and thus, it incurs into a longer critical
path to generate ppij ; however, it does not need any logic gate
to implement Negi. MLGA uses two more majority gates to
generate ppij and one fewer majority gate to generate Negi.

For an n× n multiplier, n
2 Negi and approximately n2

2 PPs
are required. Therefore, the efficiency to generate ppij has a
more significant effect on the multiplier design. Compared with
MLNG and MLGA, although MLCG and MLGB have a higher
complexity in generating Negi, they need fewer majority gates
to implement ppij and a shorter critical path. Thus, MLCG and
MLGB are more efficient for exact PP generation.

IV. DESIGN OF ML-BASED APPROXIMATE PPGS

A. Design of Approximate MLCG (AMLCG)

Initially, (1) can be divided into two parts as shown in (13)-
(15): sub1ij relates to b2i+1 and sub2ij relates to b2i+1.

ppij = sub1ij + sub2ij , (13)

sub1ij =
{
b2i+1M(b2i, b2i−1, aj)

}
(b2i+b2i−1+aj−1), (14)

sub2ij =
{
b2i+1M(b2i, b2i−1, aj)

}
(b2i+b2i−1+aj−1). (15)

1) Introducing single-sided errors [11]: To simplify sub1ij
and sub2ij , (14) and (15) are approximately obtained by using
only the terms in the curved brackets, resulting in four positive
errors (see Table A7). An approximate ppij (appij) is given by

appij = b2i+1M(b2i, b2i−1, aj) + b2i+1M(b2i, b2i−1, aj)

= M(M(b2i+1,M(b2i, b2i−1, aj), 0),M(b2i+1,

M(b2i, b2i−1, aj), 0), 1). (16)

2) Introducing double-sided errors: If only single-sided er-
rors are introduced, it leads to relatively large errors, especially
used for building a large circuit. To reduce the number of
required majority gates in the PPGs and to control errors,
we consider leveraging different characteristics of the input
operands and introduce unbiased double-sided errors. There-
fore, two approximate PPGs are designed for ppij : the first one
is for the PPs except the first row, denoted as app1ij , where
1 ≤ i ≤ n− 1, 0 ≤ j ≤ n

2 − 1; the second one is for the PPs
in the first row, denoted as app20j , where 0 ≤ j ≤ n

2 − 1.
For app1ij , four unbiased errors are introduced (as per Table

A8) by replacing b2i+b2i−1+aj−1 in (14) and b2i+b2i−1+aj−1

in (15) with aj and aj , respectively. app1ij is given by

app1ij = b2i+1ajM(b2i, b2i−1, aj)

+b2i+1ajM(b2i, b2i−1, aj)

= M(M(M(b2i+1, aj , 0),M(b2i, b2i−1, aj), 0),

M(M(b2i+1, aj , 0),M(b2i, b2i−1, aj), 0), 1).(17)

Consider app20j (j ̸= 0), b2i−1 is equal to 0. Using (17),
two unbiased errors are introduced (as per Table A9). Consider
Ψ.C, it is further simplified to

app20j = b1ajM(b0, 0, aj) + b1ajM(b0, 0, aj)

= M(M(b1,M(b0, 0, aj), 0),M(b1, aj , 0), 1). (18)

For app00, (18) causes single-sided errors; therefore, (16) is
used to generate an exact pp00. appi0 (i ̸= 0) is expressed by
(17) with unbiased errors. Thus, (18), (16) and (17) are used
to generate app0j (j ̸= 0), app00 and all other appij .

B. Design of Approximate MLNG (AMLNG)

Similarly, (8) is divided into two sections: sub1ij as

sub1ij = b2i+1

{
M(b2i, b2i−1, aj) + b2ib2i−1aj−1

}
, (19)

and sub2ij as shown in (15).
Consider appij , by ignoring the second term in the curved

bracket in (19), two negative errors are introduced, and sub1ij
can be simplified to the first term in (20). To obtain the unbiased
double-sided errors, two positive errors are further introduced
as the second term in (20), similar to the approximation for
the MLCG-based sub2ij . Thus, by introducing four unbiased
errors (as per Table A10), (8) is approximately simplified to

appij = b2i+1M(b2i, b2i−1, aj) + b2i+1M(b2i, b2i−1, aj)

= M(M(b2i+1,M(b2i, b2i−1, aj), 0),M(b2i+1,

M(b2i, b2i−1, aj), 0), 1). (20)



Consider app0j (j ̸= 0). Since the representation for the
cases of b1 has no error using (20) when i = 0, two negative
errors are introduced. The equation of MLNG-based pp0j is the
same as for MLCG-based pp0j . To obtain unbiased double-
sided errors, (18) is employed. Consider app00, (18) or (20)
causes single-sided errors. Therefore, (16) is used to generate
pp00 with no error. Hence, (18), (16) and (20) are employed to
generate app0j (j ̸= 0), app00 and all other appij .

C. Design of Approximate MLGA (AMLGA)

The MLGA-based ppij in (9) is divided into (14) and

sub2ij = b2i+1M(b2i, b2i−1, aj) + b2i+1b2ib2i−1aj−1. (21)

For app1ij , similar to the AMLNG-based appij , two negative
errors are introduced by disregarding the second term in (21);
thus sub2ij is simplified to the second term in (22). sub1ij
in (14) is approximately implemented by the first term in (22)
with two positive errors. Thus, app1ij is implemented by (22)
with four unbiased errors (as per Table A11).

app1ij = b2i+1M(b2i, b2i−1, aj) + b2i+1M(b2i, b2i−1, aj)

= M(M(b2i+1,M(b2i, b2i−1, aj), 0),M(b2i+1,

M(b2i, b2i−1, aj), 0), 1). (22)

As discussed, using (22) to generate app0j (j ̸= 0) introduces
single-sided errors. The AMLGA-based app20j is expressed by
(23) with two unbiased errors (as per Table A12).

app20j = b1M(b1, b0, aj) + b1aj

= M(M(b1,M(b1, b0, aj), 0),M(b1, aj , 0), 1).(23)

For app00, (22) is applied with no error. Thus, (23) and (22)
are employed to generate app0j (j ̸= 0) and all other appij .

