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Abstract—Neural networks (NNs) are effective machine learn-
ing models that require significant hardware and energy con-
sumption in their computing process. To implement NNs, stochas-
tic computing (SC) has been proposed to achieve a trade-off
between hardware efficiency and computing performance. In
an SC NN, hardware requirements and power consumption
are significantly reduced by moderately sacrificing the inference
accuracy and computation speed. With recent developments in
SC techniques, however, the performance of SC NNs has substan-
tially been improved, making it comparable with conventional
binary designs yet by utilizing less hardware. In this article, we
begin with the design of a basic SC neuron and then survey
different types of SC NNs, including multilayer perceptrons,
deep belief networks, convolutional NNs, and recurrent NNs.
Recent progress in SC designs that further improve the hardware
efficiency and performance of NNs is subsequently discussed.
The generality and versatility of SC NNs are illustrated for
both the training and inference processes. Finally, the advantages
and challenges of SC NNs are discussed with respect to binary
counterparts.

Index Terms—Stochastic computing, neural network.

I. INTRODUCTION

Neural networks (NNs) have widely been used in many
artificial intelligence and machine learning applications, such
as feature extraction [1], classification [2], and system control
[3]. Their nonlinear characteristics, flexible configuration abil-
ity and self-adaptability make them convenient for machine
learning applications [4]. Originally, NNs were inspired by
simulating some functions of the human brain, and they
modeled the way in which the brain performs a particular task
or functions of interests [5]. An NN is usually implemented as
a parallel distributed processor consisting of simple processing
units as neurons. It resembles the human brain, so acquiring
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knowledge through a training process and storing the knowl-
edge in layer weights that are associated with the interneuron
connections.

There have been multiple types of NNs based on different
structures and learning algorithms. A multilayer perceptron
(MLP) is a type of artificial neural neworks (ANNs) in
which neurons are interconnected by several layers [6]. MLP
supports gradient descent-based supervised learning such as
the backward propagation (BP) algorithm [6]. It can be used
for the classification of nonlinear separable patterns [7] [8]. A
deep neural network (DNN) is generally considered to consist
of more than two nonlinear layers between the input and
output layers [9]. As an example, a deep belief network (DBN)
dramatically improves the performance of an MLP. By using
a fast greedy learning algorithm [10], a DBN can perform
unsupervised learning and solve problems such as object
recognition [11], speech recognition [12] and the recognition
of handwritten characters. Compared with other NNs, convo-
lutional neural networks (CNNs) achieve a better performance
in image-classification applications and significantly reduce
the memory required for storing layer weights by utilizing
weight sharing and pooling operations [13]. Recurrent neural
networks (RNNs) are widely used for solving time-related
problems, such as speech recognition [14], [15]. The long
short-term memory (LSTM) structure has been introduced to
improve the accuracy of RNNs and has become one of the
most widely-used RNN structures [16].

Compared to software implementations, hardware imple-
mentations of NNs offer the advantages of an inherently
high degree of parallelism and fast processing speed. Un-
fortunately, complex hardware is required because NNs may
involve thousands of neurons in a single layer, so resulting
in millions of parameters that need to be adjusted to achieve
high classification accuracy [2]. Since a large NN can easily
overfit the dataset, several techniques have been developed
to solve the overfitting problem, including the use of weight
noise [17], Dropout [18], DropConnect [19], binarized neural
networks (BNNs) [20], and quantized NNs (QNNs) [21],
[22]. These techniques add noise to the activation function or
layer weights. Using these methods, large networks generally
achieve higher accuracy compared to small networks. Re-
cently, NNs have been implemented in FPGAs [23], graphics
processing units [2], and embedded systems [24]; however,
the power and energy consumption of these implementations
remain high.

In contrast to conventional binary circuits, a stochastic com-
puting (SC) circuit requires a small hardware cost with a low
power consumption and high fault tolerance to computational
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and soft errors [25]. SC reduces the size of many fundamental
arithmetic circuits, such as adders, subtractors [26], [27] and
multipliers [28], [29]. The sigmoid function, for example, the
hyperbolic tangent (tanh) and exponential functions can all
be implemented by linear finite state machines (FSMs) [30].
These designs make it possible to implement SC NNs at a sig-
nificantly lower hardware cost by moderately sacrificing com-
putation accuracy. In addition, SC uses stochastic sequences
to encode real values. Therefore, it introduces stochasticity
and, thus, noise into the SC NNs. Noise can potentially be
utilized to solve the overfitting problem to improve accuracy
in inference [31].

Due to the long sequence length and a large number of
stochastic number generators (SNGs) required in the circuit,
however, it is a challenge for an SC NN to achieve a lower
computational latency and energy consumption compared with
conventional designs. To overcome this challenge, several
improved SC encoding methods have been proposed to reduce
the sequence length [32], [33], [34], thereby improving the
performance and energy efficiency. Some designs focus on the
improvement and reuse of random number generators (RNGs),
so leading to better hardware and energy efficiency [35], [36].
These new techniques make SC NNs competitive in both
hardware efficiency and computation performance compared
with conventional binary implementations.

In this article, we survey the recent developments of SC
NNs, including radial basis function NNs [37], MLPs [35],
[38], [39], [40], [41], CNNs [42], DBNs [36], [43] and
RNNs [34], [44], and their applications to machine learning.
It is shown that SC techniques can be adapted for various
applications hence they are versatile for implementing NNs. In
addition to inference, SC circuits have been used to implement
the BP algorithm for training and, at the same time, attaining
high hardware efficiency and flexible network configuration
[36], [40], [41], [45]. These developments show the potential
of SC techniques for machine learning applications.

This article is organized as follows. First, we review the
basic components in an SC neuron. Then, we discuss the
specific components required in different types of SC NNs.
Recent progress in various SC techniques is introduced, in-
cluding those extending the computational range, reducing the
sequence length, and efficient encoding. Performance of SC
NNs is compared with those of BNNs and QNNs. Finally, a
conclusion is drawn on current developments.

II. BACKGROUNDS

NNs consist of neurons as structural constituents. It is
estimated that there are approximately ten billion neurons in
a human brain [6]. Fig. 1 illustrates the typical structure of a
neuron. In the neuron, the cell body receives input signals from
the dendrites connected to the synaptic terminals controlled by
the other neurons. The signals are converted and encoded as a
series of sharp voltage pulses known as spikes and then passed
to other neurons through the axon. The human brain can be
developed to adapt to the surrounding environment by two
mechanisms: the creation of new synaptic connections between
neurons and the modification of existing synapses, both of

which lead to changes in the structure and the parameters of
the NN.

Based on the biological structure, the neuron in an NN
is designed as an information processing unit and is utilized
as the fundamental unit of the network. The function of the
neuron is shown in Fig. 2. The input signals of the neuron are
denoted by {xi}, where i = 1, 2, ..., m, and the parameters of
the neuron (given as a layer weight) are {wi}, i = 1, 2, ..., m.
The output of the neuron is generated by

y = φ(

m∑
i=1

wixi), (1)

where φ is the activation function. In SC NNs, there are
different types of widely used activation functions, including
the tanh function, sigmoid function, and rectifier function
(ReLU). Assume the input of the activation function is v, the
activation functions are given by

φ(v) =


tanh(2v), tanh

1
1+exp(−v) , sigmoid

max(0, v). ReLU

(2)

Each of the functions can be used to solve nonlinear
classification problems [26]. The ReLU is the dominant type of
activation function in the state-of-the-art NNs. Compared with
the tanh and the sigmoid function, the ReLU function allows
a network to obtain sparse representations by eliminating
random fluctuations.

