
QSBMs: Lightweight Quantized Simulated
Bifurcation Ising Machines

Tingting Zhang, Member, IEEE, and Jie Han, Senior Member, IEEE

Abstract—Ising machines have shown great potential as ef-
ficient domain-specific accelerators for solving combinatorial
optimization problems (COPs). Derived from quantum mechan-
ics, simulated bifurcation (SB) achieves massive parallelism in
updating the spin states in an Ising machine. Although SB speeds
up the search for a solution compared to traditional simulated
annealing, it requires more hardware resources since continuous
variables are used for the positions of oscillators to obtain
discrete spin states. In this article, lightweight quantized SB Ising
machines (QSBMs) are developed to achieve a better tradeoff
between search performance and hardware efficiency. In various
quantization schemes, ternary and multiple-value quantized SB
(qSB) algorithms discretize the position variables for the multiply-
and-accumulate (MAC) operations in SB. The ternary qSB with
dynamic threshold settings converts the MAC into addition, while
uniform and logarithmic quantization schemes improve precision
in the number representation when solving large-scale COPs.
Three hardware-efficient QSBMs are subsequently designed with
a fully connected topology. Synthesized on a Xilinx Virtex
UltraScale+ field-programmable gate array (FPGA), the costly
multiplication is implemented by using simple logic operators.
Fully connected 2048-spin QSBMs use up to 50.8% fewer lookup
tables and up to 82.5% fewer flip-flops than conventional FPGA-
based SB machines. The QSBMs are superior in both long and
short searches, respectively reaching 99 .1% and 98.5% of the
best known solution in 1.46 𝑚𝑠 and 0.73 𝑚𝑠 on solving 2000-spin
Ising problems.

Index Terms—Simulated Bifurcation, Quantization, Ising
Model, Ising Machine, Combinatorial Optimization.

I. Introduction
As Dennard’s scaling is approaching the end, the perfor-

mance improvement of general-purpose processors is slow-
ing down. This leads to the development of domain-specific
hardware accelerators based on novel computing paradigms.
Combinatorial optimization problems (COPs) exist in cell
placement, wire routing, and logic minimization in very large-
scale integrated designs [1]; however, they are computationally
non-deterministic polynomial time-hard to solve. As a poten-
tial solution, the Ising model describes the ferromagnetism in
a set of spins, where spins naturally orient to let the Ising
system converge to the lowest energy state. The Ising model-
based computing architecture, referred to as the Ising machine,

Copyright (c) 2025 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Tingting Zhang was with the Department of Electrical and Computer
Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada. Current
address: the Department of Electrical and Computer Engineering, McGill
University, Montreal H3A 0E9, Canada (e-mail: ttzhang@ualberta.ca).

J. Han is, with the Department of Electrical and Computer Engi-
neering, University of Alberta, Edmonton, AB T6G 1H9, Canada. (e-mail:
jhan8@ualberta.ca).

shows promise for efficiently solving COPs in the post-Moore
era [2].

Existing Ising machines are broadly categorized into
two classes. One utilizes physical systems to implement
spins through quantum phenomena (e.g., superconducting
flux qubits) [3] or classical analog platforms (e.g., op-
tical/electronic oscillators) [4]–[6]. The other relies on heuris-
tic algorithms to numerically simulate the spin dynamics [7]–
[9]. The latter supports dense spin-to-spin interactions with
a high precision and offers high reliability, which however
is challenging for the implementation of the former class.
There are two classical types of heuristic algorithm-based
Ising machines [10], [11]. The first type is the annealing
Ising machine, which simulates the thermal annealing pro-
cess [8], [12]–[17]. Despite the incorporation of techniques
such as parallel trials [12], [13], parallel tempering [14], and
quantum fluctuation [17], most annealing Ising machines up-
date interconnected spins sequentially in a stochastic manner.
The adoption of a two-layer structure in stochastic cellular
automata annealing enables the simultaneous updates of all
spin states [8], [18]; however, this approach imposes additional
memory overhead and extra constraints in order to ensure that
two replicas of spins maintain identical states. The probabilis-
tic bit (p-bit) based annealing Ising machine models spins
as p-bits and numerically emulates their behavior [19]. The
second type is the dynamic Ising machine, which describes
the dynamics of oscillator networks. Representative examples
include simulated bifurcation (SB) Ising machines inspired
by Kerr-nonlinear parametric oscillator networks [9], [20]–
[23], emulated coherent Ising machines inspired by degenerate
optical parametric oscillators [24], and emulated oscillator-
based Ising machines inspired by electronic nonlinear oscil-
lator networks [25]–[27]. Both p-bit annealing Ising machines
and dynamic Ising machines make the parallel update of all
spins possible, irrespective of connectivity.

Among those heuristic-based Ising machines that update
spin states in parallel, the SB Ising machine distinguishes itself
by eliminating the dependence on random number generators
to ensure energy convergence, thus reducing hardware com-
plexity and improving computational efficiency. However, it
incurs a high hardware cost, especially for the multiply-and-
accumulate (MAC) operation due to the use of continuous
variables for the oscillator positions to obtain discrete spin
states (−1 or +1). The recently developed discrete SB (dSB)
binarizes the position values by using their signs for MAC [20].
It achieves a significant reduction in computational complexity,
but at the cost of a longer search time than the original SB [9].
Therefore, it becomes interesting to investigate the effect of

quantizing the position values in SB for a better trade off between
computational efficiency and search performance.

In this article, quantized SB machines (QSBMs) are designed
for solving COPs quickly in a short search and accurately
in a long search. Three quantized SB (qSB) algorithms are
initially proposed by applying different quantization schemes
for the position values as inputs to the MAC. The ternary
qSB quantizes the position values into {0,±1}, depending on a
dynamic threshold that changes with time. Multiple-value qSB
algorithms, based on uniform and logarithmic quantizations,
are further developed to achieve a more accurate number
representation for solving large-scale COPs. The performance
of the qSB is evaluated by analyzing the network dynamics
and solving instances of Ising problems with up to 2000 fully
and sparsely connected spins. To implement the proposed qSB
algorithms, efficient QSBMs are developed, which avoid the
hardware-consuming multiplication operations.

Some of our preliminary results were reported in [21]. The
novel contributions of this article are summarized as follows:

• The dynamics of the proposed and existing SB algorithms
are analyzed by solving an instance of a two-spin Ising
problem.

• A general architecture of the QSBM is developed for the
proposed qSB. In particular, hardware efficient quantiza-
tion and multiplication units are respectively designed for
three qSB algorithms.

• Three 2048-spin QSBMs are implemented and synthesized
on a Xilinx Virtex UltraScale+ field-programmable gate
array (FPGA) and evaluated on benchmarks of max-cut
problems.

The rest of this article is organized as follows: Section II
presents preliminaries. Section III proposes three qSB algo-
rithms. The effects of quantization used in qSB algorithms are
analyzed in Section IV. The circuit designs of the QSBMs
are presented in Section V. The hardware performance of
the QSBMs is evaluated in Section VI. Finally, Section VII
concludes the article.

II. Preliminaries
An 𝑁-spin Ising problem is to find the spin states, denoted by

s, that minimize the total energy (i.e., Hamiltonian) of the Ising
model. The Hamiltonian, 𝐻 (s), is given by [28]

𝐻 (s) = −∑𝑁
𝑖 ℎ𝑖𝑠𝑖 − 1

2
∑𝑁
𝑖, 𝑗 𝐽𝑖 𝑗 𝑠𝑖𝑠 𝑗 , (1)

where 𝑠𝑖 (or 𝑠 𝑗 , ∈ {−1, +1}) is the state of the 𝑖th (or 𝑗 th) spin,
𝐽𝑖 𝑗 is the interaction between the 𝑖th and 𝑗 th spins (so 𝐽𝑖 𝑗 = 𝐽 𝑗𝑖
and 𝐽𝑖𝑖 = 0), and ℎ𝑖 is the external field (or bias) placed on the 𝑖th
spin. Since the model can be reduced to one without the external
fields by introducing an ancillary spin [?], we focus on the Ising
model without external fields in the following discussion.

SB digitally emulates the adiabatic evolution of oscillator
networks [29]. The behavior of each spin in the Ising model is
therefore simulated by an oscillator. Let 𝒙 and 𝒚 be the oscillator
position and momentum values, respectively. The Hamiltonian
of an 𝑁-spin SB system, 𝐻𝑆𝐵 (𝒙, 𝒚), can be expressed by

𝐻𝑆𝐵 (𝒙, 𝒚) = 𝑉 (𝒙) +
∑𝑁
𝑖=1

𝑎0
2 𝑦

2
𝑖
, (2)

where 𝑉 (𝒙) is the potential energy related to oscillator position
values 𝒙, 𝑦𝑖 is the momentum value of the 𝑖th oscillator, and 𝑎0
is a manually tuned constant.

SB simulates Hamiltonian dynamics with quantum adiabatic
bifurcation in a nonlinear oscillator network [9], [23], [29]. To
restrain errors introduced by using continuous position variables
to represent discrete spin states, two variants, called ballistic SB
(bSB) and dSB were developed in [?]. The potential energy is
computed by

𝑉 (𝒙) =
{

𝑎0−𝑎 (𝑡)
2

∑𝑁
𝑖 𝑥

2
𝑖
− 𝑐0

2
∑𝑁
𝑖

∑𝑁
𝑗 𝐽𝑖 𝑗𝑥𝑖𝑥 𝑗 in bSB

𝑎0−𝑎 (𝑡)
2

∑𝑁
𝑖 𝑥

2
𝑖
− 𝑐0

∑𝑁
𝑖

∑𝑁
𝑗 𝐽𝑖 𝑗𝑥𝑖𝑠𝑔𝑛(𝑥 𝑗) in dSB

(3)

where 𝑥𝑖 is the position value of the 𝑖th oscillator, 𝑎(𝑡) is a
time-dependent control parameter to guarantee the adiabatic
evolution, 𝑐0 is a manually tuned constant, and 𝑠𝑔𝑛(·) outputs
“+1” if the input is a positive number and outputs “−1” if the
input is a negative number.

Both bSB and dSB essentially search for an approximate
solution by solving a pair of differential equations related to the
positions and momenta of oscillator networks [?]. They follow
the Hamiltonian equations of motion, given by [?]

¤𝑥𝑖 = 𝜕𝐻𝑆𝐵

𝜕𝑦𝑖
= 𝑎0𝑦𝑖 , (4)

¤𝑦𝑖 = − 𝜕𝐻𝑆𝐵

𝜕𝑥𝑖
= −{𝑎0 − 𝑎(𝑡)}𝑥𝑖 + 𝑐0𝑃𝑖 , (5)

where ¤𝑥𝑖 and ¤𝑦𝑖 denote the derivatives of 𝑥𝑖 and 𝑦𝑖 with respect
to time; 𝑃𝑖 is used for updating 𝑦𝑖 . 𝑥𝑖 is replaced by its sign and
𝑦𝑖 is reset to 0 when |𝑥𝑖 | > 1. The bSB and dSB differ from the
expressions of 𝑃𝑖 , given by [?]

𝑃𝑖 =

{ ∑𝑁
𝑗=1 𝐽𝑖 𝑗𝑥 𝑗 in bSB∑𝑁

𝑗=1 𝐽𝑖 𝑗 𝑠𝑔𝑛(𝑥 𝑗) in dSB . (6)

To solve an Ising problem, position values are first randomly
initialized. Then, the semi-implicit Euler method is usually
utilized to solve the pairs of differential equations in (4) and (5).
At the end of a search, the sign of 𝑥𝑖 indicates the state of the 𝑖th
spin. Note that in what follows, we denote the Hamiltonian and
potential energy of various SB systems by 𝐻 (𝒙, 𝒚) and 𝑉 (𝒙),
respectively, with a subscript to indicate the type of SB.

III. Quantized Schemes for Simulated Bifurcation
Depending on the sign bit, dSB binarizes 𝑥 𝑗 to {−1, 1} when

computing 𝑃𝑖 , as in (6). Thus, the MAC is simplified to addition
and subtraction, so dSB achieves a significant reduction in
hardware. However, it results in an unstable solution quality
and relatively slow convergence in energy [21]. In this section,
we improve the SB with different quantization methods for the
position values used as inputs to the MAC for a better trade-off
between solution quality and computational complexity.

A. Ternary Simulated Bifurcation
The ternary SB (tSB) utilizes three-valued position variables

(such as 𝑥 𝑗 ∈ {−1, 0, 1}, where 𝑗 ∈ [1, 𝑁]) to compute 𝑷.
Similar to dSB, the computation of 𝑷 avoids using multipliers.
Moreover, 𝒙 is compressed as a result of a high probability of
quantizing position values to zeros.

−1 0 +1

-∆ +∆

(a) Ternary quantization in tSB

... ...

𝑠𝑛+1 =
2

𝑞

𝑞1 = −1 𝑞2 = −
2𝑛 − 2

𝑞
 𝑞𝑛 = −

2

𝑞
 𝑞𝑛+1 = 0 𝑞𝑛+2 =

2

𝑞
 𝑞2𝑛 =

2𝑛 − 2

𝑞
 𝑞2𝑛+1 = +1

𝑡1 = −1 𝑡2 = −
2𝑛−1

𝑞
 𝑡2𝑛+2 = +1 𝑡2𝑛+1 =

2𝑛−1

𝑞

(b) Uniform multiple-value quantization in uSB

... ...