D. Design of Approximate MLGB (AMLGB)

1) Introducing single-sided errors: sub1ij and sub2ij to
generate ppij are given in (19) and (21), respectively.

By ignoring the second terms in (19) and (21), appij is
generated by (24) with four negative errors (as per Table A13).

appij = b2i+1M(b2i, b2i−1, aj) + b2i+1M(b2i, b2i−1, aj)

= M(M(b2i+1,M(b2i, b2i−1, aj), 0),M(b2i+1,

M(b2i, b2i−1, aj), 0), 1). (24)

This scheme can be considered as a combination of the
designs of AMLNG- and AMLGA-based appij .

2) Introducing double-sided errors: By replacing
b2i+1b2ib2i−1aj−1 in (19) and b2i+1b2ib2i−1aj−1 in (21)
by b2i+1aj and b2i+1aj , respectively, app1ij is obtained by
introducing four unbiased errors (see Table A14), as

app1ij = b2i+1M(b2i, b2i−1, aj) + b2i+1M(b2i, b2i−1, aj)

+b2i+1aj + b2i+1aj

= M(M(b2i+1,M(M(b2i, b2i−1, aj), aj , 1), 0),

M(b2i+1,M(M(b2i, b2i−1, aj), aj , 1), 0), 1).(25)

TABLE IV: Comparison of Different Approximate Booth
Partial Product Generation Methods

PP approximate ppij
Generations Type Eq. Errors MV INV D ER(%)

AMLCG

appij (16) positive 4 2 3 12.5
app0j (i = 0, j ̸= 0) (18)

unbiased
4 2 3 12.5

app00 (i = 0, j = 0) (16) 4 2 3 0
other appij (17) 6 3 3 12.5

AMLNG
app0j (i = 0, j ̸= 0)
app00 (i = 0, j = 0)

other appij

(18)
(16)
(20)

unbiased
4
4
5

2
2
2

3
3
3

12.5
0

12.5

AMLGA
app0j (i = 0, j ̸= 0)
app00 (i = 0, j = 0)

other appij

(23)
(22)
(22)

unbiased
4
5
5

3
4
4

3
3
3

12.5
0

12.5

AMLGB

appij (24) negative 4 3 3 12.5
app0j (i = 0, j ̸= 0) (23)

unbiased
4 3 3 12.5

app00 (i = 0, j = 0) (22) 5 4 3 0
other appij (25) 6 3 4 12.5

When i = 0, pp0j for MLGB has the same logic ex-
pression as MLGA. (23) and (22) are employed to represent
the AMLGB-based app0j (j ̸= 0) and app00, respectively.
Therefore, for AMLGB, (23), (22) and (25) are employed to
generate app0j (j ̸= 0), app00 and all other appij .

E. Hardware Comparison and Error Analysis

Table IV shows the comparison of the different approximate
PPGs. The AMLCG and AMLGB require a similar hardware
complexity. Compared to introducing single-sided errors, in-
troducing unbiased errors in AMLCG and AMLGB results in
the increase of hardware complexity. With unbiased errors,
AMLNG and AMLGA save two more majority gates than
AMLCG and AMLGB. Compared to their exact counterparts
in Table III, AMLNG and AMLGA save up to 58% of utilized
majority gates, while AMLCG and AMLGB save 40% and 60%
of utilized majority gates with unbiased and single-sided errors,
respectively.

The errors are analyzed for 8 × 8 Booth multipliers. As
defined in [11], the approximation factor p denotes the number
of columns with approximate PPs in the PP array. The approx-
imation is applied from the PPs of least significance.

The AMLCG- or AMLGB-based multipliers with unbiased
errors lead to the same error characteristics. With an increase
of p, the improvement in errors increases up to 56.9% in
NMED and 81.1% in MRED compared to their counterparts
with single-sided errors. Compared with previous designs in
[11], the AMLGB-based designs with unbiased errors show an
improvement of up to 56% and 81% in NMED and MRED,
respectively. For unbiased errors, when p < 5, the AMLGA-
based designs show a higher accuracy than other PPG-based
multipliers; when p > 5, the AMLCG- or AMLGB-based
designs are better choices for higher accuracy; when p = 5, the
AMLGA- and AMLGB-based designs are superior in MRED,
respectively. Detailed error analysis are presented in Tables A15
and A16.

V. PROPOSED PARTIAL PRODUCT REDUCTION

Depending on the different error characteristics introduced
by the proposed approximate PPGs, complementary strategies



are utilized in the PP reduction based on a probability analysis.
The 8× 8 Booth multiplier is presented as a case study.

A. PP Reduction for the Designs with Single-sided Errors

1) Positive single-sided errors: The AMLCG-based design
with positive single-sided errors results in larger results than
the exact results. As a common approximation technique, trun-
cation can significantly reduce hardware complexity to generate
output values that are smaller than the exact results. Therefore,
truncation is considered as a complementary strategy for the
positive errors due to the approximate PP generations.

Assume that the number of truncated columns from the least
significant column in the PP array is t+1 (0 ≤ t < p, and t = 0
means that Column 0 including Negi is truncated). So, p−t−1
columns remain using the approximate PPGs. To select the
number of columns in the PP array for truncation under differ-
ent values of p to maximize the effects of error compensation,
we assume the probability of generating effective carries from
the truncated columns be PG and the probability of introducing
positive single-sided errors by the remaining approximate PPs
after truncation be PCP .

For a specific p, PG and PCP are calculated using a
probabilistic analysis (see the supplementary document) and
compared for different values of t. The selection of t is
determined to ensure the difference between PG and PCP

the smallest. Combined with truncation, the improvement in
accuracy increases with p, up to 27.7% in NMED and 8.4% in
MRED (as per Table A17).

2) Negative single-sided errors: The AMLGB-based design
with negative single-sided errors makes the results smaller than
the exact ones. Instead of using truncation, the PPs of lower
significance are replaced by ‘1’s to make the approximate
results larger to compensate for the errors.

Assume the number of columns in which the PPs are set
to ‘1’s (from the least significance in the PP array) is l + 1
(0 ≤ l < p, e.g. l = 0 means that the PP in Column 0 is
set as ‘1’s, except for Neg0); then, the remaining p − l − 1
columns of PPs are generated by the approximate PPGs. A
similar probabilistic analysis is then performed to decide the
pairs of l and p (see the supplementary material).

