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From Multipliers to Integrators: a Survey of
Stochastic Computing Primitives
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Abstract—Stochastic Computing (SC) has the potential to dra-
matically improve important nanoscale circuit metrics, including
area and power dissipation, for implementing complex digital
computing systems, such as large neural networks, filters, or
decoders, among others. This paper reviews the state-of-the-art
design of important SC building blocks covering both arithmetic
circuits, including multipliers, adders, and dividers, and finite
state machines (FSMs) that are needed for numerical integration,
accumulation, and activation functions in neural networks. For
arithmetic circuits, we review newly proposed schemes, such as
Delta Sigma Modulator-based dividers providing accurate and
low latency computation, as well as design considerations by
which the degree of correlation/decorrelation can be efficiently
handled at the arithmetic circuit level. As for complex sequential
circuits, we review classical stochastic FSM schemes as well
as new designs using the recently-proposed dynamic SC to
reduce the length of a stochastic sequence to obtain computation
results. These stochastic circuits are compared to traditional
implementations in terms of efficiency and delay for various
levels of accuracy to illustrate the ranges of values for which
SC provides significant performance benefits.

Index Terms—Stochastic computing, multiplier, adder, divider,
finite state machine, integrator, gradient descent
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I. INTRODUCTION

Stochastic Computing (SC) was originally proposed in the
1960s as an alternative to traditional computing paradigms
with the aim of reducing hardware complexity [1]. There
is a renewed interest in SC for nanoscale implementations
of emerging systems that require many arithmetic operations
with hardware constraints. For such applications, SC can
substantially reduce the circuit area and power dissipation.
Extensive applications of SC-based implementation include
neural networks [2]–[5], digital filters [6], [7], image pro-
cessing [8], [9], decoding of complex error correction codes
[10], [11], or mixed-signal sensors [12], [13]. In addition to
typical CMOS-based hardware, SC implementation techniques
using emerging nanoscale devices, such as memristor and
nanomagnetic logic, have also been developed [14]–[18].

To implement an SC system, the understanding of different
options and trade-offs when designing building blocks such as
adders, multipliers, dividers or finite state machines (FSM), is
required; for example, multiplication is significantly simpler
in SC (using only an AND or XNOR gate) than in tradi-
tional implementations. For stochastic adders or dividers, the
design trade-offs must be considered for different systems,
because their performance and hardware overhead can vary for
different implementation mechanisms. Therefore, for system-
level implementations, the design of primitives to build an SC
system must be considered first.

A number of technical papers have reviewed SC from differ-
ent perspectives, such as basic concepts and key applications
[19], models [20], sequence management approaches [21], de-
vices for SC implementation [22], and specific system designs
for neural networks [23] and image processing [9]. However,
there is no recent review of low-level implementations of
SC building blocks that covers novel schemes introduced
in the last few years. In this paper, we review the state-
of-the-art design and implementation of the main building
primitives used in SC and compare them with traditional
implementations. The challenges and trade-offs when using
these primitives to build larger systems are also discussed.

The rest of the paper is organized as follows. Section II
presents a brief review of few relevant SC basics. Typical SC
primitives including stochastic multipliers, adders, dividers,
and FSM-based complex sequential circuits are reviewed in
Sections III to VI, respectively. Section VII discusses some
emerging alternative SC solutions to the classic SC schemes.
Finally, the paper ends in Section VIII with the conclusion.
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Fig. 1. A stochastic computing (SC) system: (a) the system; (b) a stochastic
number generator (SNG); (c) a probability estimator (PE).

II. BASICS OF STOCHASTIC COMPUTING

A. Data Conversion

Unlike traditional computing paradigms using integer or
fixed/floating point numbers, SC is performed on the stochastic
encoding of numbers. As shown in Fig. 1, each real number
in the binary format is converted/encoded to a stochastic
sequence prior to computation and the opposite process is per-
formed after completing computation. The stochastic sequence
is a bit stream consisting of 1s and 0s which are binomial
distributed. To represent a real number, the probability of
each bit being 1 is utilized. Typically, there are two coding
approaches for sequence representation, referred to as unipo-
lar and bipolar codifications [1]. When using the unipolar
codification, the occurrence probability of 1 (defined as p) in
a sequence is used to represent the real number it encodes;
while in the bipolar case, the real number being represented
is 2p − 1. Therefore, the standard value range in SC with
unipolar or bipolar coding is [0, 1] or [−1, 1], respectively.
Alternatively, a unipolar sequence can also be extended with
an additional sign bit to represent bipolar information; this is
the so-called sign-magnitude representation [4].

To generate a stochastic sequence, a stochastic number
generator (SNG) as shown in Fig. 1 is utilized for converting
each real number. In the SNG, the probability p associated
with the real number is set to the total number (in binary
format) of 1s in the sequence to be generated, i.e., p · N
where N is the sequence length. Through comparing this
binary number with the pseudorandom numbers generated by
a random number generator (RNG), the bit stream is obtained
after N clock cycles. Typically, the RNG is implemented by a
Linear Feedback Shift Register (LFSR), but other techniques
that improve the distribution of bits have also been developed
as discussed in Section VII. Since there are always many
numbers being computed in a system, a considerable number
of SNGs is required for generating uncorrelated sequences,
which becomes a major fraction of the hardware circuits (e.g.,
the SNG circuitry can reach up to 80% of the overall area in
some reported designs). Therefore, some design schemes have
been investigated for implementing the SNGs, for example,
sharing the RNG for sequences that do not participate in
the same arithmetic operations [24]. Once the SC system
completes all computations, the PE counts the number of 1s

in the final sequence to convert it back to the binary value
associated with p (and the real number).

B. Uncorrelation and Correlation
Correlation between different stochastic bit streams has

become a crucial issue in SC. With the advent of this technique
in the sixties, correlation was originally considered as one of
the main drawbacks and limitations of SC and as such it was
to be eliminated, or at least mitigated. Given that most of the
errors produced by SC systems come from operating the bit
streams with an undesired degree of correlation, the initial
strategy was to address uncorrelation as a whole, by using
an independent SNG for generating each sequence, hence
resulting in a severe limitation for applications with many
inputs.

To avoid the propagation of the correlation errors as the
signal advances along the pipeline of a combinatorial or
sequential circuit, one of the possible solutions is to regenerate
the correlation-corrupt stochastic signals through D flip-flops
(DFFs) or registers that work as isolators. The problem of
this technique is to determine the exact location to put these
registers, which is not obvious.

As the research community has moved deeper into the
SC-based realm, it has been found that correlation, far from
always being a problem to be avoided, could also be exploited.
As defined in [25], the correlation between two sequences
x and y is quantified using the SC correlation coefficient
SCC(x, y); SCC = 0 corresponds to completely uncorrelated
sequences originating from different SNGs, while SCC = 1
or (−1) indicates a maximum positive (negative) correlation.
Depending on the degree of correlation of the input bit streams,
a logic gate behaves in a completely different manner (an
example can be found in the supplementary material of this
paper). The treatment of correlation in designing SC primitives
is discussed in the next sections when reviewing each type of
arithmetic blocks.