𝑞2𝑛−1 = 2−2 0 𝑞2 = −2−1 𝑞1 = −1 𝑞3 = −2−2

𝑠1 =
1

2
 𝑠2 =

1

4

𝑞2𝑛+1 = +1

𝑠2𝑛+1 =
1

2

𝑞2𝑛 = 2−1

𝑠2𝑛 =
1

4

(c) Logarithmic multiple-value quantization in lSB

Fig. 1: Quantization schemes in SB algorithms.

Let �̂� be the quantized position values. As shown in Fig. 1(a),
a dynamic threshold Δ determines the mapping from 𝒙 to �̂�. In
this way, 𝑃𝑖 is computed as

𝑃𝑖 =
∑𝑁
𝑗=1 𝐽𝑖 𝑗 𝑡𝑟𝑖(𝑥 𝑗), (7)

where

𝑡𝑟𝑖(𝑥 𝑗) =
{

0 |𝑥 𝑗 | ≤ Δ

𝑠𝑔𝑛(𝑥 𝑗) 𝑜𝑡ℎ𝑒𝑟𝑠
, (8)

where an empirically optimized value for Δ, when using the
ternary quantization method, is Δ∗ =

0.7∥𝒙∥𝑙1
𝑁

to minimize the
Euclidean distance between �̂� and 𝒙 [30].

To compute Δ∗, the L1 norm of 𝒙 needs to be evaluated and
it requires the accumulation of 𝑁 elements in 𝒙 in each time
step, thus incurring a relatively high cost. The elements in 𝒙
evolve from random values around 0 to +1 or −1. Therefore,
Δ∗ increases with time from an extremely small positive value
to around 0.7. We then use a less computationally expensive
function related to time Δ(𝑡) to simulate the function of Δ∗, as

Δ(𝑡) = 0.7 × 𝑡
𝑇𝑠
, (9)

where 𝑡 and 𝑇𝑠 denote the current time step and the total number
of time steps, respectively.

The tSB computes the potential energy as

𝑉𝑡𝑆𝐵 (𝒙) = 𝑎0−𝑎 (𝑡)
2

∑𝑁
𝑖 𝑥

2
𝑖
− 𝑐0

∑𝑁
𝑖

∑𝑁
𝑗 𝐽𝑖 𝑗𝑥𝑖𝑡𝑟𝑖(𝑥 𝑗). (10)

The Hamiltonian of the tSB system (𝐻𝑡𝑆𝐵 (𝒙, 𝒚)) is given by
replacing 𝑉 (𝒙) in (2) with 𝑉𝑡𝑆𝐵 (𝒙). The derivative of 𝑦𝑖 with
time is given by replacing 𝑃𝑖 in (5) with (7).

B. Uniformly Quantized Simulated Bifurcation
Multiple-value quantization is further considered to improve

computational accuracy. It is relatively costly to use a dynamic
threshold to identify different quantization levels. Thus, a fixed
threshold is used in the multiple-value qSB. Assume that the
position values are quantized to 𝑞 (= 2𝑛 + 1) levels. The gap
between two adjacent levels is called the quantization step size.
Let 𝑞𝑙 be the quantized value of the 𝑙th level of the quantization
intervals from 𝑡𝑙 to 𝑡𝑙+1. Its step size is denoted by 𝑠𝑙 (= 𝑡𝑙+1− 𝑡𝑙).

As shown in Fig. 1(b), uniform quantization uses the same
step size 𝑠𝑙 (= 2

𝑞
) in different quantization levels. To simplify

the computation, the position variables in the 1st and (2𝑛 + 1)th
quantization levels, i.e., when 2𝑛−1

𝑞
< |𝑥 𝑗 | ≤ 1, are quantized to

𝑠𝑔𝑛(𝑥 𝑗). Except for these two levels, for the 𝑙th level, 𝑞𝑙 is given
by the middle value in [𝑡𝑙 , 𝑡𝑙+1), as 𝑞𝑙 = −1+ 2𝑙−1

𝑞
to maintain the

accuracy. In this way, 𝑥 𝑗 is quantized to {0,± 2
𝑞
, ...,± 2𝑛−2

𝑞
,±1}.

Thus, assuming 𝑝𝑥 𝑗 = 𝑟𝑜𝑢𝑛𝑑 (𝑞 |𝑥 𝑗 |2), where 𝑟𝑜𝑢𝑛𝑑 () changes
a value to its nearest integer, the 𝑞-level uniform qSB (uSB)
computes 𝑃𝑖 as

𝑃𝑖 =
∑𝑁
𝑗=1 𝐽𝑖 𝑗𝑢(𝑥 𝑗), (11)

where

𝑢(𝑥 𝑗) =
{
𝑠𝑔𝑛(𝑥 𝑗) ·

2𝑝𝑥 𝑗
𝑞

𝑝𝑥 𝑗 <= 𝑛 − 1
𝑠𝑔𝑛(𝑥 𝑗) 𝑜𝑡ℎ𝑒𝑟𝑠

. (12)

Therefore, the uSB computes the potential energy as

𝑉𝑢𝑆𝐵 (𝒙) = 𝑎0−𝑎 (𝑡)
2

∑𝑁
𝑖 𝑥

2
𝑖
− 𝑐0

∑𝑁
𝑖

∑𝑁
𝑗 𝐽𝑖 𝑗𝑥𝑖𝑢(𝑥 𝑗), (13)

and its Hamiltonian (𝐻𝑢𝑆𝐵 (𝒙, 𝒚)) is given by replacing 𝑉 (𝒙)
in (2) with 𝑉𝑢𝑆𝐵 (𝒙). Similarly, the derivative of 𝑦𝑖 with time is
obtained by replacing 𝑃𝑖 in (5) with (11).

C. Logarithmic Quantized Simulated Bifurcation
The bifurcation that occurs at the beginning of a search plays

an important role in SB. Thus, computation with a relatively
high precision is preferred for the initially small position values.
When the magnitudes of the position values become larger with
time, it will be harder to change their sign bits, which makes
the system vulnerable to local minima. Therefore, less accurate
computation for positions with relatively large absolute values
may help the system search for a better solution.

Logarithmic quantization [31] is then applicable in the
multiple-value qSB. Different from uniform quantization, log-
arithmic quantization results in an exponential difference in 𝑠𝑙
and 𝑠𝑙+1. The two quantized values are uniformly distributed
in the base 2 logarithmic domain. In this way, as presented
in Fig. 1(c), the 𝑞-level logarithmic qSB (lSB) quantizes 𝑥 𝑗
into {0,±20,±2−1, ...,±2−(𝑛−1) }, so the multiplications in 𝑷
are realized directly through shift operations over a wide
numerical representation range for 𝑥 𝑗 . Assume |𝑥 𝑗 | = 2�̃� 𝑗 , then
�̃� 𝑗 = ⌈𝑙𝑜𝑔2 |𝑥 𝑗 |⌉. In the 𝑞-level lSB, 𝑃𝑖 is computed by

𝑃𝑖 =
∑𝑁
𝑗=1 𝐽𝑖 𝑗 𝑙𝑔(𝑥 𝑗), (14)

where

𝑙𝑔(𝑥 𝑗) = 𝑠𝑔𝑛(𝑥 𝑗) · 2�̃� 𝑗 . (15)

The expression of 𝑃𝑖 is further simplified as

𝑃𝑖 =
∑𝑁
𝑗=1 𝑠𝑔𝑛(𝑥 𝑗)𝑠(𝐽𝑖 𝑗 , �̃� 𝑗), (16)

where 𝑠() right shifts the binary representation of 𝐽𝑖 𝑗 by |�̃� 𝑗 |
bits, when 𝑥 𝑗 > −𝑛; otherwise, 𝑠() outputs 0.

The lSB computes the potential energy as

𝑉𝑙𝑆𝐵 (𝒙) = 𝑎0−𝑎 (𝑡)
2

∑𝑁
𝑖 𝑥

2
𝑖
− 𝑐0

∑𝑁
𝑖

∑𝑁
𝑗=1 𝑠𝑔𝑛(𝑥 𝑗)𝑠(𝐽𝑖 𝑗 , �̃� 𝑗)𝑥𝑖 , (17)

and similarly, its Hamiltonian (𝐻𝑙𝑆𝐵 (𝒙, 𝒚)) is given by replacing
𝑉 (𝒙) in (2) with 𝑉𝑙𝑆𝐵 (𝒙). ¤𝑦𝑖 is expressed by replacing 𝑃𝑖 in (5)
with (16).

0 10 20 30 40 50 60 70 80 90 100

Time Step

-1

-0.5

0

0.5

1

1.5

2

2.5

3
C

u
t
V

a
lu

e

10
4

bSB

dSB

tSB

uSB (n=5)

uSB (n=4)

uSB (n=3)

lSB (n=5)

lSB (n=4)

lSB (n=3)

80 90 100
3

3.1

3.2

3.3
10

4

0 100 200 300 400 500 600 700 800 900 1000

Time Step

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

C
u
t
V

a
lu

e

10
4

900 950 1000
3.3

3.305

3.31

3.315

3.32
10

4

bSB

dSB

tSB

uSB (n=5)

uSB (n=4)

uSB (n=3)

lSB (n=5)

lSB (n=4)

lSB (n=3)

0 50 100

0.5

1

1.5

2

2.5

3

10
4

(a) 𝑇𝑠 = 100 (b) 𝑇𝑠 = 1000

Fig. 2: Time evolutions of the cut values in a single trial on solving a 2000-spin fully connected Ising problem, the 𝐾2000
benchmark, by using SB algorithms. A fast convergence in Hamiltonian (indicated by the quickly increasing cut values) is

preferred for accelerating the search. The fluctuations in Hamiltonian (indicated by the instability of cut values) are beneficial for
jumping out of the local minima in a long search.

IV. Effects of Quantization on Simulated Bifurcation

A. Time Evolution

The max-cut problem (MCP) is to split vertices in an
undirected weighted graph into two groups to maximize the cut
value, which is the total weight of edges between two groups.
Fig. 2 shows the time evolutions of the cut values when solving
𝐾2000 benchmark using tSB, uSB, and lSB with 𝑇𝑠 = 100 and
1000 time steps (i.e., iterations). The time evolution of the cut
values shows energy convergence of the Ising model. Since tSB
using different Δ (Δ∗ and Δ(𝑡)) shows a similar pattern in energy
convergence, the tSB with Δ∗ is considered as an example. Note
that the parameter settings for all datasets are as follows: 𝑎0 = 1,
𝑎(𝑡) increases from 0 to 1, and 𝑐0 =

√
𝑁−1

2
√∑

𝑖, 𝑗 𝐽𝑖 𝑗
.

The tSB shows a similar tendency in energy convergence
as dSB due to their similar mechanism. At the beginning of
the search, the cut value obtained by using tSB increases more
quickly than using dSB when 𝑇𝑠 = 1000. Near the end of the
search, the tSB has stronger fluctuations than dSB when 𝑇𝑠 =

100, which indicates that the tSB is more likely to find a better
solution. The uSB with 𝑛 = 3, 4 and the lSB with 𝑛 = 3 lead to
a relatively slow convergence at the beginning due to the lack
of ability to recognize the small position values (quantized to
zeros) when computing 𝑷. Benefiting from the wide range of
numerical representation, the lSB with 𝑛 ≥ 4 increases the cut
value quickly at the beginning, whereas the uSB requires 𝑛 ≥ 5
for a quick convergence. The uSB with 𝑛 = 5 performs similarly
to bSB. Although bSB sharply increases the cut value at the
beginning, it cannot continuously decrease the energy with the
time step, especially for a large number of iterations. However,
in the uSB, the randomness introduced by quantization makes
the system transverse more local minima. Note that the energy
still shows a decreasing tendency even near the end of the search.
The lSB with 𝑛 ≥ 4 shows a better convergence, compared with
other SB algorithms. It decreases the energy in a relatively short
time at the beginning of a search and maintains beneficial slight
fluctuations at the end.

B. Solution Quality of using tSB, uSB and lSB

TABLE I: The Values of 𝑃𝑔 and 𝑆𝑔 for the Max-cut Problems
on 2000-node Fully and Sparsely Connected Graphs

Values of 𝑃𝑔 Gset 𝐾2000
and 𝑆𝑔 with 𝑇𝑠 bSB dSB tSB1 uSB5 lSB4 bSB dSB tSB1 uSB5 lSB4

𝑇𝑠 = 100 𝑃99% 29% 2% 5% 21% 10% 0 0 3% 12% 6%
𝑆99% 1344 22k 8978 1953 4370 - - 15k 3602 7442

𝑇𝑠 = 1000 𝑃99.5% 85% 72% 77% 85% 84% 75% 0 55% 83% 70%
𝑆99.5% 2427 3617 3133 2427 2512 3321 - 5767 2598 3824

𝑇𝑠 = 10000 𝑃99.9% 0 58% 78% 59% 61% 0 0 15% 4% 12%
𝑆99.9% - 53k 30k 51k 48k - - 283k 1128k 360k

We consider the metrics of probability-to-target (𝑃𝑔) and step-
to-target (𝑆𝑔) for the evaluation of SB algorithms [32]. 𝑃𝑔 is
computed by dividing the number of trials that are able to obtain
the target solution by the total number of trials, where 𝑔 indicates
the quality of the target solution. For example, 𝑃99.9% gives the
probability of obtained solutions reaching 99.9% of the best-
known value. 𝑆𝑔 estimates the number of time steps required
to find the target solution with a probability of 99%, given by
𝑆𝑔 = 𝑇𝑠 · 𝑙𝑜𝑔0.01

𝑙𝑜𝑔 (1−𝑃𝑔) , where 𝑇𝑠 is the total number of time steps.
Table I compares qSB, including tSB1 (tSB with (9) as the

threshold for ternarization), uSB5 (uSB with 𝑛 = 5), and lSB4
(lSB with 𝑛 = 4), with the bSB and dSB in terms of 𝑃𝑔 and 𝑆𝑔 on
MCPs with 2000-node graphs,𝐾2000 and five Gset datasets from
the Gset benchmark [33] in 103 trials. For the Gset benchmarks,
bSB can quickly find a good solution, and dSB is better suited
for reaching a high solution quality by a long search. Compared
with dSB, the proposed qSB algorithms perform better for
both long and short searches in most cases. Moreover, they
also perform similarly as bSB for a short search; however, for
sparsely connected problems, bSB excels at achieving high-
quality results within a very short time. Due to the massive
node connectivity in the 𝐾2000, SB requires a larger number
of time steps to obtain a good solution. For 𝑇𝑠 = 10000, it is
difficult for bSB and dSB to reach 99.9% of the best-known cut
value, whereas the proposed qSB can find a better solution due
to their ability to jump out of the local minima. Note that for

TABLE II: Summary of Simulated Bifurcation Algorithms
SB Complexity of 𝑷 Solution Search

Algorithms Compression Operation Time Structure
bSB [9] N/A MUL H SS SM
dSB [9] N/A SIN L LS MM

tSB DYN H SIN L SS, LS SM, MM
uSB STA M MUL M SS, LS SM, MM
lSB STA L SHIF L SS, LS SM, MM

Compression: 𝒙 is dynamically (DYN) or statically (STA) compressed.
Operation: 𝐽𝑖 𝑗 𝑥 𝑗 in 𝑷 is implemented by multiplication (MUL), sign
conversion (SIN), or shift (SHIF) operations. “H”, “M”, and “L” indicate that
the compression degree or the complexity of the operation is high, moderate,
or low. Time: the algorithm is suitable for a short search (SS) or a long search
(LS). Structure: the algorithm is suitable for a single SB machine (SM) or
multiple SB machines (MM) for choosing the best solution.