The use of the complementary strategy achieves an improve-
ment up to 27.7% in NMED and 9.4% in MRED (as per Table
A17). These two PP generation methods with complementary
strategies result in multipliers with similar error characteristics.
By using the probability analysis, it can be concluded that
excluding the exact PPs, it is better to keep two columns of
higher significance for approximation while the other columns
complement the errors. As verified by exhaustive simulation,
the selected pairs of t and p, and l and p (as per Table A17) are
the best values. For p = 5 and 8, the complementary strategy
for an AMLGB-based design is slightly more effective. For an
AMLCG-based design with PP reduction, the complementary
strategy (truncation) can significantly reduce the bit-width of
the final results.

B. PP Reduction for the Designs with Unbiased Errors

Truncation is used as a complementary strategy for designs
with a relatively high error tolerance (p ≥ 5). As discussed in
Sections III and IV, AMLCG- and AMLGB-based multipliers
with unbiased errors are considered due to their smaller hard-
ware overhead to generate exact PPs and the higher accuracy
to generate approximate PPs. From the experiments, although
truncation increases the NMED, it can improve the MRED (see
Table A18). For an improvement in MRED and to maximize
the advantages of truncation, AMLGB-based multipliers with
t = 0, 1, 1 for p = 5, 6, 7 are preferred; while the AMLCG-
based multiplier with t = 2 is preferred for p = 8.

VI. PROPOSED APPROXIMATE BOOTH MULTIPLIERS

Prior to compression, the PP array is preprocessed, as dis-
cussed in Section V. For compression, exact full adders are
used to preserve the accuracy; however, they can be replaced
by approximate adders to further reduce hardware at a loss of
accuracy. As a case study, the 8 × 8 radix-4 Booth multiplier
is presented to show the compression process.

A. Designs for the Compression of PP Arrays

In this section, we consider accuracy, at p = 4, p = 6 and
p = 8. As discussed in Sections IV and V, with unbiased
double-sided errors, the AMLGA-based design (p = 4), the
AMLGB-based design (p = 6, t = 1) and the AMLCG-based
design (p = 8, t = 2) are considered.

For AMLCG- and AMLGB-based multipliers with single-
sided errors, the PP array can be significantly reduced by using
the complementary strategies, but with a high accuracy loss.
Therefore, they are suitable for the low accuracy cases (i.e.
p = 6 and 8) to reduce the hardware. The AMLCG-based
design (positive, p = 6, t = 3) and the AMLGB-based design
(negative, p = 8, l = 5) are considered. If the smallest bit-
width of the output result is desired, then the AMLCG-based
design is preferred.

The reduced PP array are compressed by leveraging the
different characteristics of PPs. The compressed design for the
AMLGB-based PP array (negative, p = 8, l = 5) requires
thirteen full adders and a 9-bit ripple carry adder (RCA) (see
Appendix A.E). The AMLCG (positive, p = 6, t = 3)-based
PP array is compressed by using fifteen full adders and a 11-
bit RCA. To simplify the compression process of the AMLGA
(unbiased, p = 4)-based PP array, Neg0 is discarded resulting
in a 28% increase in NMED but a 2.8% decrease in MRED;
thus, the compression requires sixteen full adders and a 12-
bit RCA. The compression of the AMLGB (unbiased, p = 6,
t = 1)-based PP array requires sixteen full adders and a 12-
bit RCA; the compression of the AMLCG (unbiased, p = 8,
t = 2)-based PP array requires seventeen full adders and a
10-bit RCA.

B. Hardware Analysis

Table V presents the numbers of MVs and INVs, D, the area-
delay product (ADP, MV × D), the error metrics (NMED and



MRED) and the bit width (BW) of the final results for the exact
and proposed approximate Booth multipliers. ADP is used to
assess the overall hardware efficiency. For the reduction of PPs
in the exact multipliers, the schemes of Section VI are used,
i.e., only full adders are applied in parallel prior to obtaining the
two rows of PPs. Thus, thirty full adders and a 13-bit RCA are
required in the compression process. Since no other ML-based
approximate signed multipliers were previously proposed, only
exact Booth multipliers are considered for comparison.

TABLE V: Hardware and Error Evaluation of Exact and
Approximate 8× 8 Booth Multipliers based on Different PPGs

Multiplier Errors p t lMVINV D NMEDMRED ADP BW Energy(fJ)
(10−3) (10−3) NMLSTT-MTJ

MLCG - - - - 442 138 24 0 0 10608 16 2.29 817
MLNG - - - - 479 106 25 0 0 11975 16 2.49 886
MLGA - - - - 497 106 24 0 0 11928 16 2.58 919
MLGB - - - - 444 138 24 0 0 10656 16 2.30 821

[11] positive 6 - - 638 142 25 1.3 14.2 15950 16 3.31 1180
8 - - 518 142 25 7.2 95.6 12950 16 2.69 958

AMLCG positive 63 - 329 102 20 1.1 12 6580 12 1.71 608
unbiased82 - 325 106 20 3.3 17 6500 13 1.69 601

AMLGA unbiased4 - - 435 76 21 0.14 0.61 9135 16 2.26 804

AMLGB negative 8 - 5 258 84 19 5.2 86 4902 16 1.34 477
unbiased61 - 363 106 21 0.71 3.5 7623 14 1.88 671

With no approximation, the MLCG- and MLGB-based exact
multipliers show good performance, reducing the number of
majority gates by up to 11%, and the ADP by up to 12% com-
pared with the MLNG- and MLGA-based exact schemes. Using
approximate PP generation methods, the hardware decreases
with a reduced accuracy (in NMED or MRED). Compared with
the MLCG-based exact multiplier, those using approximate
PPGs can obtain an improvement from 13% to 53% in the
ADP and from 12% to 20% in delay. The AMLGA-based
multiplier achieves only a reduction of 1.5% in the number
of majority gates, 45% of the inverters and 12% of the delay.
The AMLGB-based multiplier with negative single-sided errors
(p = 8) reduces up to 41% of the majority gates, 39% of the
inverters, 20% of the delay and 53% of the ADP at a relatively
large decrease in accuracy. Moreover, with truncation, the bit-
width of the final result can be reduced by up to 12 bits.