C. Advantages and Disadvantages
The use of stochastic sequences in arithmetic computation

enables a low complexity of a hardware implementation; in ad-
dition, they also inherently tolerate bit-flip errors. However, SC
requires a considerable number of clock cycles to complete the
sequence-based computation; the limited computational range
of SC and its low data precision also lead to a degradation in
computational accuracy. These issues may not be acceptable
in some high-performance systems, and thus a system-level
design for SC approaches using the building blocks must be
considered. This will be discussed in Section VII.

III. STOCHASTIC MULTIPLICATION

The use of SC for implementing multiplication is the best
illustration of the hardware-saving feature typical of SC.
Gaines introduced the basic circuitry for this operation, which
is given by AND and XNOR gates for the unipolar and
the bipolar codifications, respectively [1]. Although different
works in the literature have introduced some other circuits for
multiplication [26]–[29], the AND and XNOR gates are the
primary schemes to carry out this operation.
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Fig. 2. Stochastic multipliers and the time diagram: (a) an AND gate for
unipolar multiplication; (b) an XNOR gate for bipolar multiplication.

A. The AND Gate

The AND gate is used to implement stochastic multiplica-
tion when using the unipolar codification. The only constraint
is that the inputs of the AND gate must be statistically
uncorrelated, as shown in Fig. 2 (a), in which the input
signals are x(t) and y(t), where t is the clock cycle and
1 ≤ t ≤ N . Their associated probabilities of being in the
logic high state are px and py , respectively. Since both are
encoded as probabilities, the range of possible values is [0, 1].
Assuming independence between stochastic signals x(t) and
y(t), we have:

pz = P (z(t) = 1) = P (x(t) = 1 and y(t) = 1)

= P (x(t) = 1)P (y(t) = 1) = pxpy.
(1)

B. The XNOR Gate

An XNOR gate is needed to implement multiplication when
the bipolar codification is used. Using the notation followed
in Fig. 2 (b), the probability of having a logic high value at
the output of an XNOR gate is given by (hereafter stochastic
signals are denoted as lowercase letters without the time-
dependent reference t for sake of clarity):

pz = P (x = 1)P (y = 1) + P (x = 0)P (y = 0)

= pxpy + (1− px)(1− py).
(2)

where we assumed independence between the two stochastic
variables along with the fact that both events ((x, y) = (1, 1)
and (x, y) = (0, 0)) are mutually exclusive. By applying the
variable change p = p∗+1

2 for every unipolar signal (z, x, and
y) we obtain:

pz =
p∗z + 1

2

=
p∗x + 1

2
·
p∗y + 1

2
+ (1− p∗x + 1

2
)(1−

p∗y + 1

2
)

=
p∗xp

∗
y + 1

2
,

(3)

which proves that the XNOR performs the product function
p∗z = p∗xp

∗
y .

C. Error in Stochastic Multipliers

The results provided by both unipolar and bipolar mul-
tipliers are subject to inherent variations in SC, both in the
input signals of the gates and in the output provided by each
gate. For the study of those variations, we first must consider
that stochastic signals are binomial distributed. The binomial
distribution, or binomial probability distribution, is a discrete
probability distribution that counts the number of successes
in a sequence of N independent trials, each with a fixed

probability p of success. For situations in which the binomial
distribution is applicable, only two outcomes are possible,
one with a probability of occurrence p, and the other with a
probability of 1−p. This scenario is encountered in stochastic
computing processes, where for N different time steps, each
stochastic bit z(t) has a probability pz of being high and 1−pz
of being low. For this reason, the probability of having kz high
values in the stochastic signal z(t) over a total of N time steps
is given by the following mathematical expression:

P (kz) =

(
N

kz

)
· pkz

z (1− pz)
N−kz . (4)

For this distribution, the expected value of the number of
times when z(t) is equal to 1 (that we denote as ⟨kz⟩) for N
samples of the signal z(t) is ⟨kz⟩ = Npz , that is related to
the unipolar value codifying the stochastic signal z(t) (the
probability pz).

In SC, to estimate the unipolar variable it is common to
count the number of times a stochastic variable is equal to
1 during N cycles, such that pz ≃ kz/N (the approximate
symbol ≃ is used because the number kz is subject to
variations intrinsic to the stochastic nature of the process).
To derive an analytical expression for the error incurred in
a specific computation, we employ the binomial distribution
(4) to determine the variance associated with the ratio kz/N
used as an approximation for the unipolar variable pz . This
variance is related directly to the Mean Square Error (MSE):

MSE

(
kz
N

)
=

1

M

∑
i

(
kz
N

− pz

)2

=

〈(
kz
N

− ⟨kz⟩
N

)2
〉

=

=
⟨(kz − ⟨kz⟩)2⟩

N2
=

V AR(kz)

N2
=

pz(1− pz)

N
,

(5)

where the parameter M is referred to M different experiments
of sequences of N bits for z(t), while index i is referred to a
specific sequence. We also consider that the variance of kz for
a binomial-distributed sequence is V AR(kz) = Npz(1− pz).

The MSE for the unipolar multiplication can be obtained
by considering that the signal z(t) (and its unipolar value pz)
is generated by an AND gate with independent random inputs
x(t) and y(t) so that pz = pxpy . In this sense, we have:

MSE(px, py) =
pxpy(1− pxpy)

N
. (6)

Expression (6), can be averaged over all possible values of
px and py to provide an input-independent MSE value:

MSE =

∫ 1

0

∫ 1

0

MSE(px, py) dpxdpy =
5

36N
. (7)

Similarly to the unipolar case, when using the bipolar
codification, we estimate the p∗z value as p∗z ≃ 2kz/N − 1.
This is obviously subject to variations due to the intrinsic
stochasticity of the process.