A simplistic NN, for example, an MLP, includes one input
layer, at least one hidden layer, and one output layer (see
Fig. 3). Each layer consists of multiple neurons as the basic
computation units. One of the most widely used learning
algorithms is the BP algorithm. This algorithm proceeds in two
phases: forward propagation phase and backward propagation
phase [6]. The forward propagation phase generates output
signals based on the current inputs and layer weights. In the BP
phase, error signals are first obtained from the output signals;
then the layer weights are updated using the error signals.

Fig. 1: Typical structure of a neuron in the human brain [46].
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Fig. 2: Function of a neuron in ANNs [6].
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Fig. 3: Structure of an MLP. Ii is the ith neuron in the input
layer, Hp

j is the jth neuron in the pth hidden layer and Ok is
the kth neuron in the output layer.

The BP algorithm is executed in multiple stages called
epochs. In each epoch, the NN is trained on the training
dataset. Let ylj(n) be the output signal of neuron j in layer l at
epoch n, and wl

ji(n) be the layer weight between the neuron
j at layer l and the neuron i in the previous layer l−1. In the
forward propagation phase, the output signal of the neuron is
computed following (1) and (2). In the BP phase, the layer
weight wl

ji(n) is updated as

wl
ji(n+ 1) = wl

ji(n) + η∆wl
ji(n), (3)

where
∆wl

ji(n) = δlj(n) · yl−1i (n), (4)

η is the learning rate, and δlj(n) is the local gradient, defined
as

δlj(n) =

{
(tj(n)− olj)φ′(vlj(n)), output layer;

φ′(vlj(n))
∑p

i=1 δ
l+1
i wl+1

ij (n), hidden layer.
(5)

In (5), tj(n) is the jth variable in the class label of a training
sample. For the neurons in the output layer, the local gradient
is determined by the error signal generated by tj(n) − olj .
For the neurons in the hidden layers, the local gradient is
determined by the sum of δl+1

i wl+1
ij . In both cases, φ′(vlj(n))

is the derivative of the activation function with respect to
vlj(n).

The forward and backward propagation processes are re-
peated until the maximum allowed number of epochs is
reached, or an early stopping criterion is met [6].

III. SC NEURONS: OVERALL STRUCTURE, ARITHMETIC
OPERATORS AND ACTIVATION FUNCTIONS

A. Overall Structure

In SC, the presence of p 1’s in a random binary bit stream
with length q encodes the value p/q in the closed interval
[0, 1] in the unipolar representation, or the value (2p−q)/q in
the closed interval [−1, +1] in the bipolar representation. SC
significantly reduces the complexity of an arithmetic circuit

… SC 
activation 
function

SC Adder 

… +

SC multiplier array

SNG

SNG

Probability
Estimator

SC arithmetic circuit

SNG

SNG

SNG

SNG

SNG

SNG

Fig. 4: Typical structure of an SC neuron.

Fig. 5: ADDIE-based PE design, consisting of an up-down
counter, an XNOR gate, and an SNG [26].

by processing the bit streams. It has been widely used in
a variety of applications, such as low-density parity check
(LDPC) decoding [47], image processing [48], [49], digital
filters design [50], [51] [52], and circuit reliability evaluation
[53], [54]. The reader is referred to [28], [55], and [56] for a
general introduction to SC.

As the fundamental unit in NNs, most SC neurons share a
similar structure (see Fig. 4). It consists of an array of SNGs,
an SC arithmetic circuit, and a probability estimator (PE).
An SNG [consisting of an RNG and a comparator (CMP)] is
used to convert a binary input into a stochastic sequence. The
SC arithmetic circuit implements the function of the neuron.
As per (1) and (2), the SC neuron can be implemented by
multipliers, adders and activation circuits. These arithmetic
circuits are required in different types of NNs for inference
[26] and can be implemented by different SC designs, as
introduced in the remainder of this section. The PE is utilized
to convert a stochastic sequence back into a binary value. It can
be implemented by an adaptive digital element (ADDIE)-based
circuit (see Fig. 5) [26]. This design compares the probabilities
encoded in the input sequence and the generated sequence
from the SNG; then the value in the up-down counter is
increased when the probability encoded in the input sequence
is larger and vice versa, until the same probability is obtained.
After convergence, the value in the up-down counter remains
unchanged and is considered as an estimate for the probability
encoded in the input sequence.

B. Multipliers

The multiplier is one of the fundamental arithmetic circuits
in a neuron. The SC multiplier is implemented by an AND gate
for the unipolar representation or an XNOR gate for the bipolar
representation, as shown in Fig. 6 [26]. The SC multiplier
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significantly reduces the area by increasing the computation
time compared with conventional binary multipliers.

C. Adders

The original SC adder is implemented by a 2-input multi-
plexer (MUX) with the probability of the select signal set to
0.5, as shown in Fig. 7 (a) [25], [26]. The probability of the
output signal is not affected by any correlation between the
input signals. Thus, the RNGs can be shared among the input
signals to reduce the hardware cost and energy consumption.
However, the select signal must be uncorrelated with the input
signals, so additional RNGs are still required. An SC adder
tree can be implemented for multiple input signals; the output
of the SC adder is scaled by 0.5, that is

p3 =
p1 + p2

2
, (6)

where p1, p2, and p3 are the values encoded in the input and
output sequences [see Fig. 7 (a)]. The computation reduces
the resolution by half, so the output signals need to be
re-normalized before the next step of processing, therefore
increasing the hardware of the adder tree.

An accumulate parallel counter (APC) based SC adder is
introduced to improve performance and circumvent the scaling
problem [see Fig. 7 (b)] [57]. In the APC-based SC adder,
the 1’s in the D-dimensional input sequences (Si, where i =
1, 2, ..., D) are simply added up. The probability of the output
signal is determined only by the sum of the probabilities of the
input signals; thus, the RNGs can be shared among the input
signals with no loss in the computation accuracy. Because no
SNGs are required to generate the select signals, the hardware
required by this design is lower than that of the original SC
adders for the same number of input signals. The processing
speed of the APC-based adder is higher than the original SC
design because computation is performed in parallel without
the use of an adder tree. Moreover, the output of the APC-
based adder is in binary. The area of the design can further
be reduced by replacing the APC with an approximate parallel
counter (AxPC) (see Fig. 8). Compared with the APC, the full
adders (FAs) in the first layer are replaced by pairs of OR and
AND gates to reduce hardware.

A T flip-flop (TFF) based SC adder is introduced in [58]
[see Fig. 7 (c)]. Assume that the values encoded in the input

(a)

(b)

Fig. 6: (a) SC multiplier for the unipolar representation. (b)
SC multiplier for the bipolar representation [26].

and output sequences in the unipolar representation are px, py ,
and pz . One can show that

pz =
px + py

2
. (7)

Because the sequence generated by the TFF is uncorre-
lated with the input sequences, the output of the circuit is
not influenced by the auto-correlation in the input signals.
Compared with the conventional SC adder, this adder requires
no additional stochastic sequences for the select signal to the
MUX, thus reducing the area of the design.

D. Activation Circuits

The activation functions of (2) are typically implemented
using two different methods: one is based on FSMs and the
other using SC polynomial arithmetic circuits.

FSM-based computational elements implement multiple ac-
tivation functions with different state transition settings [26].
The design includes a saturating counter with the state of the
counter controlled in a closed-loop. The state transitions of
the tanh and exponentiation circuits are shown in Fig. 9.