The proposed multipliers with positive single-sided and
unbiased double-sided errors introduced by AMLCG perform
similarly in hardware metrics. The AMLCG (positive, p = 6,
t = 3)-based multiplier design is likely to be preferred, due
to the higher accuracy. Due to the specific ML optimizations
of PPGs, even the exact multiplier designs in Table V are
superior in hardware than the approximate multiplier design
in [11]. Moreover, the additional use of truncation can improve
accuracy and reduce the bit-width of the final result.

Finally, some ML-based technologies are considered for
power dissipation, including NML and STT-MTJ. For simplic-
ity the power consumption and critical path delay of a majority
gate are considered as a unit under different technologies or
devices to estimate the energy consumption of the considered
designs. The energy for the majority gate based on NML or
STT-MTJ is approximately 5.2× 10−3 fJ [2] or 1.85 fJ [3],
respectively. As shown in Table V, the proposed AMLGB-based

multiplier (negative, p = 8, l = 5) leverages the low-power
nature of emerging nanotechnologies, consuming only 1.34 fJ
and 6.71×102 fJ for NML and STT-MTJ, respectively. These
results show the power efficiency of the proposed ML-based
multipliers in emerging nanotechnologies.

In Fig. 2, it is shown that compared with exact multiplier de-
signs, the AMLGA-based design achieves at least a reduction of
13% in ADP. With a further decrease in accuracy, the AMLGB-
based design (unbiased, p = 6, t = 1) reduces the ADP by
28%. Although the AMLCG-based designs have a similar ADP,
the one with positive single-sided errors is superior in NMED.
The AMLGB-based design (negative, p = 8, l = 5) saves
53% of ADP with a large accuracy loss. Therefore, four levels
of accuracy can be established for different requirements of
applications: high accuracy (AMLGA, unbiased, p = 4), good
accuracy (AMLGB, unbiased, p = 6, t = 1), moderate accuracy
(AMLCG, positive, p = 6, t = 3), and low accuracy (AMLGB,
negative, p = 8, l = 5).
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Fig. 2: Errors (in NMED and MRED) vs. hardware
complexity for exact and approximate 8× 8 Booth

multipliers: (a) ADP vs NMED and (b) ADP vs MRED.

VII. APPLICATION

Several applications are considered for the proposed ap-
proximate multipliers at four different accuracy levels: low
and moderate accuracy for image multiplication and edge
detection using the Sobel operator, good and high accuracy for
a multilayer perceptron (MLP) for classification and a multi-
task CNN for joint face detection and alignment, respectively.

A. Image Processing

Image multiplication [10] and edge detection using the Sobel
operator [19] are considered for the proposed approximate
multipliers with low accuracy (AMLGB, negative, p = 8,
l = 5) and the ones with moderate accuracy (AMLCG, positive,
p = 6, t = 3), respectively. The structural similarity index
measure (SSIM) and the peak signal-to-noise ratio (PSNR) are
used to evaluate the quality of the image processing results.



The experiments on ten different images return on average
a PSNR of 59.34 dB and an SSIM of 0.9993 for the image
multiplication, and a PSNR of 71.09 dB and an SSIM of 0.9998
for the edge detection, respectively.

B. Classification

The proposed approximate 8 × 8 radix-4 Booth multipliers
(AMLGB, unbiased, p = 6, t = 1) with good accuracy are used
in an MLP of three layers (an input layer of 784 neurons, one
hidden layer of 100 neurons and an output layer of 10 neurons)
to classify the MNIST dataset. The performance of the MLP
is assessed by the accuracy of the classification.

The 8× 8 approximate Booth multipliers are utilized in the
inference. The trained weight matrix, the inputs and biases are
mapped into [-128, 127] for the inference. Using MATLAB,
94.41% and 94.34% are obtained as classification accuracies
when using the exact and approximate multipliers, respectively.
Moreover, compared with the exact design, the proposed design
reduces the ADP of the multipliers in inference by up to 28%
along with a reduced hardware for the accumulation operations
due to the truncation in each multiplication.

C. Face Detection and Alignment

A multi-task CNN (MTCNN) is considered for joint face
detection and alignment, using the Face Detection Data Set
and Benchmark (FDDB) and Annotated Facial Landmarks in
the Wild (AFLW) datasets. The MTCNN consists of three cas-
caded CNNs: the so-called “proposal network” (PNet), “refine
network” (RNet) and “output network” (ONet) [4]. The true
positive rate (TPR) and the normalized mean error (NME) indi-
cate the accuracy in face detection and alignment, respectively.
Different numbers of multiply-and-accumulate (MAC) units are
required when the accuracy varies because of the face detection
algorithm. As a MTCNN is usually executed by using data
pipelines due to the limitation of the hardware resources, we
report the average number of MACs required for detecting the
faces in an image on the FDDB dataset to assess the hardware
overhead related to performance and energy consumption.

Due to the large number of multiplications required for a
MTCNN, approximate 8× 8 multipliers with a relatively high
accuracy (AMLGA, unbiased, p = 4) are used to replace the
exact circuits. Fig. 3 shows an example for the results of face
detection and alignment. Compared with the exact multiplier,
the use of the proposed approximate multipliers achieves a
5.1% reduction in the number of MACs due to the acceleration
of inference (0.48 billion vs 0.51 billion), thus approximately
saving 18.9% in ADP for the MACs at a 7.4% accuracy
loss with a TPR of 80.24%; however, the NME is increased
from 3.58% to 11.01%. A higher accuracy can be achieved by
using approximate multipliers for the less error-sensitive MACs
and exact designs for the more error-sensitive components.
The proposed approximate multiplier performs better in face
detection than alignment, while the approximate multipliers
[11] for p = 4 show an unacceptable TPR of 0.23% and an
NME of 32.88%.

(a) (b)
Fig. 3: Results of face detection and alignment using 8× 8

approximate Booth multipliers with high accuracy (AMLGA,
unbiased, p = 4): (a) face alignment and (b) face detection.