To estimate the MSE, as per MSE = ⟨(2kz/N − 1 −
⟨(2kz/N − 1)⟩)2⟩ we have:
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MSE(pz) =
4⟨(kz − ⟨kz⟩)2⟩

N2
=

4pz(1− pz)

N
. (8)

Since the bipolar multiplier is implemented using an XNOR
gate, probability pz is pz = pxpy + (1 − px)(1 − py). Using
the variable changes px = (p∗x + 1)/2 and py = (p∗y + 1)/2,
and after few algebraic manipulations we have:

MSE(p∗x, p
∗
y) =

4pz(1− pz)

N
=

1−
(
p∗xp

∗
y

)2
N

. (9)

Then, the averaged MSE value over all the possible bipolar
values is obtained as:

MSE =
1

4

∫ 1

−1

∫ 1

−1

MSE(p∗x, p
∗
y) dp

∗
xdp

∗
y =

8

9N
. (10)

When considering comparing the precision of both product
methodologies (bipolar and unipolar), it is useful to use the
relative error, that is defined as the ratio between the MSE
square root and the typical margin of variation of the coding
(Re =

√
MSE/Margin), where this margin is equal to 1 for

unipolar (since pz signals are defined between 0 and 1) and
2 for bipolar (since the range is now between −1 and +1). In
Fig. 3 (a) we show the relative error vs. N for both numerical
simulations (symbols) and the proposed analytical expressions
(lines) obtained in (7) and (10). As can be appreciated, bipolar
coding provides a larger relative error (being

√
8/5 times

larger than the unipolar). This figure also shows numerical
results of both products (circles for unipolar and triangles for
bipolar) averaged over 1.68 millions of different simulations
for each N between 4 and 256; a perfect match is shown
between numerical simulations and analytical expressions.

All these findings are highly relevant when considering SC
implementations of neural networks. Specifically, when any
input is zero the MSE reaches its maximum value (MSE(p∗x ·
p∗y==0) = 1/N ) in the bipolar case and its minimum value
(MSE(px · py==0) = 0) in the unipolar case. This obser-
vation carries significance due to the common post-training
scenario of neural networks, in which weight distributions
tend to follow a Gaussian pattern with a mean value of zero.
Consequently, a substantial number of product computations
involve input signals that are either zero or very close to
zero. In addition to the higher error associated with bipolar
coding for near-zero signals, there is an additional concern. For
bipolar zero values, the maximum power dissipation occurs
since the switching activity peaks (with a 50% probability of
being in the high or low state). Instead, a unipolar signal
with a zero value corresponds to a bit without switching
activity (and therefore zero power dissipation). Therefore,
the recommendation leans towards the adoption of unipolar
encoding when implementing neural networks, as discussed in
earlier works [4], [30].

IV. STOCHASTIC ADDITION

An accurate implementation of stochastic addition is still a
challenge, and different circuits have been proposed to achieve
this task. Fig. 4 shows three of them: a simple OR gate, a
multiplexer, and an Accumulative Parallel Counter (APC).

0 50 100 150 200 250

0.02

0.05

0.1

0.2

N

R
el

at
ive

 e
rro

r

(a)

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

N

R
el

at
ive

 e
rro

r

(b)
Fig. 3. The relative error’s dependence on N is observed in the following
cases: (a) for both unipolar (solid line) and bipolar (dashed line) multipliers,
and (b) for additive functions such as the OR gate (dashed line) and the
multiplexer utilized as a mean value estimator (solid line).

Fig. 4. Stochastic addition circuits: (a) an OR gate, where px · py must be
close to zero in order to compute the addition accurately. (b) a multiplexer,
where the accuracy is dependent on the number of inputs. (c) an Accumulative
Parallel Counter (APC), where the accuracy is not degraded, and the output
is represented in two’s complement codification.

A. The OR Gate

The use of an OR gate as an adder (Fig. 4 (a)) is the
smallest circuit in terms of hardware footprint. Assuming that
the unipolar stochastic inputs x and y are uncorrelated, the
probability of having a logic high at the output is:

pz = P (z = 1) = P (x = 1 or y = 1)

= P (x = 1) + P (y = 1)− P (x = 1)P (y = 1)

= px + py − pxpy.

(11)

So, for a reasonable accuracy in the addition, both prob-
abilities of px and py must be close to zero to neglect the
pxpy factor. Hence, this circuit is unable to perform the sum
correctly, specially when numbers to be added are relatively
large. This is the reason for its limited use as a stochastic
addition circuit in most applications [31] unless a negative
correlation can be guaranteed between its inputs [32], [33] or
a splitting representation is used [34].

B. The Multiplexer

The use of a multiplexer (Fig. 4 (b)) is one of the most
popular ways to estimate the stochastic addition [21], [31].
This type of circuitry presents a low cost in terms of area.
However, its inaccuracy increases as the number of inputs
grows. The multiplexer has a control signal (the selector) that
must be uncorrelated with respect to the inputs. An example
is shown in Fig. 4 (b), in this case the output is given by:

pz = P (z = 1) = P (s = 0)P (x = 1) + P (s = 1)P (y = 1)

= px · (1− ps) + py · ps
(12)
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The multiplexer performs the weighted sum of the inputs as
per the selector. Moreover, to get a reasonable accuracy, the
number of inputs must be relatively small, and a long period
of evaluation is needed. Though this type of adder has been
historically considered correlation-insensitive, a deeper anal-
ysis in its error sources has led to a new type of multiplexer
adders called Correlation-enhanced multiplexers (CeMux). By
applying new techniques such as precise sampling and full
correlation to mitigate the error sources, CeMux outperforms
the conventional weighted multiplexer adders in terms of area
cost, accuracy and latency, even for large input sizes [35].

C. The Accumulative Parallel Counter

The APC (Fig. 4 (c)) counts the number of pulses in the
inputs and accumulates the counted value for a period of time
[36], producing, unlike the former addition circuits, a digital
two’s complement output. Depending on the number of input
bit streams i, the APC output size is k = log2(N(i+1)). The
entire circuit is composed of an accumulator to store the result
of a Parallel Counter (PC) (Fig. 5).

Different designs have been proposed for the PC such as
threshold gate-based counters [37], ROM designs [38], or a
Full Adder (FA) network [39]. Fig. 5 shows a 15-input FA PC
network, made of two 7-input PC blocks along with a classical
3-bit adder. The PC block uses a 7-line FA network tree that
is able to provide a 3-bit result (7, 3) [37]. A generalization
of this design to more inputs is shown in Fig. 5 for a (15, 4)
block. The inputs of the (7, 3) PC are joined into a set of 3
lines (for each FA) while the other inputs are connected to a
second layer. The number of inputs must be set to i = 2k−1.
Therefore, the way of generalizing the design is to add as many
(7, 3) blocks as required. For an arbitrary number of inputs,
we can ground the unused inputs, as shown for the 15th input
signal in Fig. 5. The number of FAs needed is related to the
line reduction of the system, from 3 lines to 2. The number
of FAs can be expressed as i− k.

As shown in Fig. 5, the first FA-tree layer outputs its result
with a delay of one δ, where δ is the base unit delay of a single
FA. The second layer output is therefore stable at 2δ. The delay
for the least significant bit of the full block is (k − 1)δ. For
the worst case, the delay of the most significant bit is

δmax = (2k − 3)δ. (13)

The APC solution is the most accurate of these three
circuits, and it is correlation-insensitive; so, it is the preferable
solution for most implementations. Also, it can be considered

as a type of code converter from the SC domain to the classical
2’s-complement domain. The main shortcoming is that it is the
most area-consuming approach.