𝑇𝑠 = 10000, the average solution quality of dSB is superior to
that of bSB. It indicates that the proposed qSB can obtain 99.9%
of the best-known cut value with fewer time steps by up to an
order of magnitude.

Table II summarizes the characteristics of different SB algo-
rithms. The proposed qSB can compress the data by quantizing
a group of position values to zeros. The position values are
highly compressed in the tSB, but the dynamic threshold will
incur additional overhead in the implementation. The tSB, dSB,
and lSB algorithms significantly simplify the multiplication in
𝑷. Compared with bSB, the design of the multipliers can be
customized in uSB for the quantized position values to improve
hardware efficiency. Moreover, the proposed qSB can obtain a
good solution in a short search, and also jump out of the local
minima for energy convergence in a long search.

C. Dynamics Analysis
To analyze the dynamics of various SB systems, we consider

solving a two-spin Ising problem with coupling coefficients
𝐽12 = 𝐽21 = −1. We first analyze the dynamics of dSB and
bSB systems and then show the dynamics of tSB1, uSB5, and
lSB4 with 100 time steps.

Figs. 3(a)-(c) and (d)-(f) present the potential energy profile
when using bSB and dSB systems, respectively. Note that the
evolution is divided into initial, intermediate and final stages.
This is determined by the bifurcation time point, i.e., 𝑇𝑠 = 80
and 𝑇𝑠 = 70, respectively, for bSB and dSB. When 𝑇𝑠 = 0, the
SB system stays at the initial stage; when 𝑇𝑠 is smaller than the
bifurcation time point, the SB system stays at the intermediate
stage; and when 𝑇𝑠 is greater than the bifurcation time point, the
SB system stays at the final stage.

The position values are randomly initialized as zeros at the
beginning, which are around the origin (the center of the 2D
potential energy profile), as shown in Figs. 3(a) and (d). Then,
at the intermediate stage for bSB presented in Fig. 3(b), indicated
by the dark blue area, the potential energy becomes lower when
one position value is negative and another one is positive.
Moreover, the position values, indicated by the red line that
is hard to see, still stay around the origin. At the end, indicated
by Fig. 3(c), two local minima of the potential energy appear
when one position value is around −1 and the other position
value is around +1. The position values quickly jump from the
origin to the boundaries +1 or −1, resulting in a fast energy
convergence. For dSB, the position values frequently change

(a) The potential energy
profile when 𝑇𝑠 = 0 with
the randomly initialized
position values in bSB.

(b) The potential energy
profile when 𝑇𝑠 = 80 with
the change of position val-
ues when 1 ≤ 𝑇𝑠 ≤ 80 in
bSB.

(c) The potential energy
profile when 𝑇𝑠 = 100
with the change of position
values when 81 ≤ 𝑇𝑠 ≤
100 in bSB.

(d) The potential energy
profile when 𝑇𝑠 = 0 with
the randomly initialized
position values in dSB.

(e) The potential energy
profile when 𝑇𝑠 = 70 with
the change of position val-
ues when 1 ≤ 𝑇𝑠 ≤ 70 in
dSB.

(f) The potential energy
profile when 𝑇𝑠 = 100
with the change of position
values when 71 ≤ 𝑇𝑠 ≤
100 in dSB.

Fig. 3: The 2D potential energy profile for solving a two-spin
Ising problem by using dSB and bSB systems. The change of
position values during each stage with time is indicated by the

red line.

between two local minima at the intermediate stage, as shown
in Fig. 3(e). The position values exhibit oscillatory evolution
towards one of two local minima at the final stage, as shown in
Fig. 3(f).

As shown in Fig. 4(a), the potential energy profile of using tSB
at the initial stage is similar to that of using dSB as presented in
Fig. 3(d). At the intermediate stage in Fig. 4(b), the areas darker
than the surrounding regions indicate the presence of three local
minima in the potential energy, with one located at the origin
and the other two at the upper left and lower right corners. The
position values change surrounding these three local minima, as
shown in Fig. 4(b). As presented in Fig. 4(c), at the final stage,
there are two local minima that show one of the two position
values being negative and the other being positive. When the
position values are both positive or negative, the potential energy
is higher, as seen in the upper right and lower left corners. Note
that due to the quantization of the small position values to 0, the
potential energy near the origin is the same. The position values
after bifurcation oscillates to one of the two local minima. As
shown in Figs. 4(d)-(i), multiple-value qSB systems, including
the uSB and lSB systems, behave like the bSB system (as shown
in Fig. 3(a)-(c)). Due to the quantization, the potential energy
profile exhibits a staircase pattern. The position values evolve
from the origin, as shown as the red dots that are hard to see in
Figs. 4(d) and (g), then circulate around the origin, as shown in
Figs. 4(e) and (h), and finally approaching one of the two local
minima, as shown in Figs. 4(f) and (i).

V. Designs of Quantized Simulated Bifurcation
Machines

This section presents a general architecture for the QSBM
based on the tSB1, uSB5 and lSB4 algorithms. The implemen-
tations for ternary QSBM (TSBM), uniform QSBM (USBM),

(a) The potential energy
profile when 𝑇𝑠 = 0 with
the randomly initialized
position value in tSB1.

(b) The potential energy
profile when 𝑇𝑠 = 70 with
the change of position val-
ues when 1 ≤ 𝑇𝑠 ≤ 70 in
tSB1.

(c) The potential energy
profile when 𝑇𝑠 = 100
with the change of position
values when 71 ≤ 𝑇𝑠 ≤
100 in tSB1.

(d) The potential energy
profile when 𝑇𝑠 = 0 with
the randomly initialized
position value in uSB5.

(e) The potential energy
profile when 𝑇𝑠 = 70 with
the change of position val-
ues when 1 ≤ 𝑇𝑠 ≤ 70 in
uSB5.

(f) The potential energy
profile when 𝑇𝑠 = 100
with the change of position
values when 71 ≤ 𝑇𝑠 ≤
100 in uSB5.

(g) The potential energy
profile when 𝑇𝑠 = 0 with
the randomly initialized
position value in lSB4.

(h) The potential energy
profile when 𝑇𝑠 = 70 with
the change of position val-
ues when 1 ≤ 𝑇𝑠 ≤ 70 in
lSB4.

(i) The potential energy
profile when 𝑇𝑠 = 100
with the change of position
values when 71 ≤ 𝑇𝑠 ≤
100 in lSB4.

Fig. 4: The 2D potential energy profile for solving a two-spin
Ising problem by using qSB systems.

and logarithmic QSBM (LSBM) share a similar structure, but
differ in the quantization and multiplication units depending on
the quantization schemes.

A. The Overall Architecture

Fig. 5 shows the general architecture of an 𝑁-spin QSBM.
Note that 𝑁 spins are grouped into 𝑃𝑏 sets, where each set has
𝑁𝑏 (= 𝑁

𝑃𝑏
) spins. There are 𝑃𝑏 spin units in the QSBM, which are

processed in parallel. Each spin unit is responsible for updating
the position and momentum values for 𝑁𝑏 oscillators. The
QSBM consists of a system controller, an evolution controller,
a memory block for the quantized position values (𝑄𝑋), and 𝑃𝑏
spin units. These units are introduced as follows:

• Evolution controller: It computes the time-changing pa-
rameter −(𝑎0 − 𝑎(𝑡)) used for computing ¤𝑦𝑖 in (5) for all
spin units. Additionally, for the TSBM, it also generates
the threshold Δ in (9) for ternarization. Since these
two parameters change linearly with the time step, an
accumulator is used to compute 𝑎(𝑡), which increases from
0 to 1. The value in the register increases by 𝐴 in each
time step. Then, an adder is used for generating 𝑎 (that is
equivalent to−(𝑎0−𝑎(𝑡))) in the linear parameter generator
(LPG). A multiplier is used to multiply 𝑎(𝑡) by 𝑇𝐻 (that
is approximately equivalent to 0.7) to generate Δ in the
threshold generator (TG).

• 𝑄𝑋: It uses a double-buffer structure, as in [34]. It
broadcasts 𝑁 quantized position values from one of the
two buffers to all the spin units for computing 𝑷 and writes
the new quantized position values from each spin unit to
another buffer.

• Spin unit: Each spin unit consists of a memory for the cou-
pling coefficients for 𝑁𝑏 spins (𝑱𝑩), a memory for 𝑁𝑏 time-
evolved position values (𝑿), a memory for 𝑁𝑏 time-evolved
momentum values (𝒀), a matrix-vector multiplication unit
(MM), a momentum update unit (MUU), a position update
unit (PUU), a boundary unit (BU), and a quantization unit
(QUA). Note that for the 𝑖th spin unit, 𝑱𝑩, 𝑿 and 𝒀 are,
respectively, denoted with the corresponding subscripts.

B. The Spin Unit Design

1) The Quantization Unit (QUA)
We assume the threshold, position, and momentum values are

represented by 𝑝 bits with one sign bit and 𝑝 − 1 fractional bits.
In what follows, the QUA designs in the TSBM, USBM, and
LSBM are introduced.

For the tSB1, the positions are ternarized to −1, +1, or 0
depending on the threshold Δ as in (8). As shown in Fig. 6, it
is implemented by using a comparator, CMP. When quantizing
the 𝑗 th oscillator position value 𝑥 𝑗 , the CMP outputs a two-
bit signal 𝑞𝑥 𝑗 to indicate the ternarized position value, which
is “10”, “01”, or “00” when 𝑥 𝑗 < −Δ, 𝑥 𝑗 > Δ, or |𝑥 𝑗 | ≤ Δ,
respectively.

The uSB5 quantizes the position value 𝑥 𝑗 into one in
{0,± 2

11 ,±
4
11 ,±

6
11 ,±

8
11 ,±1}. The uniform quantization is im-

plemented in the following three steps: Step (1) to obtain the
absolute position value of 𝑥 𝑗 , denoted by 𝑥 𝑗 using 𝑝−1 fractional
bits; Step (2) to determine the magnitude of the quantized
value; and Step (3) to identify whether or not the value of 𝑥 𝑗
is negative. Following these steps, 𝑥 𝑗 is encoded as a four-bit
signal, 𝑞𝑥 𝑗 [3 : 0]. The less significant three bits in 𝑞𝑥 𝑗 [3 : 0],
i,e., 𝑞𝑥 𝑗 [2 : 0], are used to encode 𝑥 𝑗 for Step (2) to indicate
quantizing 𝑥 𝑗 to 0, 2

11 , 4
11 , 6

11 , 8
11 , or 1. 𝑞𝑥 𝑗 [3] is used to detect

whether 𝑥 𝑗 is a negative value for Step (3).
As shown in Table III, to save hardware, we first approximate

the binary representation of 𝑘
11 (where 1 ≤ 𝑘 ≤ 9, 𝑘 ∈ N). It is

rounded to the nearest value 𝑟𝑘 that can be represented by four
fractional bits, as

𝑟𝑘 =
1

16 ⌊
16𝑘
11 + 1

2 ⌋ ≈
𝑘
11 , (18)

where we first scale the value of 𝑘
11 by 16 to map the fractional

part of 𝑘
11 to four fractional bits; then, we add 1

2 to ensure that
the result is rounded to the nearest integer by using the floor
operation; finally, the integer is divided by 16 to obtain the
approximate representation 𝑟𝑘 for 𝑘

11 .
Based on this approximation, the conditions and operations

are approximated by using those inside the brackets in Table III.
Then, the Karnaugh map (K-map) in Table IV is used to

simplify expressions for 𝑞𝑥 𝑗 [2 : 0]. Note that the minterms for
𝑞𝑥 𝑗 [2], 𝑞𝑥 𝑗 [1], and 𝑞𝑥 𝑗 [0] are circled by using the cyan dash-
dotted line, the red solid line, and the blue dash line, respectively.