VIII. CONCLUSION

In this paper, approximate Booth multipliers are proposed
based on ML that are applicable to emerging nanotechnologies.
New partial product generation methods are first developed
for efficient ML implementations. Approximate partial product
generators are then designed with different types of errors:
positive single-sided, negative single-sided, biased double-sided
and unbiased double-sided errors. Improvements up to 56% and
81% in NMED and MRED are achieved in comparison to pre-
vious designs. For the reduction of the PP array, complementary
strategies are proposed by considering the features of the errors.
Various schemes for PP compression are then designed to
efficiently calculate the final results. Finally, four approximate
multipliers with different levels of accuracy are proposed to
meet various design requirements in area, delay, and accuracy.
A hardware evaluation at the gate level shows a saving of 28%
in ADP compared to the exact design and very low NMED and
MRED of 0.00071 and 0.0035 for ML-based nanotechnologies
(NML and MTJ). Case studies of image processing and neural
networks show the great potential of the proposed designs for
ML-based emerging technologies.
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APPENDIX A
K-MAPS, ERROR ANALYSIS, COMPLEMENTARY

STRATEGIES, COMPRESSION

A. K-maps for exact and approximate PPGs

1) K-maps for exact PPGs: The K-maps for exact PP gener-
ations are given in Tables A1-A6, including MLCG, MLNG and
the newly proposed MLGA and MLGB. The maxterms in light
gray and the minterms in dark gray can be represented using
3-input majority gates using K-map based ML optimization.

TABLE A1: K-Map of the MLCG-based ppij [14]

aj aj−1

b2i+1 b2i b2i−1 000 001 011 010 110 111 101 100

00 0 0 0 0 1 0 1 1
01 0 0 1 0 1 0 1 0
11 0 1 1 1 0 0 0 0
10 0 1 0 1 0 0 0 1

TABLE A2: K-Map of the MLNG-based ppij [12]

aj aj−1

b2i+1 b2i b2i−1 000 001 011 010 110 111 101 100

00 0 0 0 0 1 1 1 1
01 0 0 1 0 1 1 1 0
11 0 1 1 1 0 1 0 0
10 0 1 0 1 0 1 0 1

TABLE A3: K-Map of the MLGA-based ppij

aj aj−1

b2i+1 b2i b2i−1 000 001 011 010 110 111 101 100

00 1 0 0 0 1 0 1 1
01 1 0 1 0 1 0 1 0
11 1 1 1 1 0 0 0 0
10 1 1 0 1 0 0 0 1

TABLE A4: K-Map of the MLGA-based Negi

b2i+1

b2i b2i−1 00 01 11 10

0 1 0 0 0
1 1 1 0 1

TABLE A5: K-Map of the MLGB-based ppij

aj aj−1

b2i+1 b2i b2i−1 000 001 011 010 110 111 101 100

00 1 0 0 0 1 1 1 1
01 1 0 1 0 1 1 1 0
11 1 1 1 1 0 1 0 0
10 1 1 0 1 0 1 0 1

TABLE A6: K-Map of the MLGB-based Negi

b2i+1

b2i b2i−1 00 01 11 10

0 1 0 0 0
1 1 1 1 1

TABLE A7: K-Map of the AMLCG-based appij

aj aj−1

b2i+1 b2i b2i−1 000 001 011 010 110 111 101 100

00 0 0 1⃝ 0 1 0 1 1
01 0 0 1 0 1 0 1 1⃝
11 0 1 1 1 0 0 0 1⃝
10 0 1 1⃝ 1 0 0 0 1

TABLE A8: K-Map of the AMLCG-based app1ij

aj aj−1

b2i+1 b2i b2i−1 000 001 011 010 110 111 101 100

00 0 0 0 0 1 0 1 1
01 0 0 0⃝ 0 1 0 1 1⃝
11 0 1 1 1 0 0 0 0
10 0 1 1⃝ 1 0 0 0 0⃝

TABLE A9: K-Map of the AMLCG-based app20j

aj aj−1

b1 b0 00 01 11 10

00 0 0 1 1
01 0 0 1 1⃝
11 0 1 0 0
10 0 1 0 0⃝

TABLE A10: K-Map of the AMLNG-based app1ij

aj aj−1

b2i+1 b2i b2i−1 000 001 011 010 110 111 101 100

00 0 0 1⃝ 0 1 1 1 0⃝
01 0 0 1 0 1 1 1 0
11 0 1 1 1 0 1 0 0
10 0 1 1⃝ 1 0 1 0 0⃝

TABLE A11: K-Map of the AMLGA-based app1ij

aj aj−1

b2i+1 b2i b2i−1 000 001 011 010 110 111 101 100

00 1 0 0 0 1 0 1 1
01 1 0 0⃝ 0 1 0 1 1⃝
11 1 1 0⃝ 1 0 0 0 1⃝
10 1 1 0 1 0 0 0 1

TABLE A12: K-Map of the AMLGA-based app20j

aj aj−1

b1 b0 00 01 11 10

00 1 0 1 1
01 1 0 1 1⃝
11 1 1 0 0
10 1 1 0 0⃝

TABLE A13: K-Map of the AMLGB-based appij

aj aj−1

b2i+1 b2i b2i−1 000 001 011 010 110 111 101 100

00 1 0 0 0 1 1 1 0⃝
01 1 0 0⃝ 0 1 1 1 0
11 1 1 0⃝ 1 0 1 0 0
10 1 1 0 1 0 1 0 0⃝



TABLE A14: K-Map of the AMLGB-based app1ij

aj aj−1

b2i+1 b2i b2i−1 000 001 011 010 110 111 101 100

00 1 0 0 0 1 1 1 1
01 1 0 0⃝ 0 1 1 1 1⃝
11 1 1 1 1 0 1 0 0
10 1 1 1⃝ 1 0 1 0 0⃝

2) K-maps for approximate PPGs: Tables A7-A14 present
the K-maps of approximate ppij based on different PPGs.

B. Error analysis of the proposed approximate PPGs

The approximate designs are measured with respect to the in-
troduced error directions, i.e., single-sided vs unbiased double-
sided errors, and biased vs unbiased doublesided errors.