D. Error in Stochastic Adders

Similarly to the approach followed for stochastic multi-
pliers, the average error associated with classical stochastic
adders (OR gate and multiplexer) can be estimated. For the
case of the OR gate, we can state that MSE(px, py) =
⟨(kz/N − (px + py))

2⟩. For the estimate of this expression,
we first calculate ⟨(kz/N − pz)

2⟩ by considering that for the
OR gate, pz can be expressed as pz = px + py − pxpy:〈(

kz
N

− pz

)2
〉

=

〈(
kz
N

− (px + py) + pxpy

)2
〉

=

= MSE(px, py) + 2

〈(
kz
N

− (px + py)

)
pxpy

〉
+ ⟨(pxpy)2⟩.

(14)

Equation (14) can be used to isolate the MSE value by using
⟨(kz/N − pz)

2⟩ = pz(1 − pz)/N , and also considering that
⟨kz⟩ = pzN . After some algebraic manipulations, we have:

MSE(px, py) =
(px + py − pxpy) · (pxpy + 1− px − py)

N
+

+ p2xp
2
y.

(15)

This equation shows that the MSE will never converge to a
zero value, even if N = ∞. Finally, the averaged MSE value
over all possible input values can be obtained as doned in (7),
obtaining MSE(OR) = 5/(36N) + 1/9.

For the case of the multiplexer operating as a mean value
estimator, we consider (12), in which we particularize for ps =
0.5 (corresponding to the mean value of the inputs). Therefore,
MSE(px, py) = ⟨(kz/N − pz)

2⟩, where pz = 0.5px + 0.5py ,
and thus:

MSE(px, py) =
2(px + py)− (px + py)

2

4N
. (16)

Finally, the averaged MSE error is obtained similarly to (7),
leading to the expression MSE(MUX) = 5/(24N).

These results confirm that, on average, an OR gate provides
a higher error than a multiplexer when implementing an
additive function.

Fig. 3 (b) shows the averaged relative error vs. N obtained
by both numerical simulations and the proposed analytical
expressions. The solid line and triangles are related to the
results obtained for the multiplexer when using the obtained
analytical formula and when performing different software
simulations respectively. At the same time, for the OR gate
used as an adder, the dashed line and circles are related to
analytical results and simulations, respectively. Hence, the
multiplexer provides a higher precision than the OR gate.

V. STOCHASTIC DIVISION

The divider is another fundamental block in SC [40].
Differently from the previous operations, for which a stream
of N bits are computed in N clock cycles, the division usually
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requires a larger number of cycles to achieve good accuracy.
This additional latency can impact the throughput of the entire
SC system and also introduce a complicated timing in the
design. Therefore, significant effort has been made in recent
years to design efficient stochastic dividers with both low
latency and high accuracy. Some of these dividers focus on
circuit designs with more efficient convergence mechanisms
[24], [41]–[43], while others explore the use of correlation
between input sequences [44]–[46].

A. Conventional Dividers

Initially, a JK flip-flop (FF) is considered to implement a
stochastic divider [1]. As shown in Fig. 6 (a), when the JK-FF
reaches a steady state, the probability of the output sequence
z (calculated on the input sequences y and x) is obtained as
pz = py/(py + px); therefore, such design can implement an
approximate division if py ≪ px.

A more accurate division is performed by employing the
adaptive digital element (ADDIE) [40]. As shown in Fig. 6 (b),
the ADDIE-based divider is formed by a feedback loop that
keeps track of y·x by computing x2·z for bipolar computation;
the quotient is then obtained when the loop converges. In the
unipolar case, the DFF and XNOR gates used to generate
x2 and yx are not required (i.e., the loop keeps track of
y by x · z), and the other XNOR gates should be replaced
with the AND gates (for unipolar multiplication). Despite
achieving higher accuracy, the ADDIE-based divider requires
a large number of clock cycles to converge. For example, for
a 1024-bit stream, convergence can take 46341 cycles [41].
This is due to the slow feedback loop that adjusts the quotient
in small increments. In addition to latency, this conventional
divider can be inaccurate when inputs are near the center of
the stochastic computation range (i.e., 0 for the bipolar); this
occurs because its fundamental operation is multiplication,
which in SC implementations has typically larger computa-
tional errors in that range as analyzed previously. To overcome
these limitations, a number of alternative dividers have been
proposed, as reviewed in the following subsections.

B. Exponential Search Dividers

A first group of alternative divider implementations [24],
[41] uses the same feedback loop as in the ADDIE-based
divider, but it performs an exponential rather than a linear
adjustment to accelerate convergence. For example, [24] deter-
mines in the 1st iteration the half of the range that the quotient
lies in, then in the 2nd iteration the half of that reduced range

Up/down CounterSNG

Up/down Counter

Up/down Counter

SNG

SNG

Voter

D Q

Prob

Add/Sub

Step

value

x

y

z

Disabled in the second step

Comp

Comp

Comp

Fig. 7. The binary searching (BS) divider of [24] for bipolar division. Since
each module of the TMR blocks operates the same as the ADDIE-based
divider, the unipolar version of a BS divider can be derived as per the
difference between Figs. 6 (b) and (c).

and so on, leading to a Binary Search (BS) on the range. In
[41] this method is generalized to a Decimal Search (DS),
so that at each iteration the divider determines a fraction, for
example, the decimal that the quotient lies in the remaining
computation range. This can further accelerate convergence.

A potential problem with this accelerated search is that an
erroneous decision may be made at an iteration due to random
fluctuation errors; this cannot be undone at a later iteration be-
cause subsequent iterations can only make smaller adjustments
to the quotient, so it finally generates an inaccurate result.
Moreover, such search method can only determine a specific
value range of the quotient, despite a more refined range by
the design of [41]. To avoid these issues, these dividers employ
a two-step calculation. In the first step that specifies a correct
value range, the dividers utilize three signals in parallel and
take as the decision for an accurate adjustment the majority
of them during each iteration; a triple modular redundancy
(TMR) configuration is thus employed in the circuit as shown
in Fig. 7. One of the TMR blocks is then utilized in the second
step as a conventional divider to support finer adjustments.
Note that each module of the TMR blocks operates the same
as the conventional ADDIE-based divider, so the unipolar
version of a BS divider can easily be derived from Fig. 7 as
per Section V-A and Figs. 6 (b) and (c).

With a faster convergence process, the exponential search
dividers significantly reduce the required number of clock
cycles to obtain an accurate quotient; however, this number
is still considerable and the TMR configuration also incurs
considerable hardware area and power dissipation.

C. Delta Sigma Dividers

A completely different approach to designing efficient
stochastic dividers has been proposed in [42] and extended in
[43]. It implements a convergence loop using a similar scheme
as that in a Delta Sigma Modulator (DSM) [47]. Instead of
adjusting the computed quotient based on each bit of the inputs
(in the ADDIE and BS/DS dividers), the DSM-based dividers
perform adjustment on a segment basis. This methodology
permits a faster convergence and a higher accuracy.