A Btanh circuit is proposed in [35] to improve the compu-
tation speed of the SC activation functions. The design of the
Btanh circuit is shown in Fig. 10; instead of updating the state
of every single bit in the input sequence, the Btanh circuit
adds up multiple bits from the input signals with an APC
and changes the state of the up-/down-counter-based FSM
in multiple steps within each computation cycle [35]. The
algorithm significantly improves the computation speed and

(a)

(b)

(c)

Fig. 7: (a) Original SC adder [26]. (b) APC based SC adder
[57]. (c) TFF-based SC adder with pz = (px + py)/2 [58].
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obtains accurate results even when the sum of the probabilities
of input signals goes beyond [−1, +1].

The Btanh circuit is further improved in [60]. The design
is shown in Fig. 11. The up/down counter is replaced by a
linear approximation unit (LAU). Based on a binary design,
the function of the LAU has the generalized form of

ψ(x) = min(1,max(p,
1

r
x+ s)), (8)

Multiple types of activation functions are implemented by
configuring the value of p, r and s in the LAU. For example,
the sigmoid function is implemented with the configuration
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Fig. 8: Design of an AxPC with 8-bit input signals. In the full
adders (FAs), a and b are the input bits, ci is the carry-in bit,
s is the sum and co is the carry-out bit [59].

(a)

(b)

Fig. 9: State transition diagram of (a) a tanh circuit and (b)
an exponentiation circuit [26]. X indicates that the input bit is
“1” and X̄ indicates that the input bit is “0”. Y is the output
bit. Assume that the probabilities that are encoded in the input
and output sequences are x and y, and that the state number
is N . One can show that the circuits implement the functions
y = tanh(N

2 x) and y = e−2Gx, respectively, when N >> G.

Fig. 10: Design of the Btanh circuit [35]. Si, i = 1, 2, ..., D
is the input sequence, with a dimension of D.

S1
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……

SD

LAU
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RNG

Fig. 11: Design of the reconfigurable activation circuit [60],
consisting of an APC, an LAU, an RNG, and a comparator
(CMP).

Up/down 
counter

1

0

CMP

Clock cycle
counter

Shifter
>>1

Accumulator
x y

Fig. 12: Design of the SC ReLU circuit [61]. CMP represents
a comparator. x and y are the values encoded in the input and
output sequence in the bipolar representation.

of {p = 0, r = 4, s = 1/2}, and ReLU function with {p =
0, r = 1, s = 0}.

An SC ReLU circuit is proposed in [61] (see Fig. 12).
The input to the circuit is accumulated and compared with
half of the passed clock cycles. The CMP output is used
as the input and the control signal of the multiplexer at the
same time. If the accumulation result is smaller than the
reference number, the CMP outputs a ‘1’ and is selected by the
multiplexer as the output. Otherwise, the output is determined
by the Btanh circuit implemented by an up-down counter. The
circuit ensures that the value encoded in the output sequence
is no less than 0.5 in the unipolar representation or 0 in the
bipolar representation. Therefore, assuming that the values
encoded in the input sequence and the output sequence are x
and y in the bipolar representation, the function of the circuit
is then given by

y = max(0, tanh(2x)). (9)

SC polynomial arithmetic circuits are also commonly used
to implement activation functions. The nonlinear activation
functions are first expanded by using a Taylor series or
Bernstein polynomials [62]. A finite number of terms are then
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(a)

(b)

Fig. 13: (a) An APC-based neuron. (b) A MUX-based neuron
[59]. The dimension of the input sequences is n. The multi-
pliers are implemented in SC.

computed by SC polynomial circuits [63] or exponentiation
circuits [see Fig. 9 (b)].

Compared with the FSM method, an SC polynomial acti-
vation circuit is easier to be reconfigured but with a larger
area. In a recent implementation [64], the activation function
is approximated by linear functions. The AxPC is utilized in
SC adders to reduce the area and power consumption.

IV. SC NNS: FORWARD AND BACKWARD PROPAGATION
CIRCUITS

A. Forward Propagation Circuits

There are two types of SC neurons for the forward propa-
gation: the APC- and MUX-based neurons [59]. The structure
of an APC-based neuron is shown in Fig. 13 (a). The structure
is similar to the Btanh circuit. Simulation results have shown
that the computation error of the APC-based neuron slowly
decreases, while the area, power, and energy of the circuit
linearly increases as the input size grows [65]. The MUX-
based neuron is introduced in [59] [see Fig. 13 (b)]. This
design achieves a lower area (60%, or a reduction by 40%)
than the APC-based neuron with the same number of input
signals. However, the accuracy degradation is more significant
as the size of the input signal increases. As found in [59], the
computation error of the MUX-based neuron is significantly
higher than for the APC-based neuron. Therefore, longer bit
streams are required in a MUX-based neuron for accuracy
compensation, thus resulting in a higher energy consumption
compared to its APC-based counterpart.

B. Backward Propagation Circuits

The BP components are required for the training process.
The arithmetic SC circuits for the BP in MLPs are introduced
in [27] and [66]; it is shown that the BP circuit can be
implemented using subtractors and multipliers.

In [66], the BP components implement the BP phase in
four steps: the computation of the error signals in the output
layer [see Fig. 14 (a)]; the error signals in the hidden layer

[see Fig. 14 (b)]; the local gradient [see Fig. 14 (c)] and the
updated layer weights [see Fig. 14 (d)]. For the nth epoch,
first, the error signal in the output layer is generated by
tj(n)−olj , as in (5). The error signal in the hidden layer is then
computed by

∑p
i=1 δ

l+1
i wl+1

ij (n) and the gradient is generated
following (5). Finally, the layer weights are updated following
(3) and (4). The unipolar representation is considered in the
implementation, so it requires two output signals of the layer
weight updater to indicate if the value of the layer weight has
increased or decreased. In addition, it requires four stochastic
sequences to encode each gradient signal in the computation.

The SC BP circuits are proposed in [40] to simplify the
computation process and expand the computation range. The
computation is based on the extended stochastic logic (ESL)
and the values encoded in the sequences are in the bipolar
representation. The ESL utilizes two stochastic sequences to
represent a value and increase the computation range of SC.
The principle of ESL is introduced in the following sections.
The BP circuit for a hidden layer neuron is shown in Fig. 15.
When the tanh function is set as the activation function, we
have

tanh′(2 · v) = 2(1− tanh2(2 · v)),

= 2(1 + tanh(2 · v))(1− tanh(2 · v)),
(10)

where the value of tanh(2 · v) is computed by the forward
propagation components. The differential function of φ′(vj)
can be implemented by ESL adders, subtractors, and multi-
pliers. The layer weight adjust calculator updates the layer
weights as in (3) and (4). Compared to the design of [66], each
gradient signal is represented by two stochastic sequences in
ESL. Therefore, computation is simplified with the expansion
of its range. However, it still requires a long sequence length
to achieve an acceptable accuracy for inference in the SC BP
design. For example, the sequence length is set to 4096 bits
to achieve a 97.95% accuracy for inference in [40].

The implementation of the SC BP circuits is further dis-
cussed in [41] to reduce the sequence length in training.
Training of a NN can be considered to be an optimization
problem for the weights in a NN, and the gradient descent is a
simple but efficient method for the optimization by an iterative
addition of the gradients. In [41], the gradients of the training
samples are computed and accumulated by an SC gradient
descent circuit (GDC). Due to the randomness cancelation
effect in the accumulation process, the sequence length used
in the design can be aggressively reduced to achieve both
high performance and energy efficiency. One bit is used in
training to encode the gradient information of one training
sample, so each bit can have a different probability to be “1”.
The stochastic bits encoding the gradients are accumulated by
stochastic integrators [41]. The randomness of the stochastic
bits is eliminated during accumulation; also due to the error-
tolerance in an MLP, the SC-based training circuit achieves a
training accuracy similar to its fixed-point (FxP) and floating-
point (FP) counterparts. Note that only weight updating is
implemented by SC circuits in the training process (not the
entire BP).