1) Single-sided vs unbiased double-sided errors: Table A15
shows the NMED/MRED of the AMLCG- and AMLGB-based
designs with single-sided and unbiased double-sided errors.

With single-sided errors, the use of AMLGB shows a slightly
higher accuracy (in NMED and MRED) than for AMLCG
when p ≤ 5. When generating approximate PPs with single-
sided errors, the errors accumulate, resulting in a substantial
difference from the exact result. Therefore, approximate PPGs
with unbiased errors show lower NMEDs and MREDs than for
single-sided errors in the approximate multiplier.

2) Biased or unbiased double-sided errors: The comparison
of errors due to the use of AMLNG and AMLGA with biased
and unbiased double-sided errors is given in Table A16. Unlike
designs with unbiased errors, the AMLNG- and AMLGA-based
designs with biased errors ignore the different characteristics of
PPs, only using (20) and (22) to compute the PPs, respectively.

Generally, approximate PPGs with unbiased errors result in
a more accurate approximate multiplier (with lower NMEDs
and MREDs) than for biased errors. Independently of biased
or unbiased errors, the AMLGA-based designs show better
accuracy than AMLNG. Moreover, the NMED for AMLGA-
based designs with biased errors is comparable to that for
AMLNG-based ones with unbiased errors.

C. Complementary strategies for the PP reduction

1) Positive single-sided errors: Define Ci and Ni as the
carry-out and the number of ‘1’s in Column i. Ci can be larger
than ‘1’ for multiple PPs in a column. The probability of the
carry values for each column in the PP array is analyzed using
Bayes theory, i.e., computing the prior probability as per the
posterior knowledge of the relationship between input operands
and output results.

For example, in Column 0, there are two operands (pp00 and
Neg0), so C0 has two possible values: 0 and 1. Hence:

P (C0 = 1) = P (N0 = 2) = P (pp00 = 1 ∩ neg0 = 1)

= P (pp00 = 1|neg0 = 1)P (neg0 = 1)

=
3

4
× 1

2
=

3

8
. (1)

The probabilities of the carry values for the other columns in
the PP array can be similarly derived. Then, PG can be derived
as approximately:

PG =

max∑
i=1

2i−1 × P (Ct = i). (2)

where max is the largest possible value of the carry generated
by the truncated columns.

The proposed AMLCG-based appij with single-sided errors
has a probability of 50% to introduce positive errors when
b2i+1b2ib2i−1 = 011 and 100 (as per Table A7). Since dif-
ferent PPs may be correlated, the conditional probability is
considered in this analysis. Based on the analysis of the carries,
P (b2i+1b2ib2i−1 = 011 or 100|P (Cn > 0)) can be easily
obtained. When carries are generated for the truncated columns,
the errors introduced in the remaining PPs of higher signifi-
cance can mitigate the accuracy loss. Assume the probability
of introducing positive single-sided errors for each remaining
approximate PP is given by PCP

appij (0 ≤ i ≤ ⌈p
2 − 1⌉,

t + 1 − 2i ≤ j ≤ p − 2i − 1). PCP
appij takes into consider-

ation the distance from the truncated column with the highest
significance to appij , as given by

PCP
appij = 2j−(t+1−2i) × 1

2
×P (b2i+1b2ib2i−1 = 011/100, P (Ct > 0))

= 2j−(t+2−2i) × P (Ct > 0)×
P (b2i+1b2ib2i−1 = 011/100|P (Ct > 0)) (3)

As the sum of all PCP
appij , PCP is given by

PCP =

⌈ p
2−1⌉∑
i=0

p−2i−1∑
j=t+1−2i

PCP
appij . (4)

The selected pair of t and p depends on the distance between
PG and PCP to make their values the closest.

2) Negative single-sided errors: Let P ppij

E (0 ≤ i ≤ ⌈ l+1
2 −

1⌉, 0 ≤ j ≤ l − 2i) and PE be the probability of introducing
positive errors resulting from using ‘1’ to replace each ppij
and the original PPs in all l + 1 columns, respectively. For
each ppij , there is a probability of 5

8 to replace the original
‘0’s, thus introducing positive errors. The calculation of P appij

E

considers the difference between the significances of ppij and
Column l + 1, as

PE
ppij = 2j−(l+1−2i) × 5

8
=

5

2l+4−2i−j
. (5)

To simplify the analysis, assume that the generation of each
PP is independent. Thus, PE is the sum of all P ppij

E :

PE =

⌈ l+1
2 −1⌉∑
i=0

l−2i∑
j=0

PE
ppij . (6)

Similarly, PCN
appij (0 ≤ i ≤ ⌈p

2 − 1⌉, l + 1 − 2i ≤ j ≤
p−2i−1) is defined as the probability of introducing negative
errors due to each remaining appij encoded by AMLGB on
Column l+ 1. Each appij using AMLGB has a probability of
1
8 to introduce a negative error. PCN

appij also depends on the
difference between the significances of appij and Column l+1,
as

PCN
appij = 2j−(l+1−2i) × 1

8
= 2j−(l+4−2i). (7)



TABLE A15: Error Measurements for an 8× 8 Booth Multiplier using AMLCG and AMLGB with Single-sized or Unbiased
Double-sided Errors in PP Generation

Encoders

AMLCG [11] AMLCG AMLGB AMLGB
using (16) using (18) & (16) & (17) using (24) using (23) & (22) & (25)

(single-sized) (unbiased) (single-sized) (unbiased)
NMED MRED NMED MRED NMED MRED NMED MRED

p = 1 0 0 0 0 1.52 ×10−5 6.10 ×10−5 0 0
p = 2 1.52×10−5 6.10 ×10−5 1.52×10−5 9.15 ×10−5 3.05×10−5 1.22 ×10−4 1.52×10−5 9.15×10−5

p = 3 7.62×10−5 4.27 ×10−4 5.91×10−5 3.50×10−4 9.15×10−5 4.57 ×10−4 5.91×10−5 3.50×10−4

p = 4 1.98×10−4 1.4 ×10−3 1.13×10−4 6.71×10−4 2.13×10−4 1.5 ×10−3 1.13×10−4 6.71×10−4

p = 5 5.64×10−4 4.9 ×10−3 3.21×10−4 1.9×10−3 5.79×10−4 5.0 ×10−3 3.21×10−4 1.9×10−3

p = 6 1.3×10−3 1.4 ×10−2 6.32×10−4 3.7×10−3 1.3×10−3 1.4 ×10−2 6.32×10−4 3.7×10−3

p = 7 3.3×10−3 3.9 ×10−2 1.6×10−3 9.2×10−3 3.3×10−3 3.9 ×10−2 1.6×10−3 9.2×10−3

p = 8 7.2×10−3 9.5 ×10−2 3.1×10−3 1.8×10−2 7.2×10−3 9.5 ×10−2 3.1×10−3 1.8×10−2

TABLE A16: Error Measurements for an 8× 8 Booth Multiplier using AMLNG and AMLGA with Biased or Unbiased
Double-sided Errors in PP Generation