Fig. 8 (a) shows a bipolar divider design with a first-
order DSM configuration (DSM-U1); it includes two blocks
that continually estimate the dividend and divisor probabilities
based on a real-time updated segment (e.g., 4 bits) of the
sequences as shown in Fig. 8 (b). This segment information
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Fig. 8. The delta sigma divider of [43] for bipolar division: (a) DSM-U1
divider; (b) dividend/divisor estimate block; (c) accumulator block for DSM-
U2 divider. The absolute value of quotient is calculated using the feedback
loop that keeps Segx · z tracking Segy (the MUX output can be considered
as Segx · z because it generates Segx when z = 1 and 0 when z = 0);
the sign is obtained using an XOR gate as an example when the sequences
are represented in the sign-magnitude format; it can be removed to perform
unipolar division.

(Segy and Segx, the counted number of 1s in the current
segment of y and x, respectively) is used to establish a
feedback loop with the DSM configuration. It is worth to
note that despite the bipolar division, the feedback loop of
DSM-based dividers is established to keep track of Segy by
computing Segx · z, which is conventionally implemented for
the unipolar division. This is performed to avoid the so-
called dead zone issue [47] in a typical DSM circuit, i.e.,
when the input signal is within an extremely low amplitude
range (the dead zone) in a DSM circuit, the feedback loop
tends to incorrectly converge. Therefore, the bipolar divider
design shown in Fig. 8 (a) only calculates the absolute value
of the quotient using the unipolar version of a feedback loop
to avoid the occurrence of a very small x2; then, depending on
the different SC representations, the sign of the quotient can be
obtained using an XOR gate for the sign-magnitude sequences,
or using a sign estimate block for standard bipolar sequences
[42]. For unipolar division, these units used for obtaining the
sign information can be directly removed.

In the DSM-based feedback loop, the difference between
Segy and Segx · z is integrated in the accumulator block, and
the integration result Dacc is used for quotient adjustment.
If Dacc ≥ 0 (so, Segy ≥ Segx · z), 0 is generated as the
new bit of z, such that 0 (the smaller value between the
two candidates in the MUX) is fed into the accumulator unit
to avoid a further increase in the difference between Segy
and Segx · z. Otherwise, if Dacc < 0, Segx is fed into the
accumulator to decrease the difference. Since the difference
between input and output is better captured by checking each
segment pair, the divider achieves a smaller number of clock
cycles to converge compared to all aforementioned designs and
its result is also more accurate. However, the first segment pair
must be prepared prior to adjustment, which incurs additional
cycles (e.g., 24) to N . To address this issue, a second-order
DSM configuration (Fig. 8 (c)) can be employed [43]. With
this more complex difference-accumulation scheme, a smaller
size of sequence segment can be utilized and a more refined
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Fig. 9. The correlation-based dividers for unipolar division: (a) JK-FF-
based design [45]; (b) DFF-based design of [46]. The bipolar version of these
designs is unavailable in [45] but can be found or derived in [46] (which is
not further discussed in this paper due to the page limitation).

adjustment is achieved. Finally, the design of [43] achieves
full compatibility with other SC arithmetic blocks in terms of
the number of clock cycles (i.e., that is equal to N ); moreover,
its accuracy is higher than other divider designs, especially for
input values centered around the SC range.

D. Correlation-based Dividers

The stochastic dividers reviewed in the previous subsections
employ different convergence mechanisms using uncorrelated
sequences. Alternatively, a type of stochastic dividers focuses
on the mathematical variant of a division operation; the
original JK-FF divider is an example of such dividers and
some improved designs have been recently proposed by using
the properties of correlated inputs.

For example, the divider in [45] considers the division
as the format of pz = py/(py + (px − py); it implements
the unipolar divider by integrating a JK-FF and saturating
subtractor, as shown in Fig. 9 (a). When the same RNG
is used to generate fully correlated inputs, the subtractor
generates a sequence with probability of max(px − py, 0),
because it only depends on the case when y′ = 1 and
x = 1 for all possible values of py and px (as illustrated
in Fig. 9 (a)). Another example utilizes a DFF to realize the
division [46]. As shown in Fig. 9 (b), the circuit implements
pz = px · p(y = 1|x = 1)+ (1− px)Din; it can be reduced to
py/px because p(y = 1|x = 1) = min(py/px, 1).

Overall, these correlated dividers address the approximation
feature of the original JK-FF divider by using correlated
sequences and thus, they achieve a more accurate computation;
moreover, they also require very low hardware overhead
because only a few logic gates and one FF are required.
The issue of these dividers is that the same RNG is required
or the correlation between the input sequences needs to be
manipulated; this may pose a challenge when combined with
other (former/latter) blocks in a large SC system.

E. Comparison

To better understand the benefits and drawbacks of the
different dividers, several performance metrics are summarized
in Table I by taking N = 1024 as an example. In the evaluation,
only uncorrelated divider designs are considered as correlated
dividers cannot be easily combined with other standard SC
blocks to build a system; moreover, the bipolar versions of
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TABLE I
COMPARISON OF DIFFERENT DIVIDERS

Divider MSE Area Latency Power # clock PLP
(log10()) (µm2) (ns) (µW ) cycles

FP [48] - 8248.8 100.0 10.0 50 1000
ADDIE [40] -3.4 635.6 10380.3 1.2 46341 12456.4

BS [24] -3.4 2770.6 1233.7 4.0 9214 4934.8
DS [41] -3.4 13900.5 463.3 19.7 4300 9127.0

DSM-U1 [43] -4.0 780.9 270.4 1.3 1040 351.5
DSM-U2 [43] -4.7 1081.6 256.0 1.7 1024 435.2

these dividers are considered. The computational accuracy of
different designs is evaluated in terms of the MSE for 10000
random input pairs with a uniform distribution. The hardware
overhead metrics are evaluated by synthesizing the designs
using an ASAP 7 nm technology library; different optimization
constraints corresponding to each metric are set to obtain
the best circuit area and power (with an operating frequency
of 200 MHz), and the timing performance. A widely used
Newton-Raphson-based floating-point (FP) divider [48] is also
considered for comparison.