The SC NNs with BP circuits achieve a higher hardware
efficiency in the training process with the potential for im-
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(a) (b)

(c) (d)

Fig. 14: The computation circuits for the BP in MLPs [66]. (a) Error signal generator, (b) Circuit computing the error in the
BP, (c) Gradient generator, and (d) Layer weight updater. o is the output signal generated by the forward propagation. t is
the target label. ξ is the error signal. η is the intermediate signal generated by the layers in the forward propagation. δ is the
gradient. w is the layer weight and weight is the difference between the values of the previous and updated layer weights. i
and j are the indexes of the two neurons connected through the layer weight.

Fig. 15: The BP circuit for a hidden layer neuron in [40]. The signals follow the same definitions in (3)-(5) using ESL.

plementing an online learning algorithm and supporting the
fine tuning of networks, thereby dynamically improving the
inference accuracy and flexibility of the system. Moreover, SC
NNs can achieve a higher noise tolerance in the computation

process, compared to conventional binary implementations
[44].
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Input
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…

Fully connected
layers Output

layer

Pooling
layers

Fig. 16: Structure of a CNN, consisting of convolutional
layers, pooling layers, fully connected layers, and an output
layer [13].

C. Computation Circuits in SC CNNs

A CNN consists of four types of layers: convolutional
(CONV) layers, pooling layers, fully connected layers and a
softmax based output layer (see Fig. 16).

CONV layers consist of multiple sessions of feature maps,
within which all the neurons share the same set of weights.
The computation in the CONV layer is inner-product based
[13]. Therefore, it can be implemented using SC multipliers
and adders. Similarly, the fully connected layers can be
implemented using SC forward propagation circuits.

The pooling layers are implemented for sub-sampling to
reduce the complexity of the computation. The most common
strategies are average pooling and max pooling.

In average pooling, the neuron computes the average prob-
ability of the input sequences. It can be implemented by
conventional SC adders because as per (6), the value encoded
in the output sequence is the average of the values encoded
in the two input sequences. Thus, the average pooling circuit
can be implemented by an SC adder tree with each adder
implemented by a MUX with the select signal encoding a
value of 0.5 in the unipolar representation [see Fig. 17 (a)]
[59].

In the max pooling operation, the neuron computes the
maximum probability of the input sequences. The design of
a max pooling neuron is introduced in [65] [see Fig. 17 (b)];
it assumes that the bit-stream encoding the globally highest
probability has also the highest probability for a specific
segment of the stream because all 1’s are randomly distributed
in the stochastic bit streams. Thus, instead of computing the
number of 1’s in the entire bit-streams, the circuit counts
every time the 1’s in a segment of the streams and makes the
comparison, thereby reducing the computation time. A tanh-
based max pooling circuit is proposed in [65] [see Fig. 17
(c)]. The tanh circuit is implemented by an FSM with an
enable (En) input. Assume that the input bits of v1 and v2 are
different, the state increases with v1 being “1” and decreases
with v1 being “0”. When the probability of v1 is higher than
v2, the output of the tanh circuit is more likely to be “1” so
v1 is selected as the vmax; otherwise v2 is selected.

V. ADVANCED SC TECHNIQUES FOR NNS

New techniques have been proposed with the development
of SC NNs, including improvements for expanding the compu-
tation range, reducing sequence length, and efficient encoding.

A. Computational Range Expansion

1) ESL: The computational range of the conventional SC is
limited in [0, 1] in the unipolar representation and [−1, +1]
in the bipolar representation; this feature restricts the use
of the SC circuits to specific NN applications. ESL is one
of the methods to overcome this drawback [67]. In ESL,
a real number is encoded as the ratio of two stochastic
sequences using the bipolar representation. Assume that the
two sequences encode the values of ph and pl in the bipolar
representation. Then a real number x is approximately given
by the following quotient [67]:

x =
ph
pl
. (11)

By doing so, the computational range of SC is expanded
to (−2N−1, 2N−1) for a binary representation in N bits.
Based on the definition of ESL, a multiplier in the bipolar
representation can be implemented by two XNOR gates [see
Fig. 18 (a)]. To implement the ESL adder, assume that the
operands (s1, s2) are represented by sequences {S1h, S1l}

a1

a2

a3

a4

½ 

½ 

aout

MUX

MUX

MUX

(a)

(b)

(c)

Fig. 17: Design of (a) An average pooling circuit, implement-
ing aout = 1

4

∑4
i=1 ai [59], (b) a counter-based max pooling

circuit [65], and (c) a tanh-based max pooling circuit, both
implementing vmax = max(v1, v2) [65].
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(a) (b)

Fig. 18: (a) ESL multiplier, and (b) ESL adder [67].

and {S2h, S2l}, and the values encoded in the sequences
are {s1h, s1l} and {s2h, s2l} in the bipolar representation,
respectively. We then have

s1 + s2 =
s1h
s1l

+
s2h
s2l

=
s1h · s2l + s1l · s2h

s1l · s2l + 0
. (12)

Therefore, the ESL adder in the bipolar representation can
be implemented by three XNOR gates and two MUXes [see
Fig. 18 (b)]. An SC divider is utilized to convert the ESL se-
quences into conventional SC sequences. The implementation
of an ADDIE-based SC divider is introduced in [26] (see Fig.
19). The design follows a similar algorithm as used in the
ADDIE-based PE.

ESL increases the complexity and overhead of the SC
circuit; however, the random fluctuations in the divisor [i.e.
pl in (11)] significantly reduce the accuracy of the value of x,
so it requires a relatively long sequence length to achieve an
acceptable computational accuracy [40].

2) Integral SC: The integral SC is another method to extend
the computational range [39]. In the integral SC, the real value
is represented as the sum of the values encoded by multiple
binary stochastic sequences when it is beyond the range
of [−1,+1]. Fig. 20 shows an example of representing the
value of 1.5 in the integral SC in the unipolar representation.
Compared with the ESL with the fluctuations in the divisor, the
integral SC requires a shorter sequence length, thus achieving
higher computational performance. However, it incurs a larger
area due to the more complex arithmetic circuits. The FPGA
implementation of the integral SC NN achieves a nearly

U/D counter SNG

D Q

Inc

y

Dec
x

z=y/x

clk

Fig. 19: Design of the ADDIE-based SC divider, consisting of
an up-down counter, three XNOR gates, a D-flip-flop and an
SNG [26]. x, y, and z are the values encoded in the sequences
in the bipolar representation.

Stochastic Stream X1: 1 0 1 0 1 1 1 1 (0.75)

Stochastic Stream X2: 1 1 1 0 1 0 1 1 (0.75)

(a)

+
X1

X2

Integral stochastic stream

S: 2 1 2 0 2 1 2 2 (12/8 = 1.50)

(b)

Fig. 20: (a) 0.75 in the unipolar representation and (b) An
integral stochastic representation of 1.5.

negligible inference accuracy loss, with 21.3% less energy
consumption and 33.9% less area compared to an FP design.

A simplified integral SC has been introduced in [68]. Its
main feature is to generate an integral sequence S∗ = s/n,
where s is the target value and n is a positive integer, and then
set S = S∗×n when regenerating a sequence for computation.
Because the value encoded in the integral sequence is reduced
by n times, then this method also reduces the area of the
circuit.

A new integral SC (NISC) has been proposed in [69];
the FSM-based Btanh activation function is improved by
combining multiple states into one to reduce the area and
power dissipation. The NISC-based NN requires a 6%− 64%
smaller area for different parameters in the tanh function. The
computation accuracy of the activation function is similar to a
conventional SC design when the input is not larger than 0.6.
Otherwise, it suffers a significantly higher accuracy loss.