LPG

A

TH

∆

TG

Evolution
Controller

QX

System Controller

a

𝑴𝑼𝑳

𝑴𝑼𝑳

...

𝑴𝑼𝑳

𝑱𝟏𝟏, 𝑱𝟏(𝑷𝒄+𝟏),…

𝒒𝒙𝟏,𝒒𝒙(𝑷𝒄+𝟏),…

𝑱𝟏𝟐, 𝑱𝟏(𝑷𝒄+𝟐),…

𝒒𝒙𝟐,𝒒𝒙(𝑷𝒄+𝟐),…

𝑱𝟏𝑷𝒄 , 𝑱𝟏(𝟐𝑷𝒄),…

𝒒𝒙𝑷𝒄 ,𝒒𝒙(𝟐𝑷𝒄),…

0

...

MAC1

MAC2

MAC𝑷𝒓

MM1

...

PUU

QUA

𝒙𝟏

.

.

.

.

.

.
𝒙𝟐

𝒙𝑵𝒃

X1

𝒙𝟏

.

.

.

. . .

. . .

. . .
𝒙𝟐

𝒙𝑵𝒃

X1

𝒚𝟏

.

.

.

.

.𝒚𝟐

𝒚𝑵𝒃

Y1

𝒚𝟏

.

.

.

. . .

. . .𝒚𝟐

𝒚𝑵𝒃

Y1

.

𝒚𝟏

.

.

.

. . .

. . .𝒚𝟐

𝒚𝑵𝒃

Y1

. . .

MUU
c0

a

MUU
c0

a

BU

.

.

.

.

.𝑱𝟐𝟏

𝑱𝑵𝒃𝟏

𝑱𝟏𝟏𝑱𝟏𝑵

𝑱𝑩𝟏 𝑱𝑩𝟏

...

.𝑱𝑵𝒃𝑵

.𝑱𝟐𝑵

.

.

.

...

𝑵

𝑵𝒃

.

.

.

. . .

. . .𝑱𝟐𝟏

𝑱𝑵𝒃𝟏 . . .

𝑱𝟏𝟏𝑱𝟏𝑵

𝑱𝑩𝟏

...

. . .𝑱𝑵𝒃𝑵

. . .𝑱𝟐𝑵

.

.

.

...

𝑵

𝑵𝒃

else

C
M
P"𝟏𝟏"

"𝟎𝟎"

𝒙𝒊 < −𝟏

"𝟏𝟎" 𝒙𝒊 > 𝟏

00

10

11

M
U
X
2

0

1

M
U
X
1

𝒚𝒊[𝒑 − 𝟏:𝟎]

𝒙𝒊

𝒙𝒊

"𝟎𝟏𝟏…𝟏"

"𝟏𝟎𝟎…𝟎"

𝒚𝒊

"𝟎𝟎𝟎…𝟎"

𝒗[𝟏:𝟎]

𝒗[𝟏:𝟎]
𝒗[𝟏]

𝒙𝒊

η

η

𝒚𝒊

𝑷𝑩𝟏

𝑴𝑼𝑳

𝑴𝑼𝑳

...

𝑴𝑼𝑳

𝑱𝟏𝟏, 𝑱𝟏(𝑷𝒄+𝟏),…

𝒒𝒙𝟏,𝒒𝒙(𝑷𝒄+𝟏),…

𝑱𝟏𝟐, 𝑱𝟏(𝑷𝒄+𝟐),…

𝒒𝒙𝟐,𝒒𝒙(𝑷𝒄+𝟐),…

𝑱𝟏𝑷𝒄 , 𝑱𝟏(𝟐𝑷𝒄),…

𝒒𝒙𝑷𝒄 ,𝒒𝒙(𝟐𝑷𝒄),…

0

...

MAC1

MAC2

MAC𝑷𝒓

MM1

...

PUU

QUA

𝒙𝟏

.

.

.

. . .

. . .

. . .
𝒙𝟐

𝒙𝑵𝒃

X1

𝒚𝟏

.

.

.

. . .

. . .𝒚𝟐

𝒚𝑵𝒃

Y1

. . .

MUU
c0

a

BU

.

.

.

. . .

. . .𝑱𝟐𝟏

𝑱𝑵𝒃𝟏 . . .

𝑱𝟏𝟏𝑱𝟏𝑵

𝑱𝑩𝟏

...

. . .𝑱𝑵𝒃𝑵

. . .𝑱𝟐𝑵

.

.

.

...

𝑵

𝑵𝒃

else

C
M
P"𝟏𝟏"

"𝟎𝟎"

𝒙𝒊 < −𝟏

"𝟏𝟎" 𝒙𝒊 > 𝟏

00

10

11

M
U
X
2

0

1

M
U
X
1

𝒚𝒊[𝒑 − 𝟏:𝟎]

𝒙𝒊

𝒙𝒊

"𝟎𝟏𝟏…𝟏"

"𝟏𝟎𝟎…𝟎"

𝒚𝒊

"𝟎𝟎𝟎…𝟎"

𝒗[𝟏:𝟎]

𝒗[𝟏:𝟎]
𝒗[𝟏]

𝒙𝒊

η

η

𝒚𝒊

𝑷𝑩𝟏

Spin Unit 1

Spin Unit 2

Spin Unit

...

𝑷𝒃

𝑸𝑩𝟏

.

.

.

.𝒒𝒙𝟏

.

.

.

.𝒒𝒙𝟐

.𝒒𝒙𝑵𝒃

𝒒𝒙𝟏

.

.

.

. . .𝒒𝒙𝟐

. . .𝒒𝒙𝑵𝒃

. . .𝒒𝒙𝟏

.

.

.

. . .𝒒𝒙𝟐

. . .𝒒𝒙𝑵𝒃

. . .𝒒𝒙𝟏

.

.

.

. . .𝒒𝒙𝟐

. . .𝒒𝒙𝑵𝒃

.𝒒𝒙𝑵−𝑵𝒃+𝟏

.

.

.

.

.

𝑸𝑩𝑷𝒃

∆

𝒙𝒊[𝒑 − 𝟏:𝟎]

−𝒂𝟎

𝒒𝒙𝑵−𝑵𝒃+𝟐

𝒒𝒙𝑵

LPG

A

TH

∆

TG

Evolution
Controller

QX

System Controller

a

𝑴𝑼𝑳

𝑴𝑼𝑳

...

𝑴𝑼𝑳

𝑱𝟏𝟏, 𝑱𝟏(𝑷𝒄+𝟏),…

𝒒𝒙𝟏,𝒒𝒙(𝑷𝒄+𝟏),…

𝑱𝟏𝟐, 𝑱𝟏(𝑷𝒄+𝟐),…

𝒒𝒙𝟐,𝒒𝒙(𝑷𝒄+𝟐),…

𝑱𝟏𝑷𝒄 , 𝑱𝟏(𝟐𝑷𝒄),…

𝒒𝒙𝑷𝒄 ,𝒒𝒙(𝟐𝑷𝒄),…

0

...

MAC1

MAC2

MAC𝑷𝒓

MM1

...

PUU

QUA

𝒙𝟏

.

.

.

. . .

. . .

. . .
𝒙𝟐

𝒙𝑵𝒃

X1

𝒚𝟏

.

.

.

. . .

. . .𝒚𝟐

𝒚𝑵𝒃

Y1

. . .

MUU
c0

a

BU

.

.

.

. . .

. . .𝑱𝟐𝟏

𝑱𝑵𝒃𝟏 . . .

𝑱𝟏𝟏𝑱𝟏𝑵

𝑱𝑩𝟏

...

. . .𝑱𝑵𝒃𝑵

. . .𝑱𝟐𝑵

.

.

.

...

𝑵

𝑵𝒃

else

C
M
P"𝟏𝟏"

"𝟎𝟎"

𝒙𝒊 < −𝟏

"𝟏𝟎" 𝒙𝒊 > 𝟏

00

10

11

M
U
X
2

0

1

M
U
X
1

𝒚𝒊[𝒑 − 𝟏:𝟎]

𝒙𝒊

𝒙𝒊

"𝟎𝟏𝟏…𝟏"

"𝟏𝟎𝟎…𝟎"

𝒚𝒊

"𝟎𝟎𝟎…𝟎"

𝒗[𝟏:𝟎]

𝒗[𝟏:𝟎]
𝒗[𝟏]

𝒙𝒊

η

η

𝒚𝒊

𝑷𝑩𝟏

Spin Unit 1

Spin Unit 2

Spin Unit

...

𝑷𝒃

𝑸𝑩𝟏

.

.

.

. . .𝒒𝒙𝟏

.

.

.

. . .𝒒𝒙𝟐

. . .𝒒𝒙𝑵𝒃

. . .𝒒𝒙𝑵−𝑵𝒃+𝟏

.

.

.

. . .

. . .

𝑸𝑩𝑷𝒃

∆

𝒙𝒊[𝒑 − 𝟏:𝟎]

−𝒂𝟎

𝒒𝒙𝑵−𝑵𝒃+𝟐

𝒒𝒙𝑵

Fig. 5: A general architecture of an 𝑁-spin QSBM.

else

C
M
P

𝒙𝒋[𝒑 − 𝟏:𝟎]

𝒒𝒙𝒋[𝟏:𝟎]

∆[𝒑 − 𝟏:𝟎]

"𝟏𝟎"

"𝟎𝟏"

"𝟎𝟎"

𝒙𝒋 < −∆

𝒙𝒋 > ∆

else

C
M
P

𝒙𝒋[𝒑 − 𝟏:𝟎]

𝒒𝒙𝒋[𝟏:𝟎]

∆[𝒑 − 𝟏:𝟎]

"𝟏𝟎"

"𝟎𝟏"

"𝟎𝟎"

𝒙𝒋 < −∆

𝒙𝒋 > ∆

Fig. 6: The circuit diagram of QUA for tSB1.

TABLE III: Encoding 𝑥 𝑗 in the QUA for uSB5
Conditions Operations 𝑞𝑥 𝑗 [2 : 0]

�̂� 𝑗 <
1
11 (ap. �̂� 𝑗 ≤ 1

16) Quantized to 0 “100”
1
11 ≤ �̂� 𝑗 < 3

11 (ap. 1
16 < �̂� 𝑗 <

4
16) Quantized to 2

11 (ap. 3
16) “000”

3
11 ≤ �̂� 𝑗 < 5

11 (ap. 4
16 ≤ �̂� 𝑗 ≤ 7

16) Quantized to 4
11 (ap. 6

16) “001”
5
11 ≤ �̂� 𝑗 < 7

11 (ap. 7
16 < �̂� 𝑗 ≤

10
16) Quantized to 6

11 (ap. 9
16) “010”

7
11 ≤ �̂� 𝑗 < 9

11 (ap. 10
16 < �̂� 𝑗 ≤

13
16) Quantized to 8

11 (ap. 12
16) “011”

�̂� 𝑗 ≥ 9
11 (ap. �̂� 𝑗 > 13

16) Quantized to +1 “111”
Conditions Operations 𝑞𝑥 𝑗 [3]
𝑥 𝑗 [𝑝 − 1] = 1 Multiplied with −1 “1”

Else Do nothing “0”
ap.=“ approximated by”.

The simplified expressions of 𝑞𝑥 𝑗 [2], 𝑞𝑥 𝑗 [1], and 𝑞𝑥 𝑗 [0] are

TABLE IV: Karnaugh map for 𝑞𝑥 𝑗 [2 : 0] for uSB5

00

01

11

10

00 01 11 10

𝑥
𝑗
[𝑝

−
4]
𝑥
𝑗
[𝑝

−
5]

�̂� 𝑗 [𝑝 − 2] �̂� 𝑗 [𝑝 − 3]

100

100

000

000

001

001

001

001

011

011

111

111

010

010

011

010

given by

𝑞𝑥 𝑗 [2] = 𝑥 𝑗 [𝑝 − 2] · 𝑥 𝑗 [𝑝 − 3] · 𝑥 𝑗 [𝑝 − 4] (19)
+𝑥 𝑗 [𝑝 − 2] · 𝑥 𝑗 [𝑝 − 3] · 𝑥 𝑗 [𝑝 − 4]

= 𝑥 𝑗 [𝑝 − 2] + 𝑥 𝑗 [𝑝 − 3] + 𝑥 𝑗 [𝑝 − 4]
+𝑥 𝑗 [𝑝 − 2] · 𝑥 𝑗 [𝑝 − 3] · 𝑥 𝑗 [𝑝 − 4],

𝑞𝑥 𝑗 [1] = 𝑥 𝑗 [𝑝 − 2], (20)
𝑞𝑥 𝑗 [0] = 𝑥 𝑗 [𝑝 − 2] · 𝑥 𝑗 [𝑝 − 4] · 𝑥 𝑗 [𝑝 − 5] (21)

+𝑥 𝑗 [𝑝 − 3],

where “·” indicates a bit-wise AND operation and “+” indicates
a bit-wise OR operation.

As in Table III, 𝑞𝑥 𝑗 [3] = 1 if and only if 𝑥 𝑗 [𝑝−1] = 1. Thus,
the expression for 𝑞𝑥 𝑗 [3] is straightforward to obtain, as

𝑞𝑥 𝑗 [3] = 𝑥 𝑗 [𝑝 − 1] . (22)

Fig. 7 gives the circuit diagram of the QUA for uSB5. The S1
unit implements Step (1) with the output 𝑥 𝑗 [𝑝−2, 0]. According
to (19)-(21), the S2 unit is used to generate the encoded signal
𝑞𝑥 𝑗 [2 : 0] by AND, OR and NOT operations for Step (2). The
S3 implements Step (3).