Encoders
AMLNG AMLNG AMLGA AMLGA
using (20) using (18) & (16) & (20) using (22) using (23) & (22) & (22)

(biased double-sized) (unbiased double-sized) (biased double-sized) (unbiased double-sized)
NMED MRED NMED MRED NMED MRED NMED MRED

p = 1 1.52 ×10−5 6.10 ×10−5 0 0 0 0 0 0
p = 2 3.05×10−5 1.22 ×10−4 1.52×10−5 9.15 ×10−5 1.52×10−5 6.10×10−5 1.52×10−5 9.15 ×10−5

p = 3 9.92×10−5 4.73 ×10−4 8.39×10−5 3.66 ×10−4 4.57×10−5 3.05×10−4 3.05×10−5 1.83 ×10−4

p = 4 2.00×10−4 1.3 ×10−3 1.68×10−4 8.08×10−4 1.44×10−4 1.2×10−3 1.12×10−4 6.25 ×10−4

p = 5 5.22×10−4 4.1×10−3 4.69×10−4 2.5×10−3 3.45×10−4 3.6×10−3 2.82×10−4 2.0 ×10−3

p = 6 1.1×10−3 1.1 ×10−2 9.53×10−4 6.6×10−3 8.68×10−4 1.0×10−2 7.52×10−4 6.3 ×10−3

p = 7 2.5×10−3 2.9 ×10−2 2.3×10−3 1.8×10−2 1.9×10−3 2.7×10−2 1.7×10−3 1.7 ×10−2

p = 8 5.1×10−3 6.9 ×10−2 4.7×10−3 4.4×10−2 4.5×10−3 6.7×10−2 4.0×10−3 4.3 ×10−2

PCN includes all PCN
appij , as given by

PCN =

⌈ p
2−1⌉∑
i=0

p−2i−1∑
j=l+1−2i

PCN
appij . (8)

The selected pair of l and p depends on when the distance
between PE and PCN is smallest.

Table A17 shows the analytical results of the values of t (and
l) for p (p ∈ [4, 8]) and the error results for 8× 8 multipliers.

3) Unbiased double-sided errors: Error results of AMLCG
and AMLGB (unbiased errors) based 8 × 8 Radix-4 Booth
multiplier combined with truncation when p ≥ 5 is presented
in Table A18. Only those cases when the MRED of the
approximate multiplier has an improvement after combining
with truncation are included.

From the experimental results, despite truncation increases
the values of NMED, it could improve the accuracy in MRED.
In Table A15, the AMLCG- and AMLGB-based multipliers
without truncation share the same error characteristics. Trunca-
tion increases the error distances more when the accurate results
are larger, but it decreases the error distances more when the
accurate results are smaller. Compared with the error results
presented in Table A15, using truncation in the AMLGB-based
designs when 5 ≤ p ≤ 7 can achieve a significant improvement
in MRED but with a larger increase in NMED than in the
AMLCG-based designs. When p = 8, if three columns of PPs
are truncated (t = 2), the AMLCG-based design can still get an
improvement in MRED but it is not applicable to the AMLGB-
based one.

TABLE A17: Error Measurements for an 8× 8 Booth
Multiplier using the Proposed PP Reduction Schemes,
AMLCG and AMLGB with Single-sided Errors for PP

Generations

PPGs AMLCG (positive) AMLGB (negative)
p t NMED MRED l NMED MRED
4 1 1.9× 10−4 1.4× 10−3 1 2.0× 10−4 1.4× 10−3

5 2 5.0× 10−4 4.3× 10−3 2 5.0× 10−4 4.1× 10−3

6 3 1.1× 10−3 1.3× 10−2 3 1.1× 10−3 1.3× 10−2

7 4 2.4× 10−3 3.4× 10−2 4 2.5× 10−3 3.4× 10−2

8 5 5.2× 10−3 8.7× 10−2 5 5.2× 10−3 8.6× 10−2

TABLE A18: Error Measurements for an 8× 8 Booth
Multiplier using Truncation for the PP Reduction, AMLCG

and AMLGB with Unbiased-sided Errors for PP Generations

Value Value AMLCG AMLGB
of p of t NMED MRED NMED MRED

5 0 3.41× 10−4 1.8× 10−3 3.63× 10−4 1.7× 10−3

6 0 6.51× 10−4 3.3× 10−3 6.71× 10−4 3.1× 10−3

1 6.72× 10−4 3.6× 10−3 7.11× 10−4 3.5× 10−3

7 0 1.6× 10−3 8.2× 10−3 1.6× 10−3 7.7× 10−3

1 1.6× 10−3 8.5× 10−3 1.7× 10−3 8.0× 10−3

8 0 3.2× 10−3 1.61× 10−2 3.2× 10−3 1.48× 10−2

1 3.2× 10−3 1.64× 10−2 3.2× 10−3 1.52× 10−2

2 3.3× 10−3 1.70× 10−2 - -

D. PP compression

The compressed design for the AMLGB-based PP array
(negative, p = 8, l = 5) is shown in Fig. A1. At Stage
1, the initial PP array is generated using Columns 0 to 5 to
complement errors. The constants ‘1’s in Columns 2 to 5 are



0123456789101112131415 0123456789101112131415 0123456789101112131415

(a) (b) (c)
0123456789101112131415

0123456789101112131415

0123456789101112131415

(d) (e) (f)

： sign extension bit

： exact PP ： inversion of exact PP

：approximate

：constant (‘1’)