B. Computation Performance Improvement

A PE is used to convert a stochastic sequence to a bi-
nary value. The conventional PE (see Fig. 5) requires long
sequences for computation, so significantly increasing the la-
tency and energy consumption of the SC NNs. A binary search
based PE is introduced in [40] to overcome this limitation (see
Fig. 21).

This design follows the same algorithm as used in conven-
tional PEs; however, a binary search algorithm is utilized to
reduce computational complexity. Triple modular redundancy
(TMR) is utilized to reduce fluctuation errors, so the required
sequence length is further reduced. This design requires 2.5%

SNG_A

x1 u1

X (sequence)

INC/DEC

CE

u1

Counters

SNG_B

SNG_C

x1

x1

u1

u1

INC/DEC

CE

u1

INC/DEC

CE

u1

Voter

x2

u1

x1

x3

Add/Sub

x2
u1

x1

x3

base

u1

x2

x1

Output (binary)

Increment 
value

CMP

CMP

CMP

Fig. 21: Design of the TMR binary search based PE [40]. CMP
represents comparators.
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Fig. 22: A hybrid neuron in the convolutional layer, using
Sobol sequences for multiplication [32]. The ‘>’ symbols
represent comparators.

of the sequence length of a conventional PE, so it significantly
improves the performance. This technique is also used to im-
prove the performance of the SC divider used in ESL circuits.
The Simulation shows that the computational accuracy and
performance of the circuit are substantially improved.

To maintain a high accuracy and reduce the sequence length,
two types of low-discrepancy (LD) sequences, Halton and
Sobol sequences, have been used to generate the stochastic
bit streams [70], [71]. The use of LD sequences in SC results
in a more accurate computation with a reduced sequence
length compared to the use of conventional LFSR-generated
pseudo-random sequences. Also, a stochastic multiplier using
Sobol sequences takes roughly half of the sequence length
required by Halton sequences to achieve a similar accuracy
[72]. In [32], the Sobol sequence is used for the computation
of the convolutional layers of a CNN, and especially, the
multiplications. In the neuron design in Fig. 22, two Sobol
sequence generators are used to produce random numbers
for stochastic sequence generation. For a better accuracy,
multiplications are implemented using the unipolar stochastic
circuit (i.e., the AND gates) instead of the bipolar circuit. The
products are then divided into the positives (+) and negatives
(-) and set as the input signals for the APCs. Accumulations
are implemented using binary circuits for the positive and
negative products, followed by a binary activation function
circuit. This design has been tested for handwritten digit
recognition, based on the LeNet-5 topology [73]. It has been
shown that at a reduced sequence length, a similar or better
classification accuracy is obtained using this hybrid design
with a higher energy efficiency compared with conventional
SC implementations.

An improved SC encoding method has been proposed in
[74], as shown in Fig. 23. Assume that a value x in [0, 1]
is encoded in 4-bit FxP representation with each bit being
xi, where i = 0, 1, 2, 3 . In this method, the weights (or
probabilities) of xi are set to {1/16, 1/8, 1/4, 1/2} by a

x30 x3x2 x3x1 x3x2 x3x0 x3x2 x3x1 x3x2

Selector FSM 
with 16 states

Fixed-point binary

MSB

LSB

timex3

x2

x1

x0

1/2

1/4

1/8

1/16

Fig. 23: An SNG based on FSM-MUX circuits [74].

SNG
Counter

x
w

0010100101001010

0000001111111111
xw0000000101001010 (0.25)2

(0.375)10

(0.625)10

(a)

Down 
counter

CounterSNG xw
(0.375)10

x

w(0.625)10

(0.25)2

16 p(w)

001010 0101001010

Stop when DOWN 
COUNTER reaches 0

(b)

Fig. 24: The principle of the NSC multiplication. (a) Reorder-
ing the bits for the sequence w, (b) NSC multiplication, using
a down counter to cut off bits in sequence x [74]. Assume
that the sequence length is 16 bits, and the down counter is
initialized to an integer for 16×p(w). p(w) is the probability of
w and the width of p(w) is 4-bit in the binary representation.

16-state FSM to generate a sequence encoding x in the
unipolar representation. Compared with the pseudo-random
sequences generated by conventional SNGs, the probability
of this sequence is more accurate, because it is determined by
the weights of the bits in the binary representation.

The binary interfaced stochastic computing (BISC) is pro-
posed to improve the performance of the SC by combining
the conventional binary memory architecture with stochastic
computing arithmetic circuits [33]. For example, the so-called
new SC (NSC) multiplier uses counters to reduce the number
of bits required in stochastic sequences for BISC [74]. The
principle of the design is shown in Fig. 24. Note that in Fig. 24
(a), compared with conventional SC sequences, the sequence
of w is reordered so that the 1’s are placed continuously at the
beginning of the bit stream (from the right to the left in Fig.
24). However, the result of the multiplication is unchanged
when the stochastic bit streams are statistically uncorrelated
after the reordering. It can be seen that the 0’s in the stochastic
sequence w and the corresponding bits in the sequence x make
no contribution in the final outcome. Therefore, these bits can
be skipped by using a down counter, as shown in Fig. 24 (b).
The NSC multiplier significantly reduces the sequence length
with increased area compared with conventional SC designs.

The randomness of a stochastic sequence is further reduced
by the stochastic quantized (SQ) encoding in [75]. This
method also uses continuous 1’s in a sequence. Fig. 25 gives
an example of SC multiplier using the SQ encoding. The
value encoded in the SQ sequence Pi, where i = 1, 2, 3, 4,
in the unipolar representation is quantized to one value in
{1/4, 1/2, 3/4, 1} using 2-bit quantization. Assume the value
encoded in the sequence X is x, then the values encoded in
the output sequences are exactly {1/4x, 1/2x, 3/4x, x}. The
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1111 0000 0000 0000

1111 1111 0000 0000

1111 1111 1111 0000

1111 1111 1111 1111

1001 0101 1100 0101

P1

P2

P3

P4

X

1001 0000 0000 0000

1001 0101 0000 0000

1001 0101 1100 0000

1001 0101 1100 0101

Fig. 25: Multiplication in SQ encoding. The sequences Pi (i
= 1, 2, 3, 4.) encodes the values of {1/4, 1/2, 3/4, 1} in the
unipolar representation. X is a Bernoulli sequence.

Fig. 26: Design of an analog-to-stochastic converter [58].

SQ sequences can be generated without using conventional
SNGs. Therefore, this method achieves higher computation
accuracy and higher hardware efficiency, compared to con-
ventional SC designs. However, it is required that X is a
Bernoulli sequence; otherwise, the computation accuracy can
be significantly decreased. Nevertheless, the output sequences
are no longer Bernoulli sequences, which may influence the
computation in the following stages.

In [58], a sequence generator is proposed based on ana-
log circuits (see Fig. 26). This design utilizes an analog-to-
stochastic converter [76] to replace the SNG used in conven-
tional SC circuits. A ramp-voltage signal is compared with an
analog signal from sensors to generate stochastic sequences.
The potential of a hybrid design consisting of SC, binary, and
analog circuits is therefore proposed. Performance of this SC-
CNN will be discussed in Section VI.

VI. ACCURACY AND HARDWARE EFFICIENCY OF SC NNS

Recently, SC designs have been proposed to implement
multiple types of NNs, including MLPs, DBNs, CNNs, and
RNNs. MLPs typically utilize a rather simplistic structure of
neural networks for supervised learning [6]. Compared with
MLPs, DBNs perform unsupervised learning, so they can
be trained on unlabeled datasets with a higher complexity
in hardware implementation [10]. CNNs are usually large-
scale networks and can achieve a high inference accuracy in
pattern and object recognition, whereas RNNs are effective
in processing temporal datasets, so they are widely used in
time-related applications such as voice or speech recognition.