The results reported in Table I verify the effectiveness
of stochastic dividers in terms of area overhead and power
dissipation compared to a traditional (not-SC) design, as well
as their issue of large computational latency. Consider all
SC designs; the ADDIE-based divider is shown to have the
lowest area and power, but the largest number of clock cycles
and latency to complete a division. This occurs because the
conventional design has the lowest circuit complexity, while its
convergence process is slow. By providing the same accuracy,
the BS and DS designs significantly reduce the number of
clock cycles and latency, but they incur considerable area and
power overhead due to the TMR configuration. The DSM-
based dividers provide a very competitive performance; they
achieve the best accuracy, latency and the number of clock
cycles compared to the other designs, by introducing moderate
area and power. Specifically, the DSM-U2 divider achieves a
fully timing-compatible SC block design by requiring exactly
1024 clock cycles. Finally, as a comprehensive evaluation
metric, the power latency product (PLP) results show that all
DSM-based designs achieve better overall performance than
the FP divider, despite the inherent issue of SC in latency.

Note that although correlation-based dividers are not com-
pared, they can be a good candidate for implementing systems
that allow correlated sequences. As per [45] and [46], these
dividers also achieve a good accuracy (like the designs with
quotient adjustment on a bit basis) with a low hardware cost.

VI. COMPLEX SEQUENTIAL STOCHASTIC CIRCUITS

In addition to the aforementioned stochastic circuits, more
complex sequential circuits can implement functions with
higher complexity, although a sequential circuit can be as
simple as an FF. With only one FF, the circuit can be modeled
by a 2-state FSM. When the model is generalized to contain
a larger number of states, an FSM provides an efficient way
to design complex stochastic circuits.

A. FSM-based Stochastic Circuits

Some early works on FSM-based stochastic circuits use the
design shown in Fig. 10; it has a saturated counter followed
by a combinational circuit [40], [49]. The counter is driven
by a Boolean input x and outputs the current count value s in
the range {0, 1, . . . , n}; its state transition diagram (STD) is
shown in Fig. 11. The combinational circuit further maps the
value s to a Boolean output y through a function y = f(s).

Saturated 

counter

Combinational 

circuit y = f(s)

x ys

0,1,1,0,0,... 1,0,1,1,0,...1,2,3,2,3,...

Fig. 10. The structure of a counter-based stochastic circuit.

...

...

x = 1 x = 1 x = 1 x = 1

x = 0 x = 0 x = 0 x = 0

x = 0 x = 1
s0

s = 0
s1

s = 1
sn

s = n
sn-1

s = n-1

Fig. 11. The state transition diagram of a saturated counter. When the state
of the counter is si, its output is i.

To realize an arithmetic function by SC, the input x is a
stochastic bit stream encoding a value X . In this case, the
state transition behavior of the counter can be modeled as
a time-homogeneous Markov chain. A Markov chain has an
equilibrium distribution (π0(X), . . . , πn(X)), where πi(X) is
the probability of the state i at equilibrium, which is a function
of the input value X . Given that x is provided by a stochastic
bit stream, the final output y is also a stochastic bit stream,
encoding a value Y . Then, Y is an arithmetic function on X ,
i.e., Y = F (X). At equilibrium, the value of Y depends on
the equilibrium distribution of the Markov chain, the function
f(s), and the encoding formats (i.e., unipolar or bipolar) of
the input and output stochastic bit streams. For example, when
the output stream uses the unipolar encoding, we have

Y = P (y = 1) = P (f(s) = 1) =
n∑

i=0

f(i)πi(X).

By properly choosing the function f(s) and the encoding
formats of the input and output stochastic bit streams, some
useful arithmetic functions F (X) can be realized by the design
shown in Fig. 10 [40], [49]:

• tanh function: When the function

f(s) =

{
0, 0 ≤ s ≤ n

2 − 1,

1, n
2 ≤ s ≤ n− 1,

and both the input and output bit streams are in bipolar
format, then F (X) = tanh

(
n
2X

)
[40].

• Exponentiation function: Let the function

f(s) =

{
1, 0 ≤ s ≤ n−G− 1,

0, n−G ≤ s ≤ n− 1,

where G is a positive integer such that G ≪ n, and
use the bipolar and unipolar encoding for the input and
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0,1,1,0,0,...

0,1,0,1,1,...

1,2,3,2,3,...

...
w0 w1 wn

MUX
0 1 n

Fig. 12. A stochastic circuit based on a counter and a MUX.

output bit streams, respectively. Then, the function F (X)
is an exponentiation function in the following form [40]:

F (X) =

{
1, −1 ≤ X < 0,

e−2GX , 0 ≤ X ≤ 1.

• Absolute value function: When the function

f(s) =


1, s is an even number in [0, n

2 − 1], or
s is an odd number in [n2 , n− 1],

0, s is an odd number in [0, n
2 − 1], or

s is an even number in [n2 , n− 1],

and both the input and output bit streams are in bipolar
format, then F (X) = |X| [49].

To support the implementation of more functions, Li et al.
have proposed the design shown in Fig. 12; this instantiates
the combinational circuit in Fig. 10 as a MUX [50]. The data
inputs w0, . . . , wn of the MUX are provided with stochastic
bit streams of probabilities W0, . . . ,Wn, respectively. In this
case, it can be proved that the probability of the output bit y
to be a 1 at equilibrium is given by

P (y = 1) =

n∑
i=0

Wiπi(X) (17)

Note that this design resembles the design in [51] that imple-
ments a Bernstein polynomial. It is reconfigurable through the
probabilities W0, . . . ,Wn.

However, it is found that the design in Fig. 12 cannot realize
a wide range of functions because the linear combination of
the equilibrium probability functions of the saturated counter
has a limited expressive power. To improve this feature, later
works replaced the counter in Fig. 12 by different FSMs [52],
[53]. In [52], the counter is replaced by an FSM whose STD
is a 2-dimensional mesh with an additional input. Therefore,
it has an additional degree of configuration, supporting the
implementation of a wider range of functions.

In [53], another FSM has been proposed to replace the
counter. Its STD is shown in Fig. 13, in which the number near
each arrow denotes the transition probability. The equilibrium
probability distribution of this FSM can be proved as the
binomial distribution, i.e., πi(X) =

(
n
i

)
(1 − X)n−iXi, for

i = 0, . . . , n. Substituting this into (17), we can obtain the
probability of the output y as

P (y = 1) =

n∑
i=0

Wi

(
n

i

)
(1−X)n−iXi. (18)

The above function is known as the Bernstein polynomial,
which can approximate a wider range of functions than those
supported by the design in Fig. 12.

...

...

X X ( n - 1)/n

(1 X )/n

s0

s = 0
s1

s = 1
sn

s = n
sn 1

s = n 1

(1 X )∙2/n

X 2/n X/n

(1 X) ( n 1)/n 1 X -  -  -  -  -∙

∙ ∙

 -
 -

Fig. 13. The state transition diagram of the FSM of [53].
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SNG
n
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Fig. 14. A stochastic integrator.