𝑝𝑝𝑖𝑗  ： items after compression

： exact operation

𝑁𝑒𝑔𝑖 ： ： item conversion for preprocessing

： truncation operation

： add operation

Fig. A1: Design of PP Compression in an 8× 8 Booth multiplier using AMLGB (negative, p = 8, l = 5): (a) Stage 1
(preprocessing), (b) Stage 2 (preprocessing), (c) Stage 3, (d) Stage 4, (e) Stage 5, and (f) Stage 6.

preprocessed into “101010”. To further simplify computation,
the constant ‘1’ in Column 0 is truncated. Consider that in
binary computation, adding ‘1’ to an operand results in a carry
equal to the operand and a sum equal to the inversion of the
operand, Columns 11 and 13 at Stage 1 and Column 7 at Stage
2 are simplified. The ML-based adder design requires two units
of gate delay [12]. Stages 3 to 5 reduce the PP array to two
rows with one additional term at the least significant position
using full adders. Stage 3 compresses the approximate PPs in
Columns 6 and 7 to keep the same execution time for the exact
PP generation. At Stage 4, a circled PP in Column 8 is replaced
by two terms in Column 7 to simplify the further compression.
Finally, a 9-bit ML-based ripple carry adder (RCA) is required.
The compressed PP designs for the other cases are similar.

E. Overall approximate Booth multiplier designs

Table A19 extends Table V to give the overall designs of the
Booth multipliers.



TABLE A19: Extension of Table V

Multiplier PP Generation Errors p t l MVAM INVAM D NMED MRED ADP BW Energy(fJ)
Equations MV (10−3) (10−3) NML STT-MTJ

MLCG

ppij = M(M(M(b2i+1, 0,M(b2i, b2i−1, aj)),
M(b2i, 1,M(b2i−1, aj−1, 1)), 0),

M(b2i+1, 0,M(b2i, b2i−1, aj)),

M(aj−1, 1,M(b2i−1, b2i, 1)), 0), 1)

Negi = M(b2i+1, 0,M(b2i, b2i−1, 1))

10

2

- - - - 442 138 24 0 0 10608 16 2.29 817

MLNG

ppij = M(M(b2i+1,M(M(b2i, b2i−1, aj),

M(b2i,M(b2i−1, aj−1, 0), 0), 1), 0),

M(M(b2i+1,M(b2i, b2i−1, aj), 0),

M(b2i,M(b2i−1, aj−1, 1), 1), 0), 1)
Negi = b2i+1

11

0

- - - - 479 106 25 0 0 11975 16 2.49 886

MLGA

ppij = M(M(M(b2i+1, 0,M(b2i, b2i−1, aj)),
M(b2i, 1,M(b2i−1, aj−1, 1)), 0),M(

M(b2i+1, 0,M(b2i, b2i−1, aj)),M(

M(b2i+1, b2i, 0),M(b2i−1, aj−1, 0), 0), 1), 1)

Negi = M(b2i+1, b2i, b2i−1)

12

1

- - - - 497 106 24 0 0 11928 16 2.58 919

MLGB

ppij = M(M(M(M(b2i, b2i−1, aj), b2i+1, 0),

M(M(b2i, b2i−1, aj), b2i+1, 0), 1),

M(M(aj−1,M(b2i−1, b2i, 0), 0),
M(b2i,M(b2i−1, aj−1, 0), 0), 1), 1)

Negi = M(b2i+1, 1,M(b2i, b2i−1, 0))

10

2

- - - - 444 138 24 0 0 10656 16 2.30 821

[11] appij = M(M(b2i+1,M(b2i, b2i−1, aj),

0),M(b2i+1,M(b2i, b2i−1, aj), 0), 1)
4 positive 6 - - 638 142 25 1.3 14.2 15950 16 3.31 1180

8 - - 518 142 25 7.2 95.6 12950 16 2.69 958

AMLCG

appij = M(M(b2i+1,M(b2i, b2i−1, aj),

0),M(b2i+1,M(b2i, b2i−1, aj), 0), 1)
4 positive 6 3 - 329 102 20 1.1 12 6580 12 1.71 608

app0j = M(M(b1,M(b0, 0, aj), 0),
M(b1, aj , 0), 1)

app00 = M(M(b1,M(b0, 0, a0), 0),

M(b1,M(b0, 0, a0), 0), 1)
appij = M(M(M(b2i+1, aj , 0),

M(b2i, b2i−1, aj), 0),M(M(b2i+1, aj , 0),
M(b2i, b2i−1, aj), 0), 1)

4

4

6

unbiased 8 2 - 325 106 20 3.3 17 6500 13 1.69 601

AMLGA

app0j = M(M(b1,M(b1, b0, aj), 0),
M(b1, aj , 0), 1)

app00 = M(M(b1,M(b0, 1, a0), 0),

M(b1,M(b0, 1, a0), 0), 1)

appij = M(M(b2i+1,M(b2i, b2i−1, aj), 0),

M(b2i+1,M(b2i, b2i−1, aj), 0), 1)

4

5

5

unbiased 4 - - 435 76 21 0.14 0.61 9135 16 2.26 804

AMLGB

appij = M(M(b2i+1,M(b2i, b2i−1, aj), 0),

M(b2i+1,M(b2i, b2i−1, aj), 0), 1)
4 negative 8 - 5 258 84 19 5.2 86 4902 16 1.34 477

app0j = M(M(b1,M(b1, b0, aj),
0),M(b1, aj , 0), 1)

app00 = M(M(b1,M(b0, 1, a0), 0),

M(b1,M(b0, 1, a0), 0), 1)
appij = M(M(b2i+1,M(M(b2i, b2i−1, aj),

aj , 1), 0),M(b2i+1,M(M(b2i, b2i−1, aj),
aj , 1), 0), 1)

4

5

6

unbiased 6 1 - 363 106 21 0.71 3.5 7623 14 1.88 671

MV: the number of required majority voters for a single ppij or Negi; MVAM : the number of required majority voters in an approximate multiplier;
INVAM : the number of required inverters in an approximate multiplier; D: the delay for an approximate multiplier; ADP: MV × D; BW: bit-width of
the final result.
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