A. Accuracy

Accuracies for inference in different SC NNs are reported
in Table I for the Modified National Institute of Standards
and Technology (MNIST) dataset [73] with details of the
implementations. Note that if multiple configurations of a
network are available in the technical literature, the structure

and the sequence length are selected, such that they achieve
the highest inference accuracy for the MNIST dataset. The
missing information is represented by ‘–’ in the table.

Most of the SC NNs incur less than 1% degradation in
inference accuracy due to the computation accuracy loss in
SC, compared with 32-bit FP implementations. The SC CNNs
utilize the most complex network structure and achieve the
highest inference accuracy (> 98%). The SC-DBNs and SC-
MLPs produce similar inference accuracy, between 94% and
99%, with a similar size of networks. Most of the SC NNs
require no less than a 256-bit sequence length to achieve an
acceptable inference accuracy. However, the Sobol CNN [32],
the integral stochastic NN [39], and sign-magnitude SC (SM-
SC) CNN [34] require significantly shorter sequence lengths:
8 bits, 16 bits, and 32 bits, respectively, thus evidencing
the advantage of Sobol sequences and the use of improved
encoding in SC NNs. Most of the NNs in Table I do not
include the SC training components, except for the designs of
[36], [40], [41], and [45].

Several SC NNs have been utilized to process more complex
datasets (CIFAR-10 and ImageNet) using different structures
(AlexNet, GoogleNet, and VGG), as shown in Table II. These
results suggest that SC NNs are promising and potentially
useful for complex machine learning applications.

B. Hardware Efficiency

Next, different SC implementations are considered with re-
spect to their hardware efficiency. For the different evaluation
methods used in the reference papers, the hardware efficiency
in terms of area and energy consumption is discussed as
follows and summarized in Table I.

1) SC-MLPs: MLPs are among the earliest applications of
SC NNs. In [27], based on SC arithmetic circuits, an SC-MLP
is implemented to solve the problem of magnetic ink character
recognition (MICR) [77]. Computation is performed in the
bipolar representation so the circuits are simplified compared
to the designs in Fig. 14 [66]. The stochastic implementation
achieves similar accuracy compared to a deterministic FP
system with a higher hardware efficiency.

An ESL based SC-MLP is introduced in [67]. This SC-MLP
endures higher noise levels compared to the binary design,
hence showing a noise tolerance capacity in SC designs.

In the SC NN of [35], the Btanh circuit is utilized to
implement the activation function. The elimination of the near-
zero layer weights is used to reduce the computation time. In
addition, an energy-efficient RNG [78] is utilized to reduce
the hardware cost of RNGs. Compared with a 9-bit FxP
design, the SC NN with SNGs increases energy consumption
by 3.0×. However, the SC NN without SNGs decreases the
energy by 70.0%, compared with the same FxP design. So the
SNGs account for a significant part of the energy consumption
of the SC circuits. Compared with an FxP design, the SC-
DNN without considering SNGs is 4.61× faster while the NN
including SNGs is 1.53× slower.

In [40], an SC-MLP with both forward propagation and
BP is implemented to solve the optical character recognition
(OCR) problem using the MNIST and Street View House
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Numbers datasets [79]. The ESL circuits are implemented
to improve the computation accuracy in the inference and
training processes. Thus, this design achieves only a 1% loss in
inference accuracy with a significantly lower area and energy
consumption, compared to an 8-bit FxP design.

In [41], the RNGs in the SC-GDC array can be shared so
that only two RNGs are used for the circuit implementing the
gradient descent algorithm. Due to the simple SC circuit and
the short sequence lengths (1 bit per gradient), the signed SC-
GDC array consumes about 10% of the energy and 25% of
the time of the 16-bit FxP circuit and achieves about 55× of
the throughput per area of the FxP circuit.

2) SC-DBNs: DBNs are based on the fast greedy learning
algorithm [10]. The design of the SC-DBNs incorporates
several improvements compared to SC-MLPs, including the
implementation of the reconfigurable network structure based
on the restricted Boltzmann machine (RBM) in SC.

As an example, conventional SC adder/multipliers and an
FSM-based tanh circuit are utilized to implement an RBM
based DNN in [80]. Based on this design, an FPGA imple-
mentation classifies a standard handwritten input image about
700× faster than a software-based MATLAB implementation.

A reconfigurable structure is introduced to implement both
the training and inference of DBNs [36]. An SC-based adap-
tive moment estimation (ADAM) circuits are utilized to adjust
the learning rate of the network in the training process, such
that the number of training epochs is significantly reduced. The
SC-ADAM circuit thus reduces the energy consumption in the
training process. This design requires 5.3%, 4.5%, 3.3% and
73.6% of the area, power, energy consumption and latency
(per sample) of a pipelined 32-bit FP implementation with
negligible accuracy loss on the MNIST dataset.

3) SC-CNNs: Recently, SC-CNNs have been proposed us-
ing different types of neurons in the convolutional layers [59],
including the APC- and MUX-based neurons. By comparing
the performances of these two implementations (based on the
LeNet-5 CNN), it is shown that the SC CNN using MUX-
based neurons requires a smaller hardware footprint but a
longer sequence length, thus higher energy consumption to
achieve a similar inference accuracy, compared to the APC-
based counterpart. Therefore, the MUX-based design shows
advantages in area-constraint embedded systems, while the
APC-based design is more suitable for energy-constraint de-
signs.

The design is further optimized in [61]. The SC ReLU
circuit (see Fig. 12) is utilized to implement the activation
function (9). The hardware efficiency of APC-based neurons
is improved by replacing APCs with AxPCs (Fig. 8). For the
LeNet-5 network, this design achieves 99.07% in inference
accuracy, a 0.1% degradation, but with 4.1×, 6.5× and 5.5×
improvements in throughput, area efficiency and energy effi-
ciency compared to a previous design [65]. For the AlexNet
[2] implementation, the SC-CNN achieves a top-5 accuracy
of 80.48% on the ImageNet dataset [81] with significant
improvement in throughput, area, and energy, compared to
other existing NN platforms [82] [83] [84].

An SC LeNet-5 network is implemented and tested on the
MNIST dataset in [32]. The Sobol sequence is utilized to

improve the computation speed of SC multipliers. This design
achieves 19×−30× area reduction and energy saving, com-
pared to FxP designs in the convolutional layers. The design
achieves higher inference accuracy with shorter computational
cycles (3.1%−12.5%) compared with6 the use of conventional
stochastic sequences. It shows that low-discrepancy sequences,
specifically, the Sobol sequences, can be used in SC NN ap-
plications to achieve significant improvement in performance
without reducing the computation accuracy.

In another SC-CNN design [45], an XNOR-based inner
product is utilized to implement the convolutional layer. The
multipliers are implemented by XNOR gates and the adders
are implemented by MUXes. The SC average pooling circuits
[see Fig. 17 (a)] is utilized in the pooling layers; the activation
function is set to tanh and is implemented by FSM circuits
in CONV layers and fully-connected layers. In [85], the
SNGs are shared, so the energy efficiency is improved by
5.3×−9.2×.