S3

0

1

M
U
X+1

𝒙
𝒋
[𝒑

−
𝟐
:𝟎
]

𝒒𝒙𝒋[𝟑]

𝒒𝒙𝒋[𝟐]

𝒙𝒋[𝒑 − 𝟏]

𝒙𝒋[𝒑 − 𝟏:𝟎] 𝒙𝒋[𝒑 − 𝟐:𝟎]

𝒙𝒋 [𝒑 − 𝟒]

𝒒𝒙𝒋[𝟏]

𝒙𝒋 [𝒑 − 𝟑]

𝒙𝒋 [𝒑 − 𝟓]

𝒒𝒙𝒋[𝟎]

𝒙𝒋 [𝒑 − 𝟐]

0

1

M
U
X+1

𝒙
𝒋
[𝒑

−
𝟐
:𝟎
]

𝒒𝒙𝒋[𝟑]

𝒒𝒙𝒋[𝟐]

𝒙𝒋[𝒑 − 𝟏]

𝒙𝒋[𝒑 − 𝟏:𝟎] 𝒙𝒋[𝒑 − 𝟐:𝟎]

𝒙𝒋 [𝒑 − 𝟒]

𝒒𝒙𝒋[𝟏]

𝒙𝒋 [𝒑 − 𝟑]

𝒙𝒋 [𝒑 − 𝟓]

𝒒𝒙𝒋[𝟎]

𝒙𝒋 [𝒑 − 𝟐]

S1

S2

0

1

M
U
X+1

𝒙
𝒋
[𝒑

−
𝟐
:𝟎
]

𝒒𝒙𝒋[𝟑]

𝒒𝒙𝒋[𝟐]

𝒙𝒋[𝒑 − 𝟏]

𝒙𝒋[𝒑 − 𝟏:𝟎] 𝒙𝒋[𝒑 − 𝟐:𝟎]

𝒙𝒋 [𝒑 − 𝟒]

𝒒𝒙𝒋[𝟏]

𝒙𝒋 [𝒑 − 𝟑]

𝒙𝒋 [𝒑 − 𝟓]

𝒒𝒙𝒋[𝟎]

𝒙𝒋 [𝒑 − 𝟐]

S1

S2

S3

0

1

M
U
X+1

𝒙
𝒋
[𝒑

−
𝟐
:𝟎
]

𝒒𝒙𝒋[𝟑]

𝒒𝒙𝒋[𝟐]

𝒙𝒋[𝒑 − 𝟏]

𝒙𝒋[𝒑 − 𝟏:𝟎] 𝒙𝒋[𝒑 − 𝟐:𝟎]

𝒙𝒋 [𝒑 − 𝟒]

𝒒𝒙𝒋[𝟏]

𝒙𝒋 [𝒑 − 𝟑]

𝒙𝒋 [𝒑 − 𝟓]

𝒒𝒙𝒋[𝟎]

𝒙𝒋 [𝒑 − 𝟐]

S1

S2

Fig. 7: The circuit diagram of the QUA for uSB5.

The lSB4 algorithm quantizes the position values into ± 1
8 ,

± 1
4 , ± 1

2 , ±1, or 0. Similar to uniform quantization, logarithmic
quantization is implemented in the following three steps: Step
(1) to obtain the absolute position value of 𝑥 𝑗 , as 𝑥 𝑗 [𝑝 − 2 : 0]
with 𝑝−1 fractional bits; Step (2) to determine how many bits to
be right shifted; and Step (3) to identify whether the value of 𝑥 𝑗
is negative and whether to quantize 𝑥 𝑗 to 0. Similar to uSB5, the
position values are encoded as 𝑞𝑥 𝑗 [3 : 0]. As shown in Table V,
𝑞𝑥 𝑗 [1 : 0] is used to encode 𝑥 𝑗 to indicate right shifting 0, 1, 2,
or 3 bits for Step (2). Four conditions can be identified by using
the first four fractional bits of 𝑥 𝑗 . Three cases are considered and
identified for 𝑞𝑥 𝑗 [3 : 2], as shown in Table V. When 𝑥 𝑗 < 1

16
(not considered for 𝑞𝑥 𝑗 [1 : 0]), 𝑞𝑥 𝑗 [3 : 2] is encoded to “10”
to indicate 𝑥 𝑗 being quantized to 0. When 𝑥 𝑗 ≥ 1

16 , if 𝑥 𝑗 is a
negative value, 𝑞𝑥 𝑗 [3 : 2] is encoded to “01”; otherwise, it is
encoded to “00”.

TABLE V: Encoding 𝑥 𝑗 in the QUA for lSB4
Conditions Operations 𝑞𝑥 𝑗 [1 : 0]
1
16 ≤ �̂� 𝑗 < 1

8 Right shift 3 bits “11”
1
8 ≤ �̂� 𝑗 < 1

4 Right shift 2 bits “10”
1
4 ≤ �̂� 𝑗 < 1

2 Right shift 1 bits “01”
�̂� 𝑗 ≥ 1

2 Do nothing “00”
Conditions Operations 𝑞𝑥 𝑗 [3 : 2]
�̂� 𝑗 <

1
16 Quantized to 0 “10”

�̂� 𝑗 ≥ 1
16 and 𝑥 𝑗 [𝑝 − 1] = 1 Multiplied with -1 “01”

Else Do nothing “00”

Table VI gives the Karnaugh map for 𝑞𝑥 𝑗 [1 : 0]. Note that
when 𝑥 𝑗 < 1

16 , i.e., 𝑥 𝑗 [𝑝−2 : 𝑝−5] = “0000”, 𝑞𝑥 𝑗 [1 : 0] could
be any value in this encoding stage. Note that the minterms for
𝑞𝑥 𝑗 [1] and 𝑞𝑥 𝑗 [0] are circled by using the red solid line and
the blue dash line, respectively. Then 𝑞𝑥 𝑗 [1] and 𝑞𝑥 𝑗 [0] are

0

1

M
U
X+1 𝒙𝒋 [𝒑 − 𝟐:𝟎]

𝒙𝒋 [𝒑 − 𝟐:𝒑 − 𝟓]

𝒙𝒋 [𝒑 − 𝟐]
𝒙𝒋 [𝒑 − 𝟑]
𝒙𝒋 [𝒑 − 𝟒]
𝒙𝒋 [𝒑 − 𝟓]

𝒒𝒙𝒋[𝟑]

𝒒𝒙𝒋[𝟐]

𝒙𝒋[𝒑 − 𝟏]

𝒙𝒋[𝒑 − 𝟏:𝟎] 𝒙𝒋[𝒑 − 𝟐:𝟎]

𝒙
𝒋
[𝒑

−
𝟐
]

𝒒𝒙𝒋[𝟏]

𝒙
𝒋
[𝒑

−
𝟑
]

𝒙
𝒋
[𝒑

−
𝟒
]

𝒒𝒙𝒋[𝟎]

S1

S2

S3

0

1

M
U
X+1 𝒙𝒋 [𝒑 − 𝟐:𝟎]

𝒙𝒋 [𝒑 − 𝟐:𝒑 − 𝟓]

𝒙𝒋 [𝒑 − 𝟐]
𝒙𝒋 [𝒑 − 𝟑]
𝒙𝒋 [𝒑 − 𝟒]
𝒙𝒋 [𝒑 − 𝟓]

𝒒𝒙𝒋[𝟑]

𝒒𝒙𝒋[𝟐]

𝒙𝒋[𝒑 − 𝟏]

𝒙𝒋[𝒑 − 𝟏:𝟎] 𝒙𝒋[𝒑 − 𝟐:𝟎]

𝒙
𝒋
[𝒑

−
𝟐
]

𝒒𝒙𝒋[𝟏]

𝒙
𝒋
[𝒑

−
𝟑
]

𝒙
𝒋
[𝒑

−
𝟒
]

𝒒𝒙𝒋[𝟎]

S1

S2

S3

Fig. 8: The circuit diagram of the QUA for lSB4.

expressed as

𝑞𝑥 𝑗 [1] = 𝑥 𝑗 [𝑝 − 2] · 𝑥 𝑗 [𝑝 − 3] = 𝑥 𝑗 [𝑝 − 2] + 𝑥 𝑗 [𝑝 − 3],
(23)

𝑞𝑥 𝑗 [0] = 𝑥 𝑗 [𝑝 − 2] · 𝑥 𝑗 [𝑝 − 3] + 𝑥 𝑗 [𝑝 − 2] · 𝑥 𝑗 [𝑝 − 4] (24)
= 𝑥 𝑗 [𝑝 − 2] · (𝑥 𝑗 [𝑝 − 3] + 𝑥 𝑗 [𝑝 − 4]).

TABLE VI: Karnaugh map for 𝑞𝑥 𝑗 [1 : 0] for lSB4

00

01

11

10

00 01 11 10

𝑥
𝑗
[𝑝

−
4]
𝑥
𝑗
[𝑝

−
5]

�̂� 𝑗 [𝑝 − 2] �̂� 𝑗 [𝑝 − 3]

XX 01 00 00

11 01 00 00

10 01 00 00

10 01 00 00

Notes: “XX” indicates a don’t-care condition.

In the encoding stage in Step (3), 𝑞𝑥 𝑗 [3] =“1” when 𝑥 𝑗 [𝑝−2 :
𝑝 − 5] =“0000”, and 𝑞𝑥 𝑗 [2] =“1” when 𝑥 𝑗 [𝑝 − 2 : 𝑝 − 5] ≠

“0000” and 𝑥 𝑗 [𝑝 − 1] = “1”. Thus, 𝑞𝑥 𝑗 [3] and 𝑞𝑥 𝑗 [2] are
expressed as

𝑞𝑥 𝑗 [3] = 𝑥 𝑗 [𝑝 − 2] + 𝑥 𝑗 [𝑝 − 3] + 𝑥 𝑗 [𝑝 − 4] + 𝑥 𝑗 [𝑝 − 5],
(25)

𝑞𝑥 𝑗 [2] = 𝑥 𝑗 [𝑝 − 1] · (𝑥 𝑗 [𝑝 − 2] + 𝑥 𝑗 [𝑝 − 3]+ (26)
𝑥 𝑗 [𝑝 − 4] + 𝑥 𝑗 [𝑝 − 5]).

Similarly, the S1 unit in Fig. 8 is used to obtain 𝑥 𝑗 at Step
(1). The implementations for encoding 𝑥 𝑗 to 𝑞𝑥 𝑗 [1 : 0] and
𝑞𝑥 𝑗 [3 : 2] can be found in the S2 and S3 units, respectively.
Three inverters, two OR gates, and an AND gate are used to
generate 𝑞𝑥 𝑗 [1 : 0]. A four-input OR gate, an inverter, and an
AND gate are used to generate 𝑞𝑥 𝑗 [3 : 2].

2) The Matrix-vector Multiplication Unit (MM)
We adopt the parallelism strategy in [34] for implementing

the MM for hardware efficiency. Let 𝑸𝑿 be a vector of ternary,
uniformly and logarithmic quantized position values. Fig. 9
shows the parallelization in the matrix-vector multiplication
𝑷 = 𝑱 ·𝑸𝑿. For an 𝑁-spin QSSM, the elements of the coupling
coefficient matrix 𝑱 with 𝑁 rows and 𝑁 columns, are split into
𝑃𝑏 sub-matrices 𝑱𝑩. The 𝑖th 𝑱𝑩, denoted by 𝑱𝑩𝒊 , has the

...

...

...

...

...
...

...

=

𝑷𝒄

𝑷𝒓

𝑵
𝒃
=
𝑵
/𝑷

𝒃

𝑱𝑩𝟏

𝑱𝑩𝟐

𝑱𝑩𝑷𝒃

𝑸𝑩𝟏

𝑸𝑩𝟐

𝑸𝑩𝑷𝒃

...

𝑷𝑩𝟏

𝑷𝑩𝟐

𝑷𝑩𝑷𝒃

𝑷𝒓 𝑷𝒄

𝑱 𝑸𝑿 𝑷

...

...

...

...

...
...

...

=

𝑷𝒄

𝑷𝒓

𝑵
𝒃
=
𝑵
/𝑷

𝒃

𝑱𝑩𝟏

𝑱𝑩𝟐

𝑱𝑩𝑷𝒃

𝑸𝑩𝟏

𝑸𝑩𝟐

𝑸𝑩𝑷𝒃

...

𝑷𝑩𝟏

𝑷𝑩𝟐

𝑷𝑩𝑷𝒃

𝑷𝒓 𝑷𝒄

𝑱 𝑸𝑿 𝑷

Fig. 9: Parallelization in the MAC operation 𝑷 = 𝑱 · 𝑸𝑿 [34].