B. Stochastic Integrator-based Stochastic Circuits

When the number of the states of a stochastic FSM is
extended to infinity, the functionality of the sequential circuit
can be modeled by a stochastic integrator instead of a Markov
chain. A stochastic integrator consists of an up/down counter
and an SNG as shown in Fig. 14. Note that the up/down
counter is very similar to the saturated counter in Fig. 10, and
the main difference is that it has two inputs instead of one.
Ideally, the range of the counter is unlimited, and the value
stored in the counter at clock cycle i, Ci, can be considered
as the state of the state machine. For each clock cycle, this
value is updated as follows

Ci = Ci−1 +Ai −Bi, (19)

where Ai and Bi are the input stochastic bits of 0 or 1.
After k cycles of accumulation, the value is then Ck =
C0 +

∑k−1
i=0 Ai −

∑k−1
i=0 Bi.

Meanwhile, this value is compared with the random number
generated by the SNG at each clock cycle to produce the
output sequence z. Assume that the counter is N -bit wide, so
of the same width as the random number, and the stochastic
sequences all use the unipolar encoding. The expectation of
the output sequence z can be derived as E[zi] = Ci/2

n.
Consequently, the changing values stored in the counter can be
interpreted as a digital signal, {ci} = {Ci/2

n}, within [0, 1].
Since ci can change from time to time, the value encoded by zi
also changes. This type of bit stream is referred to as a dynamic
stochastic sequence (DSS), and the DSS {zi} encodes the
signal {ci} [54]. The stochastic integrator performs numerical
integration of the difference of the signals a and b, i.e.,

E[z] = c = (
∑

Ai −
∑

Bi)/2
n ≈

∫
a−

∫
b, (20)

where a and b are encoded by the input DSS’s {Ai} and {Bi},
respectively. By taking the derivative of this equation, we have

dc
dt

≈ a− b, (21)

which can be solved by the stochastic integrator with a step
size of 1/2n. In [55], it is used to solve non-homogeneous
ordinary differential equations (ODEs), systems of ODEs, and
higher-order ODEs. A system of ODE is used to demonstrate
the principle of operation as shown in Fig. 15.

In Fig. 15, “0.5” refers to a stochastic sequence with the
probability of 0.5. For the left stochastic integrator, another
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Fig. 15. An ODE solver utilizes stochastic integrators as basic element for
solving a system of ODEs. The solution produced by the left stochastic
integrator is denoted as y1, while the one generated by the right one as y2.

input is the DSS generated by the right stochastic integrator,
encoding y2. As per the formulation, the left stochastic inte-
grator solves dy1/dt = y2−0.5. Similarly, the right stochastic
integrator solves dy2/dt = 0.5−y1. The stochastic integrators
are cross-coupled to solve a system of ODEs. The analytical
solution is a pair of sine waves, and the stochastic integrators
are able to generate the results with a high accuracy.

Instead of waiting for processing the entire stochastic se-
quence to obtain the computation results as in a conventional
SC, the counter directly provides the integration results at
each clock cycle. The speed and energy efficiency is largely
improved with a limited accuracy loss [55]. Table II compares
a stochastic ODE solver with a binary one implementing the
Runge-Kutta 2 method [56]. The clock cycle is calculated
with respect to generating a full cycle of the sine wave.
The hardware efficiency is evaluated using the same synthesis
method as in Section V-D.

TABLE II
STOCHASTIC VS. BINARY ODE SOLVER

Circuits MSE Area Latency Power # clock
(log10()) (µm2) (ns) (µW ) cycles

Stochastic -2.3 939.2 482.1 1.6 1607
Binary -2.4 3254.9 964.2 4.3 1607

A widely-used optimization algorithm in machine learning,
gradient descent, can also be implemented by the stochastic
integrator of (20). This unit provides an unbiased estimate of
the optimization result through an iterative accumulation of the
input DSS encoding the gradient [57]. The factor 1/2n can be
considered as the learning rate of the algorithm. The circuit in
Fig. 16 shows the gradient descent circuit for neural network
training. The inputs δ+ and δ− are the DSS’s encoding the
positive and negative local gradients, respectively. The input
y is the DSS encoding the output of the previous layer in the
neural network. The sign-magnitude encoding is used (one bit
indicates the sign and another bit encodes the magnitude). The
signed stochastic multiplier and integrator operate together to
first obtain the gradient (δ+ − δ−)y, and then perform the
accumulation. The optimized weight is then obtained by this
accumulation. This design has succeeded in training a multi-
layer perceptron of size 784-128-128-10 with an accuracy of
over 97% for the MNIST dataset, while providing around 90%
energy and 75% latency savings compared to its conventional
binary computing counterpart [57].

To further improve the training capability, gradient descent
with momentum (GDM) can be implemented by cascading two
stochastic integrators as shown in Fig. 17 [54]. To maintain
a high accuracy, the first stochastic integrator uses a hybrid
design, i.e., g, a fixed-point number denoting the gradient, is
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Fig. 16. A stochastic gradient descent circuit for neural network training [57].

added to the value stored in the counter, while the negative
feedback is a DSS. It implements a moving average circuit,
computing the velocity in the GDM algorithm. As a result,
the output is a DSS encoding the velocity. After this compu-
tation, the second stochastic integrator performs an iterative
accumulation of the velocity to obtain the optimized weight.
With the second-order GDM algorithm, the circuit can train
other complex neural networks such as VGG16, ResNet18
and MobileNet-V2 at an accuracy similar to the floating-point
software implementation, as shown in Table III.
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Fig. 17. A stochastic GDM circuit for neural network training. The first
stochastic integrator computes the exponentially weighted moving average of
the gradients, which is the velocity. The second stochastic integrator is used
for velocity accumulation and estimates the optimized weight [54].

TABLE III
TEST ACCURACY: STOCHASTIC VS. FLOATING-POINT GDM USING

DIFFERENT NEURAL NETWORKS [54]

Test Accuracy (%) Stochastic Floating-point
VGG16 90.23 90.55

ResNet18 91.36 91.85
MobileNet-V2 88.51 88.82

VII. EMERGING SC SOLUTIONS

As introduced previously, SC is a promising solution to
implement computing systems with a very large number of
arithmetic operations. However, even though the building
blocks have in general a lower hardware complexity, the
arrangement of a large number of these blocks poses some
challenges when designing a complete SC system. The main
challenges and some emerging SC solutions that can poten-
tially address these challenges, are discussed next.

The first challenge is about computational accuracy. In
general, ideal conditions for performing accurate computation
in SC include the uniformly distributed bits in each stochas-
tic sequence and uncorrelation among different sequences.
However, these features degrade after a large number of
computing stages, so finally leading to an accuracy loss. Even
though correlation can be explored and manipulated to break
the constraint of uncorrelation [25], [33], there are likely
difficulties when building a large SC system.
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A more general solution is to improve the randomness of
bits. This can be achieved by generating sequences using
low-discrepancy (LD) quasi-random numbers (e.g., Sobol or
Halton [58]). Specifically, such types of sequences can either
increase accuracy when using the same sequence length as
the traditional LFSR-based sequences, or they can achieve a
reduction of sequence length when providing the same accu-
racy. An alternative solution to address the randomness issue
is to use deterministic sequences [59], [60]. By arranging the
position of bits following a specific rule, a completely accurate
computation can be achieved (but with long sequences).