An SC-CNN is implemented based on the improved SC
encoding method (see Fig. 23) and NSC multipliers (see Fig
24) in [74]. The down counters are shared among different
multipliers to achieve higher hardware efficiency without
accuracy degradation. With a similar structure to the binary
design introduced in [86], the proposed SC-CNN achieves
29 − 44% reduction in area-delay-product (ADP) and higher
energy efficiency (by 23 − 29% for CIFAR-10 and 10% for
MNIST) compared with an FxP design. In [87], the complexity
of the network structure is further increased to implement
the AlexNet and GoogLeNet. The sequence lengths (or preci-
sions) are set differently depending on applications to achieve
high performances in ADPs. Overall, the SC-CNN achieves
34% − 46% reduction in ADP, or 52% − 85% increase in
operations-per-area with less than 1% accuracy loss, compared
to FP designs.

The stochastic-binary neural network (SB-NN) proposed
in [58] is based on the LeNet-5 topology. The TFF-based
adder [see Fig. 7 (c)] is introduced to improve computation
accuracy as well as ignoring the auto-correlation in the input
sequences. The analog input data is converted into stochastic
sequences by the analog-to-stochastic converter (Fig. 26). The
first CONV layer is implemented by SC while other layers are
implemented by binary designs, forming an analog-SC-binary
hybrid structure. In the simulations, the binary part of the NN
is retrained to compensate for the precision losses caused by
the SC circuits. As a result, the NN achieves a high inference
accuracy, with 1.04% and 0.94% misclassification rates for 4-
bit and 8-bit precisions. The area of this design is similar to the
binary design at 8-bit precision but is 2× larger than the binary
design at 4-bit precision. However, the energy consumption of
this SC NN is 81% and 10.2% of that of the 8-bit and 4-bit
binary designs due to the lower power consumption.

4) SC-RNNs: Recently, an SM-SC RNN is implemented
in [34]. For the MNIST dataset, this network achieves the
same inference accuracy using 32-bit sequences (with no
parallelization) as the conventional SC design with 1024-bit
sequences, thus achieving 32× improvement in the aspect of
computation speed.

A detailed implementation of an SC LSTM-RNN is intro-
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duced in [44]. Based on a hybrid-structured memory cell, this
network achieves slightly lower inference accuracy (93.8%)
than an FP design (94.9%) with a signal-to-noise ratio (SNR)
of 20 dB. However, for an SNR of 5 dB, this design achieves
3.2% higher accuracy than the FP design, showing a higher
noise tolerance. The synthesis results indicate the SC LSTM-
RNN requires significantly lower area (1.6% − 2.3%) and
energy consumption (6.5% − 10.9%) with 2× computation
latency, compared to the FP design.

VII. COMPARISON WITH BNNS/QNNS

Albeit based on different operational principles, SC NNs
share the same design objectives as some other types of NNs
proposed to improve the hardware and energy efficiency. For
example, BNNs [20] and QNNs [21] have been developed for
a better balance between accuracy and energy consumption. In
a BNN, the layer weights and the intermediate computation
results are converted from a real value to +1 or −1. Hence,
the multiplications can be eliminated by utilizing XNOR
operations. Moreover, the outputs of neurons are binarized and
multiplied with the binarized layer weights during the forward
propagation. These signals are also used to compute the local
gradient, whereas the original real-valued parameters are used
for updating the layer weights [20].

Reference [90] has shown that an SC NN and a BNN can be
functionally interchanged without affecting the computational
accuracy. Moreover, the energy consumptions of SC NNs and
BNNs similarly increase (by the same order) with the network
size.

In [40], an SC-MLP and a BNN are implemented by the
same network structure and compared with respect to accuracy,
area and energy consumption on the MNIST and SVHN
datasets. The SC-MLP achieves slightly higher inference ac-
curacy. In the BNN, batch normalization is performed and
the layer weights are updated and stored at a full length
(i.e., 8 bits) at the end of the BP. The SC-MLP requires a
smaller area (80.7% − 87.1%) and lower energy dissipation
(by approximately 20%) compared to the BNN.

Both SC NNs and BNNs achieve low hardware and power
consumption because of the simpler arithmetic circuits com-
pared to FP NNs. SC NNs can share the use of hardware and
adopt several sequence length reduction methods to achieve
low energy consumption. A high degree of parallelism is often
required for a low latency in SC designs. SC implementations
are more noise-tolerant than BNNs and FP NNs, whereas
BNNs are better optimized in the literature. Table III briefly
summarizes the performance comparison between SC NNs,
BNNs, and FP NNs.

Binarization, or in general, quantization, can be integrated
with SC for a better hardware utilization. In the SC quantized
NN (SC-QNN) [75], the layer weights are quantized into 2-bit
to 4-bit representations and encoded by stochastic quantized
(SQ) bit-streams (see Fig. 25). The SC-QNN reaches a similar
inference accuracy with 69×, 119×, and 10× smaller area,
power, and energy, respectively, compared with binary imple-
mentations. These results show that BNNs and QNNs can be
viewed as highly optimized SC NNs with 1-bit sequences or

sequences encoding quantized probabilities in the computation
process. These implementations expand the usage of SC
techniques in hardware for energy efficient NN designs.

VIII. CONCLUSION

The recent development of various types of SC NNs has
been reviewed. Compared with FP and FxP implementations,
SC NNs offer considerable advantages in area and energy
consumption with comparable accuracy and higher noise tol-
erance. With a high degree of parallelism, an SC design can
achieve a similar performance as a conventional binary design.
These advantages make SC NNs a potentially competitive
candidate in resource-limited applications.

In spite of the recent advances, there are still challenges
for SC NNs to be implemented in the industry. It would
be imperative to establish general design methodologies and
testing standards to clearly evaluate the reliability, performance
and hardware efficiency of various SC NNs. Challenges also
exist in overcoming the stochasticity, further improving the
classification accuracy and at the same time, maintaining a
high energy efficiency. Nevertheless, SC designs have been
utilized to implement large networks such as the AlexNet
and GoogLeNet. Hence, SC provides an alternative, scalable
solution to NN implementations with a potential for efficent
machine learning.

REFERENCES

[1] J. Mao and A. K. Jain, “Artificial neural networks for feature extraction
and multivariate data projection,” IEEE Transactions on Neural Net-
works, vol. 6, no. 2, pp. 296–317, 1995.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems, 2012, pp. 1097–1105.

[3] R. Fierro and F. L. Lewis, “Control of a nonholonomic mobile robot
using neural networks,” IEEE Transactions on Neural Networks, vol. 9,
no. 4, pp. 589–600, 1998.

[4] G. P. Zhang, “Neural networks for classification: a survey,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), vol. 30, no. 4, pp. 451–462, 2000.

[5] J. J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,” Proceedings of the National Academy
of Sciences, vol. 79, no. 8, pp. 2554–2558, 1982.

[6] S. S. Haykin, Neural networks and learning machines. Pearson Upper
Saddle River, NJ, USA, 2009, vol. 3.

[7] Valle, Maurizio, Caviglia, D. D, and G. M. Bisio, “An experimental
analog VLSI neural network with on-chip back-propagation learning,”
Analog Integrated Circuits and Signal Processing, vol. 9, no. 3, pp.
231–245, 1996.

[8] H. Hikawa, “A digital hardware pulse-mode neuron with piecewise linear
activation function,” IEEE Transactions on Neural Networks, vol. 14,
no. 5, pp. 1028–1037, 2003.

[9] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Networks, vol. 61, pp. 85–117, 2015.

[10] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief nets,” Neural Computation, vol. 18, no. 7, pp. 1527–1554,
2006.

[11] V. Nair and G. E. Hinton, “3D object recognition with deep belief nets,”
in Advances in Neural Information Processing Systems, 2009, pp. 1339–
1347.

[12] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep neural
networks for acoustic modeling in speech recognition: The shared views
of four research groups,” IEEE Signal Processing Magazine, vol. 29,
no. 6, pp. 82–97, 2012.