(𝑖𝑁𝑏 + 1)th to (𝑖𝑁𝑏 + 𝑁𝑏)th rows of 𝑱. To process 𝑱𝑩𝒊 , two
other parameters are introduced for parallelism, one for the row
parallelism, 𝑃𝑟 , and the other for the column parallelism, 𝑃𝑐.
𝑱𝑩𝒊 with 𝑁𝑏 × 𝑁 values is divided into several 𝑃𝑟 × 𝑃𝑐-sized
blocks. For each 𝑱𝑩𝒊 , a 𝑃𝑟 × 𝑃𝑐 coupling coefficient matrix
is multiplied with a quantized position vector of 𝑃𝑐 values in
𝑸𝑿 in each cycle to obtain the 𝑃𝑟 MAC results, where each
multiplication is processed in parallel. To get the result of the
𝑃𝑟 × 𝑁 coupling coefficient matrix multiplied with a quantized
position vector of 𝑁 values, which is a vector of 𝑃𝑟 values
in 𝑷, 𝑁

𝑃𝑐
cycles are required. We need to accumulate 𝑁

𝑃𝑐
MAC

results from 𝑁
𝑃𝑐

MAC operations between 𝑁
𝑃𝑐

×𝑃𝑟 ×𝑃𝑐 coupling
coefficient matrices and 𝑁

𝑃𝑐
quantized position vectors of 𝑃𝑐

values. These operations are repeated by 𝑁𝑏

𝑃𝑟
times in each spin

unit for computing 𝑁𝑏 𝑷𝑩 values.
The MM in the 𝑖th spin unit, namely 𝑀𝑀𝑖 , implements

𝑱𝑩𝒊 · 𝑸𝑿 = 𝑷𝑩𝒊 . Given the MM in spin unit 1 (𝑀𝑀1) in
Fig. 5 as an example, the 𝑀𝑀1 consists of 𝑃𝑟 MAC units, a
memory block for the product 𝑃𝐵1, and a multiplexer. Each
MAC has 𝑃𝑐 multiplier units (MULs), an addition unit, and
an accumulator. The addition unit adds the 𝑃𝑐 multiplication
results. The addition results are accumulated for 𝑁

𝑃𝑐
times to

obtain the product of a row of 𝑱 and 𝑸𝑿. The products from the
𝑃𝑟 MAC units are stored in the memory block 𝑃𝐵1. Each value
in 𝑃𝐵1 is selected concurrently for the MUU unit. The MUL
design depends on the specific quantization scheme. It takes the
encoded quantized position value for the 𝑗 th oscillator, 𝑞𝑥 𝑗 , and
the coupling coefficient 𝐽𝑖 𝑗 as inputs to compute 𝑃𝑖 𝑗 . Note that
𝐽𝑖 𝑗 and 𝑃𝑖 𝑗 are represented by 𝑞 bits with one sign bit and 𝑞 − 1
fractional bits. 𝑞𝑥 𝑗 has two bits for tSB1, whereas it has 4 bits
for uSB5 and lSB4.

For tSB1, taking the 𝑞𝑥 𝑗 [1 : 0] signal as the selection signal,
the multiplication of 𝐽𝑖 𝑗 𝑡𝑟𝑖(𝑥 𝑗) in (7) is implemented by using a
multiplexer, MUX, as shown in Fig. 10. It outputs the product,
denoted by 𝑃𝑖 𝑗 , as 0 when 𝑞𝑥 𝑗 =“00”, as −𝐽𝑖 𝑗 when 𝑞𝑥 𝑗 =“10”,
and as 𝐽𝑖 𝑗 when 𝑞𝑥 𝑗 =“01”.

As shown in Table III, the position values are approximately
quantized to 3

16 , 6
16 , 9

16 , or 12
16 . This value can be formulated as

3𝑘
16 , where 1 ≤ 𝑘 ≤ 4, 𝑘 ∈ N. To reduce hardware, as shown
in the table in Fig. 11, we first represent approximate quantized

00

01

10

M
U
X

"𝟎𝟎…𝟎𝟎"

𝑱𝒊𝒋[𝒒 − 𝟏:𝟎]

𝑷𝒊𝒋[𝒒 − 𝟏:𝟎]

𝑱 𝒊
𝒋[
𝒒

−
𝟏
]

+1

𝑱𝒊𝒋 𝒒 − 𝟐:𝟎

𝒒𝒙𝒋[𝟏:𝟎]

00

01

10

M
U
X

"𝟎𝟎…𝟎𝟎"

𝑱𝒊𝒋[𝒒 − 𝟏:𝟎]

𝑷𝒊𝒋[𝒒 − 𝟏:𝟎]

𝑱 𝒊
𝒋[
𝒒

−
𝟏
]

+1

𝑱𝒊𝒋 𝒒 − 𝟐:𝟎

𝒒𝒙𝒋[𝟏:𝟎]

Fig. 10: The circuit diagram of the MUL for tSB1.

values 3𝑘
16 as the addition of two different powers of 2, as

3𝑘
16 = 2𝑎 + 2𝑏, (27)

where

𝑎 =

{
−3 𝑘 = 1, 2
−1 𝑜𝑡ℎ𝑒𝑟𝑠

, 𝑏 =

{
−4 𝑘 = 1, 3
−2 𝑜𝑡ℎ𝑒𝑟𝑠

.(28)

Considering that multiplication with a power of 2 can be
implemented by simple shifting, the multiplication between 𝐽𝑖 𝑗
and one of 3

16 , 6
16 , 9

16 , or 12
16 is implemented by adding two shifted

𝐽𝑖 𝑗 values, as

𝐽𝑖 𝑗 · 3𝑘
16 = 2𝑎𝐽𝑖 𝑗 + 2𝑏𝐽𝑖 𝑗 . (29)

Moreover, when 𝑘 = 1, 2, 𝑞𝑥 𝑗 [1] = “0”, otherwise 𝑞𝑥 𝑗 [1] =
“1”; when 𝑘 = 1, 3, 𝑞𝑥 𝑗 [0] = “0”, otherwise 𝑞𝑥 𝑗 [0] = “1”.
Thus, we use two multiplexers, MUX1 and MUX2, given 𝑞𝑥 𝑗 [1]
and 𝑞𝑥 𝑗 [0] as the selection signals, respectively, to choose two
input operands for the adder. Thus when 𝑞𝑥 𝑗 [1] = “1”, 𝐽𝑖 𝑗2 , in
the form of “𝐽𝑖 𝑗 [𝑞−1]&𝐽𝑖 𝑗 [𝑞−1 : 1]”, is chosen, otherwise 𝐽𝑖 𝑗

8 ,
in the form of “𝐽𝑖 𝑗 [𝑞−1]&𝐽𝑖 𝑗 [𝑞−1]&𝐽𝑖 𝑗 [𝑞−1]&𝐽𝑖 𝑗 [𝑞−1 : 3]”,
is output from MUX1. When 𝑞𝑥 𝑗 [0] = “0”, 𝐽𝑖 𝑗

16 , which is
represented by “𝐽𝑖 𝑗 [𝑞 − 1] & 𝐽𝑖 𝑗 [𝑞 − 1]&𝐽𝑖 𝑗 [𝑞 − 1]&𝐽𝑖 𝑗 [𝑞 −
1]&𝐽𝑖 𝑗 [𝑞−1 : 4]”, is chosen, otherwise 𝐽𝑖 𝑗

4 , which is represented
by “𝐽𝑖 𝑗 [𝑞−1]&𝐽𝑖 𝑗 [𝑞−1]&𝐽𝑖 𝑗 [𝑞−1 : 2]”, is output from MUX2.
Note that & is a concatenation operator. In this way, we have
two 𝑞-bit outputs from MUX1 and MUX2 in the addition unit
(ADD). Then, a 𝑞-bit adder is used to add them. Subsequently,
given the addition result denoted by �̄�𝑖 𝑗 , MUX3 chooses one
from {0, 1, �̄�𝑖 𝑗 } as the output �̂�𝑖 𝑗 in the unsigned multiplication
unit (UM). Note that due to the limited numerical range provided
by 𝑝 bits with one sign bit and 𝑝 − 1 fractional bits, the
binary representation of +1 is approximated by its nearest value
“01 · · · 11” to meet the precision limitation. Finally, the MUX4
is used to generate the product �̂�𝑖 𝑗 by determining whether
to multiply �̂�𝑖 𝑗 with −1 according to 𝑞𝑥 𝑗 [3] in the signed
multiplication unit (SM).

Fig. 12 gives the circuit design for implementing 𝐽𝑖 𝑗 𝑙𝑔(𝑥 𝑗)
in (14). It is composed of two multiplexers, MUX1 and MUX2,
respectively, given 𝑞𝑥 𝑗 [1 : 0] and 𝑞𝑥 𝑗 [3 : 2] as the selection
signals. MUX1 chooses one from {𝐽𝑖 𝑗 ,

𝐽𝑖 𝑗

2 ,
𝐽𝑖 𝑗

4 ,
𝐽𝑖 𝑗

8 } as the
output �̂�𝑖 𝑗 by 𝑞𝑥 𝑗 [1 : 0] in the UM. Subsequently, the MUX2
outputs 𝑃𝑖 𝑗 , which is selected from {0, �̂�𝑖 𝑗 ,−�̂�𝑖 𝑗} by 𝑞𝑥 𝑗 [3 : 2]
in the SM.

3) The Momentum Update Unit (MUU) and the Position
Update Unit (PUU)

As shown in Fig. 5, the MUU is implemented by using
three multipliers and two adders. For updating the 𝑖th oscillator

ADD

0X

10

11

M
U

X
3

0

1

M
U

X
4 𝑷𝒊𝒋[𝒒 − 𝟏:𝟎] +1

𝑷
𝒊𝒋
[𝒒

−
𝟏
] 𝑷 𝒊𝒋[𝒒 − 𝟐:𝟎]

"𝟎𝟎…𝟎𝟎"

𝒒𝒙𝒋[𝟑]

0

1

M
U

X
1

𝒒𝒙𝒋[𝟏]

𝑱𝒊𝒋[𝒒 − 𝟏]&𝑱𝒊𝒋[𝒒 − 𝟏:𝟏]

𝑱𝒊𝒋[𝒒 − 𝟏]&𝑱𝒊𝒋[𝒒 − 𝟏]&

𝑱𝒊𝒋[𝒒 − 𝟏]&𝑱𝒊𝒋[𝒒 − 𝟏:𝟑]

0

1

M
U

X
2

𝒒𝒙𝒋[𝟎]

𝑱𝒊𝒋[𝒒 − 𝟏]&

𝑱𝒊𝒋[𝒒 − 𝟏]&𝑱𝒊𝒋[𝒒 − 𝟏:𝟐]

𝑱𝒊𝒋[𝒒 − 𝟏]&𝑱𝒊𝒋[𝒒 − 𝟏]&𝑱𝒊𝒋[𝒒 − 𝟏]

&𝑱𝒊𝒋[𝒒 − 𝟏]&𝑱𝒊𝒋[𝒒 − 𝟏:𝟒]

+

𝒒𝒙𝒋[𝟐:𝟏]

"𝟎𝟏…𝟏𝟏"

𝑷
𝒊𝒋
[𝒒

−
𝟏
:𝟎
]

𝑷
𝒊𝒋
[𝒒

−
𝟏
:𝟎
]

𝑞𝑥𝑗 [1: 0]
Approximate

Quantized Value

00
3

16
=
1

16
+
2

16

01
6

16
=
2

16
+
4

16

10
9

16
=
1

16
+
8

16

11
12

16
=
4

16
+
8

16

0X

10

11

M
U

X
3

0

1

M
U

X
4 𝑷𝒊𝒋[𝒒 − 𝟏:𝟎] +1

𝑷
𝒊𝒋
[𝒒

−
𝟏
] 𝑷 𝒊𝒋[𝒒 − 𝟐:𝟎]

"𝟎𝟎…𝟎𝟎"

𝒒𝒙𝒋[𝟑]

0

1

M
U

X
1

𝒒𝒙𝒋[𝟏]

𝑱𝒊𝒋[𝒒 − 𝟏]&𝑱𝒊𝒋[𝒒 − 𝟏:𝟏]

𝑱𝒊𝒋[𝒒 − 𝟏]&𝑱𝒊𝒋[𝒒 − 𝟏]&

𝑱𝒊𝒋[𝒒 − 𝟏]&𝑱𝒊𝒋[𝒒 − 𝟏:𝟑]

0

1

M
U

X
2

𝒒𝒙𝒋[𝟎]

𝑱𝒊𝒋[𝒒 − 𝟏]&

𝑱𝒊𝒋[𝒒 − 𝟏]&𝑱𝒊𝒋[𝒒 − 𝟏:𝟐]

𝑱𝒊𝒋[𝒒 − 𝟏]&𝑱𝒊𝒋[𝒒 − 𝟏]&𝑱𝒊𝒋[𝒒 − 𝟏]

&𝑱𝒊𝒋[𝒒 − 𝟏]&𝑱𝒊𝒋[𝒒 − 𝟏:𝟒]

+

𝒒𝒙𝒋[𝟐:𝟏]

"𝟎𝟏…𝟏𝟏"

𝑷
𝒊𝒋
[𝒒

−
𝟏
:𝟎
]

𝑷
𝒊𝒋
[𝒒

−
𝟏
:𝟎
]

𝑞𝑥𝑗 [1: 0]
Approximate

Quantized Value

00
3

16
=
1

16
+
2

16

01
6

16
=
2

16
+
4

16

10
9

16
=
1

16
+
8

16

11
12

16
=
4

16
+
8

16

UM SM

ADD

0X

10

11

M
U

X
3

0

1

M
U

X
4 𝑷𝒊𝒋[𝒒 − 𝟏:𝟎] +1

𝑷
𝒊𝒋
[𝒒

−
𝟏
] 𝑷 𝒊𝒋[𝒒 − 𝟐:𝟎]

"𝟎𝟎…𝟎𝟎"

𝒒𝒙𝒋[𝟑]

0

1

M
U

X
1

𝒒𝒙𝒋[𝟏]

𝑱𝒊𝒋[𝒒 − 𝟏]&𝑱𝒊𝒋[𝒒 − 𝟏:𝟏]

𝑱𝒊𝒋[𝒒 − 𝟏]&𝑱𝒊𝒋[𝒒 − 𝟏]&

𝑱𝒊𝒋[𝒒 − 𝟏]&𝑱𝒊𝒋[𝒒 − 𝟏:𝟑]

0

1

M
U

X
2

𝒒𝒙𝒋[𝟎]

𝑱𝒊𝒋[𝒒 − 𝟏]&

𝑱𝒊𝒋[𝒒 − 𝟏]&𝑱𝒊𝒋[𝒒 − 𝟏:𝟐]

𝑱𝒊𝒋[𝒒 − 𝟏]&𝑱𝒊𝒋[𝒒 − 𝟏]&𝑱𝒊𝒋[𝒒 − 𝟏]

&𝑱𝒊𝒋[𝒒 − 𝟏]&𝑱𝒊𝒋[𝒒 − 𝟏:𝟒]

+

𝒒𝒙𝒋[𝟐:𝟏]

"𝟎𝟏…𝟏𝟏"

𝑷
𝒊𝒋
[𝒒

−
𝟏
:𝟎
]

𝑷
𝒊𝒋
[𝒒

−
𝟏
:𝟎
]

𝑞𝑥𝑗 [1: 0]
Approximate

Quantized Value

00
3

16
=
1

16
+
2

16

01
6

16
=
2

16
+
4

16

10
9

16
=
1

16
+
8

16

11
12

16
=
4

16
+
8

16

UM SM

Fig. 11: The circuit diagram of the MUL for uSB5.