Another reason for the accuracy loss of an SC implemen-
tation is its limited computational range. Extended stochastic
logic (ESL) units have been proposed for some blocks, such
as multipliers and adders [61]. By utilizing two sequences and
taking the ratio to represent a real number, ESL units can
extend the unipolar coding range from [0, 1] to [0, N/2] and
the bipolar range from [-1, 1] to (−N/2, N/2), respectively.
The drawback is the increase in hardware overhead, because
the size of ESL multipliers or adders is approximately doubled
compared to a standard version. As a trade-off, ESL units can
be employed for some computations and standard SC units
for the remaining ones [24], [41]. In this case, a divider is
required between the two parts to convert the outcome of an
ESL unit (i.e., two sequences) to a single sequence.

In addition to accuracy, computational latency is another
challenge when designing SC systems. To guarantee a good
accuracy, a considerable sequence length is usually required,
which incurs a significant latency to complete the entire com-
putation. This may also offset the advantage of SC in power
dissipation, resulting in a potential large energy. Therefore,
for some building blocks that often require an additional
number of clock cycles compared to N (e.g., a divider), a
fully timing-compatible design that removes the further burden
on timing (even by trading-off some other metrics), can be
beneficial. Moreover, a hybrid implementation scheme that
combines SC and traditional computing blocks can also avoid
the requirement of using long sequences; this scheme is also
helpful to address the accuracy issue [43]. The DSS using
a dynamically variable binary bit stream [62] is also very
efficient in terms of latency and energy for implementing
integration that is often required.

Overall, the use of SC to implement larger computing sys-
tems always requires a comprehensive study of both the entire
framework and the building primitives. Trade-offs among com-
putational accuracy, latency, circuit area, and power/energy
dissipation need to be conducted and further investigated to
meet the specific requirements of different applications.

VIII. CONCLUSION

Stochastic Computing (SC) has been widely utilized as a
paradigm for efficient and low-power design at the nanoscale.
As the fundamental units of an SC system, the design of
different primitives has been extensively investigated and
reviewed, including the state-of-the-art designs of multipliers,
adders, and dividers, as well as FSMs and integrators. Different
options and design trade-offs have been described in detail

for each primitive, and an in-depth analysis for the error in
classic SC gates is also proposed. An interesting direction
for future research is the study of the implementation of the
SC primitives using alternative nanotechnology-based devices,
structures, or circuits. The DSM-based dividers described in
this paper are an example of the influence of a low-level analog
design on SC. Similar ideas can potentially be developed
from a nanotechnology perspective, leading to more efficient
implementations of SC systems.
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Skibinsky-Gitlin, J. Font-Rosselló, V. Canals, M. Roca, T. Serrano-
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SUPPLEMENTARY MATERIAL

A. Impact of Correlation on Logic Behavior

This subsection analyzes the impact of uncorrela-
tion/correlation between sequences on the behavior of a logic
gate in SC; specifically, the example of an XOR gate is
considered next, but similar analytical expressions can also
be found out for AND, OR or XNOR gates as a function of
the correlation of their inputs [5].

As shown in Fig. S1, with correlated inputs (Rx = Ry)
an XOR gate performs the absolute subtraction of the input
probabilities; instead, when the inputs are uncorrelated (Rx ̸=
Ry) the XOR gate performs the function (1− px)py + px(1−
py).

Fig. S1. Correlation impact on the behavior of an XOR gate in SC. Stochastic
signals x and y are considered to be completely correlated when they share
the same random number (Rx = Ry) in the SNG, producing the function
|px − py |. By contrast, if Rx ̸= Ry the sequences are uncorrelated and the
output function is different: pz = (1− px)py + px(1− py).

To obtain the above analytical expressions in unipolar
format, the two diagrams shown in Fig. S2 are considered.
The two [0, 1] × [0, 1] squares represent a surface domain
with all possible Rx and Ry values (that fluctuate with time),
given fixed binary px and py values. We assume that all these
unsigned n-bit binary values are all defined in the interval
between 0 (0.000 . . . ) and 1 (0.111 . . . ). When x(t) and y(t)
are correlated, Rx, Ry , px and py share the same axis (Fig.
S2 (a)). According to the comparison of px with Rx and
py with Ry , as per the operations of the comparator of the
SNG (Fig. S1 (a)), we obtain several rectangular areas (which
are numerically related to their probabilities) with all possible
combinations of the input value for random variable Rx (that
is equal to Ry). The XOR outputs a value of z = 1 when the
two inputs are different (x = 1, y = 0), while z = 0 otherwise.
For the correlated case, this area, in green color, is equal to
pz = max(px, py) −min(px, py) that yields pz = |px − py|
by taking into consideration a sweep of all possible Rx and
Ry values.

By contrast, when the two inputs are completely uncor-
related, as shown in Fig. S2 (b), we represent the px and
Rx values on the X-axis and the py and Ry on the Y-axis,
respectively. In this way, we obtain four different areas as a
function of the pair (px, py) values. Since the XOR has an
output of one when x(t) and y(t) are different (01, 10), the

Rx

Rx = Ry

x̂ = max(px, py)

ŷ = min(px, py)

1

0

(x̂ = 0, ŷ = 0)

(x̂ = 1, ŷ = 0)

(x̂ = 1, ŷ = 1)
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Ry

py

px

(px = 0,

py = 0)

1

10 (b)

(px = 1, py = 0)

(px = 0,

py = 1)
(px = 1, py = 1)

Fig. S2. Diagrams for the stochastic functions for an XOR gate: (a) A generic
case in which x̂ represent the maximum value of input signal while ŷ is the
minimum. The green-shadowed area is max(px, py)−min(px, py) which
turns out to be |px−py | in general. (b) Rx and Ry are different and therefore
represented on different axes. The diagram shows a stochastic case for certain
couple of (px,py) values and the result after having been compared with Rx

and Ry , respectively. The overall green-shadowed area is the addition of the
two rectangular areas (1 − px)py and px(1 − py), producing a probability
at the output of the XOR gate equal to (1− px)py + px(1− py).

overall area in green color is proportional to the probability
of having a one at the output z (probability pz). This total
area is the sum of the two green-shadowed rectangles, so
pz = (1− px)py + px(1− py).

The previous analysis is correct when stochastic signals
are either completely uncorrelated (since the random numbers
used in the conversion are different), or completely correlated
(when the same random number is used to generate both bit
streams). Moreover, as negative correlations can be generated
between stochastic signals (as when Ry = −Rx), for which
the previous analysis is not applicable without few modifica-
tions.