[13] P. Y. Simard, D. Steinkraus, J. C. Platt et al., “Best practices for
convolutional neural networks applied to visual document analysis.” in
ICDAR, vol. 3, 2003, pp. 958–962.



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL.XX, NO. XX, 2020 14

TABLE I: Comparison of SC Networks in Inference Accuracy and Hardware Efficiency

Network Reference Structure
Seq. length (bit)

Inference accuracy
for MNIST (%)

Hardware efficiency
(% compared to FxP) Training in SC

included (Y/N?)SC 32-bit FP Area Energy

MLP

SC Btanh NN [35] 784-100-200-10
1024 97.59 97.77 90 (w/ RNG)

50 (w/o RNG)
300 (w/ RNG)
30 (w/o RNG) N

SC-MLP [40] 784-200-100-10
4096 97.95 99.27 40.7 38.0 Y

SC-GDC [41] 784-128-128-10
1 (per gradient) 97.03 97.47 7.31 10 Y

DBN

FPGA-DBN [43] –
4096 94.1 94.2 – –

SC-RBM [80] 784-100-200-10
4096 97.86 98.0 – – N

SC-DBN [36] 784-100-200-10
4096 99.15 99.27 29.3 33.0 Y

Integral SC NN [39] 784-300-600-10
16 97.73 97.7 66.1 78.7 N

FPGA-RBM [88] 784-100-200-10
1024 94.28 – – – N

CNN

Budget-Driven
DCNN [59]

LeNet-5
256 98.00 – – – N

HEIF [61] LeNet-5
– 99.07 99.17 – – N

Sobol CNN [32] LeNet-5
8 99.20 99.19 5.3 3.6 N

SC learning
system [45]

LeNet-5
32768 98.49 98.46 – – Y

SC CNN [85] LeNet-5
– 99.19 99.23 – 25 nJ (LFSR)

8 nJ (MTJ-SNG) N

NSC CNN [74] –
– >99 >99 50 29 N

DPS CNN [87] –
– 98.26 99.04 552 – N

SM-SC
CNN [34]

–
32 98.9 98.9 – – N

SB-NN [58] LeNet-5
256 99.06 99.11 (8-bit) 100 81 N

RNN
SM-SC

RNN [34]
–

1024 99 99 111.2 (w/ SNG)
18.4 (w/o SNG) – N

1 Only weight updating is implemented by SC circuits in the training process.
2 This number is estimated from the 55% ADP in [87] by assuming that the SC and FxP implementations achieve the same performance (i.e.,

delay).

TABLE II: Inference Accuracy for SC NN Applications with
Higher Complexities

Design
Dataset

Network
structure

Inference
accuracy (%)

Hardware
efficiency
(vs. FxP)

HEIF [61]
ImageNet AlexNet 80.48 (top-5)

36.5% in area
0.6% in energy

(vs. [83])
SC CNN [85]

CIFAR-10
Customized

CNN1 83.57 8-25 nJ

DPS CNN [87]
ImageNet

AlexNet 79.99 (top-5)
55% ADPGoogleNet 88.44 (top-5)

VGG 82.47 (top-5)
SkippyNN [89]

ImageNet
AlexNet 80 (top-5) 1.2x speedup

37% in energyVGG 90 (top-5)
SC LSTM-RNN [44]

TIMIT
Customized

RNN2 71.9 28% in area
83% in energy

1 The structure of the customized CNN is 2Conv-1Max-2Conv-1Max-2FC.
2 The structure of the customized RNN is 12-(250, 250)-(250, 250)-48.

[14] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory recurrent
neural network architectures for large scale acoustic modeling,” in
Fifteenth annual conference of the ISCA, 2014.

[15] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing. IEEE, 2013, pp. 6645–
6649.

TABLE III: Performance Comparison of NNs

SC NNs BNNs FP NNs
Hardware

cost low low high

Power
consumption low low high

Energy
consumption

low
in most cases low high

Latency high low high
Noise

tolerance high low low

[16] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[17] A. Graves, “Practical variational inference for neural networks,” in
Advances in Neural Information Processing Systems, 2011, pp. 2348–
2356.

[18] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural networks
from overfitting,” Journal of Machine Learning Research, vol. 15, no. 1,
pp. 1929–1958, 2014.

[19] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus, “Regularization
of neural networks using dropconnect,” in Proceedings of the 30th
International Conference on Machine Learning (ICML), 2013, pp. 1058–
1066.

[20] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks,” in NIPS, 2016, pp. 4107–4115.

[21] ——, “Quantized neural networks: Training neural networks with low



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL.XX, NO. XX, 2020 15

precision weights and activations,” The Journal of Machine Learning
Research, vol. 18, no. 1, pp. 6869–6898, 2017.

[22] Z. Cai, X. He, J. Sun, and N. Vasconcelos, “Deep learning with low
precision by half-wave gaussian quantization,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 5918–5926.

[23] A. R. Omondi and J. C. Rajapakse, FPGA implementations of neural
networks. Springer, 2006, vol. 365.

[24] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, “Compression
of deep convolutional neural networks for fast and low power mobile
applications,” arXiv preprint arXiv:1511.06530, 2015.

[25] B.R.Gaines, “Stochastic computing systems,” in Advances in Informa-
tion Systems Science. Springer, 1969, pp. 37–172.

[26] B. D. Brown and H. C. Card, “Stochastic neural computation. I.
computational elements,” IEEE TC, vol. 50, no. 9, pp. 891–905, 2001.

[27] ——, “Stochastic neural computation. II. soft competitive learning,”
IEEE Transactions on Computers, vol. 50, no. 9, pp. 906–920, 2001.

[28] J. P. Hayes, “Introduction to stochastic computing and its challenges,”
in DAC, 2015, p. 59.

[29] A. Alaghi and J. P. Hayes, “Dimension reduction in statistical simulation
of digital circuits,” in Proceedings of the Symposium on Theory of
Modeling & Simulation: DEVS Integrative M&S Symposium, 2015, pp.
1–8.

[30] P. Li, W. Qian, M. D. Riedel, K. Bazargan, and D. J. Lilja, “The synthesis
of linear finite state machine-based stochastic computational elements,”
in IEEE ASP-DAC, 2012, pp. 757–762.

[31] G. B. Orr and K.-R. Müller, Neural networks: tricks of the trade.
Springer, 2003.

[32] S. R. Faraji, M. H. Najafi, B. Li, K. Bazargan, and D. J. Lilja, “Energy-
efficient convolutional neural networks with deterministic bit-stream
processing,” in Design, Automation, and Test in Europe (DATE), 2019.

[33] H. Sim, D. Nguyen, J. Lee, and K. Choi, “Scalable stochastic-computing
accelerator for convolutional neural networks,” in 2017 22nd Asia and
South Pacific Design Automation Conference (ASP-DAC). IEEE, 2017,
pp. 696–701.

[34] A. Zhakatayev, S. Lee, H. Sim, and J. Lee, “Sign-magnitude SC: getting
10X accuracy for free in stochastic computing for deep neural networks,”
in 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC).
IEEE, 2018, pp. 1–6.

[35] K. Kim, J. Kim, J. Yu, J. Seo, J. Lee, and K. Choi, “Dynamic energy-
accuracy trade-off using stochastic computing in deep neural networks,”
in DAC, 2016, p. 124.

[36] Y. Liu, Y. Wang, F. Lombardi, and J. Han, “An energy-efficient online-
learning stochastic computational deep belief network,” IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, vol. 8, no. 3,
pp. 454–465, 2018.

[37] Y. Ji, F. Ran, C. Ma, and D. J. Lilja, “A hardware implementation of a
radial basis function neural network using stochastic logic,” in DATE,
2015, pp. 880–883.
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