𝑱𝒊𝒋[𝒒 − 𝟏]&𝑱𝒊𝒋[𝒒 − 𝟏:𝟏]

00

11

M
U
X
110

01

10

01

00
M
U
X
2

10

01

00
M
U
X
2

𝒒𝒙𝒋[𝟏:𝟎]

𝒒𝒙𝒋[𝟑:𝟐]

𝑷𝒊𝒋[𝒒 − 𝟏:𝟎]

𝑱𝒊𝒋[𝒒 − 𝟏:𝟎]

𝑱𝒊𝒋[𝒒 − 𝟏]&

𝑱𝒊𝒋[𝒒 − 𝟏]&𝑱𝒊𝒋[𝒒 − 𝟏:𝟐]

𝑱𝒊𝒋[𝒒 − 𝟏]&𝑱𝒊𝒋[𝒒 − 𝟏]&

𝑱𝒊𝒋[𝒒 − 𝟏]&𝑱𝒊𝒋[𝒒 − 𝟏:𝟑]

𝑷 𝒊𝒋[𝒒 − 𝟏:𝟎]

+1

𝑷 𝒊𝒋[𝒒 − 𝟏]

𝑷 𝒊𝒋[𝒒 − 𝟐:𝟎]

"𝟎𝟎…𝟎𝟎"
SM

UM

𝑱𝒊𝒋[𝒒 − 𝟏]&𝑱𝒊𝒋[𝒒 − 𝟏:𝟏]

00

11

M
U
X
110

01

10

01

00
M
U
X
2

𝒒𝒙𝒋[𝟏:𝟎]

𝒒𝒙𝒋[𝟑:𝟐]

𝑷𝒊𝒋[𝒒 − 𝟏:𝟎]

𝑱𝒊𝒋[𝒒 − 𝟏:𝟎]

𝑱𝒊𝒋[𝒒 − 𝟏]&

𝑱𝒊𝒋[𝒒 − 𝟏]&𝑱𝒊𝒋[𝒒 − 𝟏:𝟐]

𝑱𝒊𝒋[𝒒 − 𝟏]&𝑱𝒊𝒋[𝒒 − 𝟏]&

𝑱𝒊𝒋[𝒒 − 𝟏]&𝑱𝒊𝒋[𝒒 − 𝟏:𝟑]

𝑷 𝒊𝒋[𝒒 − 𝟏:𝟎]

+1

𝑷 𝒊𝒋[𝒒 − 𝟏]

𝑷 𝒊𝒋[𝒒 − 𝟐:𝟎]

"𝟎𝟎…𝟎𝟎"
SM

UM

Fig. 12: The circuit diagram of the MUL for lSB4.

momentum value, the corresponding 𝑃𝑖 is first selected from
𝑃𝐵1 and then multiplied with the manually determined 𝑐0.
The product is added with the 𝑖th oscillator momentum value
multiplied with the linearly increasing value 𝑎 to compute the
derivative of 𝑦𝑖 with respect to time. Then, the derivative is
multiplied with a time step for integration 𝜂 and added with the
current 𝑦𝑖 value to compute the new 𝑦𝑖 value (�̃�𝑖).

The 𝑖th oscillator position value 𝑥𝑖 is updated by using a
multiplier and an adder before obtaining the new momentum
value 𝑦𝑖 in the PUU, as shown in Fig. 5. Then, the updated
position value 𝑦𝑖 is multiplied with the time step for integration
𝜂 and added to the current position value 𝑥𝑖 .

4) The Boundary Unit (BU)
The BU detects whether the new position value 𝑥𝑖 (𝑥𝑖) exceeds

the boundary [−1, 1]. As shown in Fig. 5, it consists of a
comparator and two multiplexers. The comparator outputs a
two-bit signal 𝑣 [1 : 0], which is “10” if 𝑥𝑖 > 1, “11” if 𝑥𝑖 < −1,
or “00” otherwise. Given 𝑣 [1] as the selection signal, MUX1
outputs 𝑦𝑖 when 𝑣 [1] = “0” or 0 otherwise. Given 𝑣 [1 : 0] as
the selection signal, MUX2 outputs 𝑥𝑖 when 𝑣 [1 : 0] = “00”,
1 when 𝑣 [1 : 0] = “10” or −1 otherwise. Note that the binary
representation of 1 is approximated by “011 · · · 1” to meet the

precision requirements for the following QUA unit.

VI. Performance Evaluation

The QSBMs were designed using VHDL, synthesized with
the Vivado design suite, and implemented on a Xilinx Virtex
UltraScale+ FPGA, featuring 2048 fully connected spins. We
set 𝑃𝑟 = 𝑃𝑐 = 32, and 𝑃𝑏 = 8, 𝑝 = 8, and 𝑞 = 8. Note
that the parameters for parallel computation, 𝑃𝑟 , 𝑃𝑐, 𝑃𝑏, can be
adjusted based on the hardware capabilities and time constraints
of the specific application scenarios. The precision parameters,
𝑝 and 𝑞, are determined by the required solution quality, the size
of the problem, and the variations in the coupling coefficients.
Other computation in the QSBM uses 16-bit precision with 4
integer bits, 11 fractional bits and one sign bit. The coupling
coefficients are stored in the Block Random-Access Memories
(BRAMs) and other data are stored in the registers.

Table VII presents a comparison of QSBM designs against
existing application specific integrated circuits (ASICs), FPGA,
optical circuits, quantum circuits, and graphics processing unit
(GPU)-based hardware accelerators. The FPGA-based hardware
accelerators are evaluated by their resource utilization in lookup
tables (LUTs), flip flops (FFs), digital signal processors (DSPs),
and memory. The quantum Ising machine implements the
spin by qubits and the coherent Ising machine uses optical
pulses as spins. They are susceptible to external noise and
quantum decoherence, thus leading to errors in computation.
The 5000-qubit Ising machine in [3] implements a sparsely-
connected topology with only fifteen interactions for each
qubit. The limitation in the interaction restricts the problems
it can solve. Although the 100𝑘-spin coherent Ising machine
in [36] implements a complete topology, it exhibits limited
precision in representing the coupling coefficients. Moreover,
it requires 56 peripheral FPGAs, a 5-km loop of optical
cable, and an extensive temperature-controlled test setup. The
simulated annealing machine implemented on GPUs in [37]
offers advantages in terms of scalability and flexibility. However,
it faces with challenges in power and memory explosion. The
fully connected CMOS annealer with 512 spins implemented
by 28nm CMOS technology in [38] consumes less power,
but operates only at a 1 𝑀𝐻𝑧 frequency, thus at a cost of
performance. The annealer implemented on an FPGA with 1024
fully connected spins achieves an average accuracy of 99.1% for
solving Gset benchmarks in 2.38𝑚𝑠, but it consumes a relatively
high power [39]. The fully connected 2048-spin SB machine
implemented on an FPGA in [34] achieves a high frequency.
However, it only implements 1-bit coupling coefficients and
requires more hardware.

The QSBM designs implement 8-bit coupling coefficients to
provide a wider numerical range for representation. Table VII
evaluates the performance of QSBMs by solving ten datasets
from Gset benchmarks and K2000 benchmark, which are
formulated as 2000-spin Ising problems. The tSB and uSB are
advantageous for relatively long and short searches, respectively.
The lSB shows a general advantage, which performs better than
tSB for short searches and better than uSB for long searches.
Therefore, 𝑇𝑠 = 1000, 𝑇𝑠 = 500, and 𝑇𝑠 = 250 are, respectively,
considered for using the TSBM, LSBM, and USBM to solve

TABLE VII: The Circuit Measurements of Ising Machines
[35] [36] [37] [34] [38] [39] TSBM USBM LSBM

Computing
Method

Quantum
Annealing

Coherent
Computing

Simulated
Annealing

Simulated
Bifurcation

Simulated
Annealing

Simulated
Annealing

Simulated
Bifurcation

Simulated
Bifurcation

Simulated
Bifurcation

Platform/Technology Superconductor Optics 2880
CUDA cores

Arria
10 GX 1150

28nm
CMOS

Virtex
UltraScale+

Virtex
UltraScale+

Virtex
UltraScale+

Virtex
UltraScale+

Spins 5000 100𝑘 800 − 20000 2048 512 1024 2048 2048 2048
Topology Pegasus Complete Complete Complete Complete Complete Complete Complete Complete

Interaction per Spin 15 99𝑘 7999-19999 2047 511 1023 2047 2047 2047
Coefficient Bit-Width N/A 1 2 1 4 4 8 8 8

Power per Spin N/A N/A > 0.12𝑊 N/A 0.02 𝑚𝑊 3.6 𝑚𝑊 1.7 𝑚𝑊 2.1 𝑚𝑊 1.9 𝑚𝑊
LUT /ALM N/A N/A N/A 427k N/A 40k 210k 318k 261k
Flip Flop N/A N/A N/A 281k N/A 12k 49k 57k 53k

DSP N/A N/A N/A 104 N/A N/A 16 16 16
Memory N/A N/A 72GB DRAM 2MB BRAM N/A 4MB BRAM 4MB BRAM 4MB BRAM 4MB BRAM

Frequency N/A N/A N/A 279 𝑀𝐻𝑧 1 𝑀𝐻𝑧 100 𝑀𝐻𝑧 200 𝑀𝐻𝑧 200 𝑀𝐻𝑧 200 𝑀𝐻𝑧
Average Accuracy N/A 96.3% 98.7% N/A N/A 99.1% 99.4% (99.1%) 98.5% (98.2%) 99.1% (98.8%)

Time N/A 593 𝜇𝑠 100-150 𝑚𝑠 N/A 128 𝑚𝑠 2.38 𝑚𝑠 2.92 𝑚𝑠 0.73 𝑚𝑠 1.46 𝑚𝑠
N/A: not reported. #: the number. Average Accuracy: The average accuracy on the MCP benchmarks. LUT: Look-up table. ALM: Adaptive logic module. DSP:
Digital signal processor. For the proposed SB machines, the average accuracy on the Gset benchmarks is provided, with the accuracy on the fully connected
K2000 given in brackets.

Gset benchmarks. Each time step requires around 2.9 𝜇𝑠.
Note that the Ising machine in [39] only evaluates some Gset
benchmarks formulated as 800 and 1000-spin Ising problems.

Compared to USBM, TSBM utilizes 33.9% fewer LUTs and
13.5% fewer FFs; moreover, LSBM utilizes 17.9% fewer LUTs
and 7.0% fewer FFs. It can be seen that the TSBM achieves an
average accuracy of 99.4% for the Gset benchmark problems
in 2.92 𝑚𝑠. The USBM shows its efficacy in a short search,
obtaining an average accuracy of 98.5% in 0.73 𝑚𝑠, whereas
the lightweight LSBM reaches a 99.1% accuracy in 1.46 𝑚𝑠.
For solving the fully connected K2000 problem, the solution
quality has a slight decrease. Compared to the 512-spin annealer
in [38], which requires 128𝑚𝑠 to achieve a good solution quality,
the proposed QSBMs show their advantage in search time.
Although it seems that the proposed 2048-spin QSBMs consume
more power, scaling up the 512-spin annealer is expected to
result in exponentially increased power. Compared to the 1024-
spin annealing machine in [39], the 2048-spin QSBMs use
more resources but consume at least 41% less power per spin.
Moreover, scaling up the annealing machine will dramatically
increase the hardware resources for generating random numbers.
Compared with the SB machine in [34], the QSBMs save up to
84% of utilized DSPs, and use 50.8% fewer LUTs, and 82.5%
fewer FFs. This is due to the efficient quantization schemes and
also the reduced precision for representing position values.

The proposed SB Ising machine can be scaled to solve larger
problems, at the cost of additional clock cycles for completely
updating all spins once. Moreover, an increased memory
capacity is required to store data for the coupling coefficients,
position values, and momentum values. The number of clock
cycles required to process a problem of size 𝑁 is approximately

𝑁2

𝑃𝑐 ·𝑃𝑟 ·𝑃𝑏
, which increases quadratically with the problem size.

For instance, extending the machine to handle a 4096-spin
problem would approximately quadruple the time needed to
complete a full spin update compared to solving a 2048-
spin problem under the same architecture. Furthermore, as the
problem size increases (i.e., more spins), the system requires
more iterations to converge due to the larger number of possible
configurations. Moreover, by customizing the multiplication

operation with simple circuits, we reduce the dependence on the
limited number of DSPs available on the board. This allows the
proposed quantized SB Ising machine to support a higher degree
of parallelism in computation with larger values of 𝑃𝑏, 𝑃𝑟 , and
𝑃𝑐, depending on the power, time, and resource requirements
of the specific application scenario. For instance, when setting
𝑃𝑟 = 𝑃𝑐 = 32 and 𝑃𝑏 = 16 on TSBM, the number of LUTs and
FFs will increase by 80.9% and 23.4%, respectively, while the
number of DSPs will increase to 32.

VII. Conclusion

In this paper, efficient quantized simulated bifurcation Ising
machines (QSBMs) are proposed for fast and low-cost combina-
torial optimization. Specifically, quantized SB (qSB) algorithms
use various quantization schemes to implement multiplication
in MAC using simple operators. A ternary qSB algorithm
dynamically ternarizes the position values for the MAC by
introducing a linearly increasing threshold. Multiple-value qSB
algorithms utilize uniform and logarithmic quantization to
improve the precision. The qSB algorithms realize fast energy
convergence and increase the probability of jumping out of the
local minima. The hardware accelerators for QSBMs using
ternary, uniform, and logarithmic quantization, respectively
designed and implemented on FPGAs, achieve a reduction of up
to 50.8% of LUTs and 82.5% of FFs, compared to conventional
FPGA-based SB machines. Finally, evaluated on 2000-spin Ising
problems, the QSBM is 1.63 times faster to reach on average
99.1% of the best known solutions, compared to a recent FPGA-
based annealer.

Acknowledgment

The work was supported by the University of Alberta (Project
Number: RES0049590), the Natural Sciences and Engineering
Research Council (NSERC) of Canada (Project Numbers:
RES0048688, RES0051374 and RES0054326) and Alberta
Innovates (Project Number: RES0053965).

References
[1] K. Tanahashi, S. Takayanagi, T. Motohashi, and S. Tanaka, “Application of

Ising machines and a software development for Ising machines,” J. Phys.
Soc. Jpn., vol. 88, no. 6, p. 061010, 2019.

[2] N. Mohseni, P. L. McMahon, and T. Byrnes, “Ising machines as hardware
solvers of combinatorial optimization problems,” Nat. Rev. Phys., vol. 4,
no. 6, pp. 363–379, 2022.

[3] M. W. Johnson, M. H. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson
et al., “Quantum annealing with manufactured spins,” Nature, vol. 473,
no. 7346, pp. 194–198, 2011.

[4] Z. Wang, A. Marandi, K. Wen, R. L. Byer, and Y. Yamamoto, “Coherent
Ising machine based on degenerate optical parametric oscillators,” Phys.
Rev. A, vol. 88, no. 6, p. 063853, 2013.

[5] J. Chou, S. Bramhavar, S. Ghosh, and W. Herzog, “Analog coupled
oscillator based weighted Ising machine,” Sci. Rep., vol. 9, no. 1, p. 14786,
2019.

[6] B. Zhang, Z. Lin, Y. Liu, Y. Wang, D. Zhang, T. Gao, and L. Zeng,
“Compact programmable true random number generator based on spin
torque nano-oscillator,” IEEE Transactions on Nanotechnology, vol. 21,
pp. 648–654, 2022.

[7] R. A. Rutenbar, “Simulated annealing algorithms: An overview,” IEEE
Circuits Syst. Mag., vol. 5, no. 1, pp. 19–26, 1989.

[8] K. Yamamoto, K. Kawamura, K. Ando, N. Mertig, T. Takemoto,
M. Yamaoka et al., “STATICA: A 512-spin 0.25 m-weight annealing
processor with an all-spin-updates-at-once architecture for combinatorial
optimization with complete spin–spin interactions,” IEEE J. Solid-State
Circuits, vol. 56, no. 1, pp. 165–178, 2020.

[9] H. Goto, K. Tatsumura, and A. R. Dixon, “Combinatorial optimization by
simulating adiabatic bifurcations in nonlinear Hamiltonian systems,” Sci.
Adv., vol. 5, no. 4, p. eaav2372, 2019.

[10] T. Zhang, Q. Tao, B. Liu, A. Grimaldi, E. Raimondo, M. Jiménez, M. J.
Avedillo, J. Nunez, B. Linares-Barranco, T. Serrano-Gotarredona et al.,
“A review of Ising machines implemented in conventional and emerging
technologies,” IEEE Trans. Nanotechnology, vol. 23, pp. 704–717, 2024.

[11] T. Zhang, Q. Tao, B. Liu, and J. Han, “A review of simulation algorithms
of classical Ising machines for combinatorial optimization,” in ISCAS.
IEEE, 2022, pp. 1877–1881.

[12] S. Tsukamoto, M. Takatsu, S. Matsubara, and H. Tamura, “An accelerator
architecture for combinatorial optimization problems,” Fujitsu Sci. Tech.
J, vol. 53, no. 5, pp. 8–13, 2017.

[13] S. Matsubara, M. Takatsu, T. Miyazawa, T. Shibasaki, Y. Watanabe,
K. Takemoto, and H. Tamura, “Digital annealer for high-speed solving of
combinatorial optimization problems and its applications,” in ASP-DAC.
IEEE, 2020, pp. 667–672.

[14] M. Aramon, G. Rosenberg, E. Valiante, T. Miyazawa, H. Tamura, and H. G.
Katzgraber, “Physics-inspired optimization for quadratic unconstrained
problems using a digital annealer,” Front. Phys., vol. 7, p. 48, 2019.

[15] Y. Kihara, M. Ito, T. Saito, M. Shiomura, S. Sakai, and J. Shirakashi,
“A new computing architecture using Ising spin model implemented on
FPGA for solving combinatorial optimization problems,” in IEEE NANO
Conf. IEEE, 2017, pp. 256–258.

[16] T. Miki, A. Yoshida, M. Shimada, and J. Shirakashi, “Hybridization of
spin decision logics for Ising machine with logic circuits,” in IEEE NANO
Conf. IEEE, 2021, pp. 470–473.

[17] T. Okuyama, M. Hayashi, and M. Yamaoka, “An Ising computer based on
simulated quantum annealing by path integral Monte Carlo method,” in
ICRC. IEEE, 2017, pp. 1–6.

[18] Q. Tao, T. Zhang, and J. Han, “An approximate parallel annealing
Ising machine for solving traveling salesman problems,” IEEE Embedded
Systems Letters, vol. 15, no. 4, pp. 226–229, 2023.

[19] N. A. Aadit, M. Mohseni, and K. Y. Camsari, “Accelerating adaptive
parallel tempering with FPGA-based p-bits,” in 2023 IEEE Symposium on
VLSI Technology and Circuits (VLSI Technology and Circuits). IEEE,
2023, pp. 1–2.

[20] H. Goto, K. Endo, M. Suzuki, Y. Sakai, T. Kanao, Y. Hamakawa, R. Hi-
daka, M. Yamasaki, and K. Tatsumura, “High-performance combinatorial
optimization based on classical mechanics,” Sci. Adv., vol. 7, no. 6, p.
eabe7953, 2021.

[21] T. Zhang and J. Han, “Quantized simulated bifurcation for the Ising
model,” in IEEE NANO Conf. IEEE, 2023, pp. 715–720.

[22] T. Zhang, Q. Tao, and J. Han, “Solving traveling salesman problems using
Ising models with simulated bifurcation,” in ISOCC. IEEE, 2021, pp.
288–289.

[23] T. Zhang and J. Han, “Efficient traveling salesman problem solvers using
the Ising model with simulated bifurcation,” in DATE. IEEE, 2022, pp.
548–551.

[24] E. S. Tiunov, A. E. Ulanov, and A. Lvovsky, “Annealing by simulating the
coherent Ising machine,” Opt. Express, vol. 27, no. 7, pp. 10 288–10 295,
2019.

[25] S. Sreedhara, J. Roychowdhury, J. Wabnig, and P. Srinath, “Digital
emulation of oscillator Ising machines,” in DATE. IEEE, 2023, pp.
1–2.

[26] L. Mazza, E. Raimondo, A. Grimaldi, and V. Puliafito, “Simulated
oscillator-based Ising machine for two million nodes max-cut problems,”
in IEEE NANO Conf. IEEE, 2023, pp. 1037–1041.

[27] B. Liu, T. Zhang, X. Gao, and J. Han, “An efficient simulated oscillator-
based Ising machine on FPGAs,” in IEEE NANO Conf. IEEE, 2024, pp.
469–474.

[28] A. Lucas, “Ising formulations of many NP problems,” Front. Phys., vol. 2,
p. 5, 2014.

[29] H. Goto, “Bifurcation-based adiabatic quantum computation with a
nonlinear oscillator network,” Sci. Rep., vol. 6, no. 1, p. 21686, 2016.

[30] F. Li, B. Zhang, and B. Liu, “Ternary weight networks,” arXiv preprint
arXiv:1605.04711, 2016.

[31] E. H. Lee, D. Miyashita, E. Chai, B. Murmann, and S. S. Wong, “Lognet:
Energy-efficient neural networks using logarithmic computation,” in
ICASSP. IEEE, 2017, pp. 5900–5904.

[32] T. Kanao and H. Goto, “Simulated bifurcation assisted by thermal
fluctuation,” Commun. Phys., vol. 5, no. 1, p. 153, 2022.

[33] C. Helmberg and F. Rendl, “A spectral bundle method for semidefinite
programming,” SIAM J. Optim., vol. 10, no. 3, pp. 673–696, 2000.

[34] K. Tatsumura, A. R. Dixon, and H. Goto, “FPGA-based simulated
bifurcation machine,” in FPL. IEEE, 2019, pp. 59–66.

[35] A. D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca et al., “Quantum
critical dynamics in a 5,000-qubit programmable spin glass,” Nature, vol.
617, pp. 61–66, 2023.

[36] T. Honjo, T. Sonobe, K. Inaba, T. Inagaki, T. Ikuta, Y. Yamada, T. Kazama,
K. Enbutsu, T. Umeki, R. Kasahara et al., “100,000-spin coherent Ising
machine,” Science advances, vol. 7, no. 40, p. eabh0952, 2021.

[37] C. Cook, H. Zhao, T. Sato, M. Hiromoto, and S. X.-D. Tan, “GPU-
based Ising computing for solving max-cut combinatorial optimization
problems,” Integration, vol. 69, pp. 335–344, 2019.

[38] R. Iimura, S. Kitamura, and T. Kawahara, “Annealing processing archi-
tecture of 28-nm CMOS chip for Ising model with 512 fully connected
spins,” IEEE Trans. Circuits Syst. I: Regul. Pap., vol. 68, no. 12, pp.
5061–5071, 2021.

[39] Z. Huang, D. Jiang, X. Wang, and E. Yao, “An Ising model-based annealing
processor with 1024 fully connected spins for combinatorial optimization
problems,” IEEE Trans. Circuits Syst. II, vol. 70, no. 8, pp. 3074–3078,
2023.

Tingting Zhang (Member, IEEE) received her B.Sc.
and M.Sc. degrees from Nanjing University of Aero-
nautics and Astronautics (NUAA), Nanjing, China, in
2016 and 2019, respectively, and her Ph.D. degree
from the University of Alberta, Alberta, Canada, in
2024. She is currently a Postdoctoral Fellow at McGill
University, Quebec, Canada. Her research interests
include new computing architectures, approximate
computing, Ising computing, combinatorial optimiza-
tion and nanoelectronic circuits and systems. She was
a recipient of the Best Paper Award Candidate at the

Design, Automation and Test in Europe Conference (DATE) 2022. She served
as the session chair for the IEEE International Conference on Nanotechnology
(IEEE-NANO) 2024 and a Technical Program Committee Member for the
International Conference on Computer-Aided Design (ICCAD) 2025.

Jie Han (Senior Member, IEEE) received the B.Sc.
degree in electronic engineering from Tsinghua Uni-
versity, Beijing, China, in 1999 and the Ph.D. de-
gree from the Delft University of Technology, The
Netherlands, in 2004. He is currently a Professor
and the Director of Computer Engineering in the
Department of Electrical and Computer Engineer-
ing at the University of Alberta, Edmonton, AB,
Canada. His research interests include approximate
computing, stochastic computing, reliability and fault
tolerance, nanoelectronic circuits and systems, novel

computational models for learning and biological applications. Dr. Han was a
recipient of the Best Paper Awards at the International Symposium on Nanoscale
Architectures (NANOARCH 2015) and the Design, Automation and Test in
Europe Conference (DATE 2023), as well as several Best Paper Nominations
at the 25th Great Lakes Symposium on VLSI (GLSVLSI 2015), NANOARCH
2016, the 19th International Symposium on Quality Electronic Design (ISQED
2018) and DATE 2022. He was nominated for the 2006 Christiaan Huygens
Prize of Science by the Royal Dutch Academy of Science. His work was
recognized by Science, for developing a theory of fault-tolerant nanocircuits
(2005). He serves (or sersved) as an Associate Editor for the IEEE Transactions
on Nanotechnology, the IEEE Transactions on Emerging Topics in Computing
(TETC), the IEEE Embedded Systems Letters, the IEEE Circuits and Systems
Magazine (awarded the Best Associate Editor for 2023), the IEEE Open Journal
of the Computer Society, Microelectronics Reliability (Elsevier) and the Journal
of Electronic Testing: Test and Application (JETTA, Springer Nature). He
served as a General Chair for NANOARCH 2021, GLSVLSI 2017 and the
IEEE International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT) 2013, and a Technical Program Committee
Chair for NANOARCH 2022, GLSVLSI 2016, DFT 2012 and the Symposium
on Stochastic & Approximate Computing for Signal Processing and Machine
Learning, 2017.

