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Abstract—The increasing computational intensity of important
new applications poses a challenge for their use in resource-
restricted devices. Approximate computing using power-efficient
arithmetic circuits is one of the emerging strategies to reach
this objective. In this article, five hardware-efficient logarithmic
floating-point (FP) multipliers are proposed, which all use simple
operators, such as adders and multiplexers, to replace complex
and more costly conventional FP multipliers. Radix-4 logarithms
are used to further reduce the hardware complexity. These
designs produce double-sided error distributions to mitigate error
accumulation in complex computations. The proposed multipliers
provide superior trade-offs between accuracy and hardware,
with up to 30.8% higher accuracy than a recent logarithmic
FP design or up to 68× less energy than the conventional FP
multiplier. Using the proposed FP logarithmic multipliers in
JPEG image compression achieves higher image quality than a
recent logarithmic multiplier design with up to 4.7 dB larger peak
signal-to-noise ratio. For training in benchmark NN applications,
the proposed FP multipliers can slightly improve the classification
accuracy while achieving 4.2× less energy and 2.2× smaller area
than the state-of-the-art design.

Index Terms—Floating-Point Multiplier, Logarithmic Multi-
plier, Neural Network, Approximate Computing, JPEG Com-
pression

I. INTRODUCTION

DUE to the scaling of complementary metal–oxide semi-
conductor (CMOS) technology, the power density has in-

creased significantly in integrated circuits [1]. The substantial
increase in power becomes a limiting factor for computation-
intensive applications, such as machine learning (ML) and dig-
ital signal processing (DSP), in resource-constrained devices
[2] [3]. The computations in many important recent applica-
tions involve massive multiply-accumulate (MAC) operations
that require a significant amount of energy. This challenge
motivates the development of more efficient arithmetic circuits
for emerging computing systems.

Many computation-intensive applications, such as image
processing and deep neural networks (DNNs), can tolerate
a degree of computational error [4]. Approximate computing
(AC) has emerged as a promising strategy to improve the en-
ergy efficiency in such systems [5]. In particular, AC has been
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exploited extensively in hardware implementations, including
approximate arithmetic circuit design, voltage over-scaling and
precision scaling techniques [6], [7].

Floating-point (FP) arithmetic is often favored in applica-
tions that require sufficient accuracy over a wide dynamic
range. Since FP MAC circuits, especially the multipliers
therein, dominate the power dissipation and circuit area,
efficient FP multiplier design has been of interest [8]–[14].
Nevertheless, FP multipliers are relatively underexplored com-
pared to their fixed-point counterparts and only a few of them
have been applied to applications, such as image processing
and, in particular, the training process of DNNs. Although the
bit width reduction in the FP representation for the training
of DNNs increases efficiency [15] [16], precision reduction
can cause a significant deterioration in accuracy. Therefore,
designs of approximate FP multipliers are promising to further
improve the hardware efficiency for error-tolerant applications.

As an alternative to the conventional FP representation, log-
arithmic representations of FP numbers have been considered
for the acceleration of NNs. For example, Lognet shows that
logarithmic computation can enable a more accurate encoding
of weights and activations that results in higher classification
accuracies at low resolutions [17]. Efficient FP logarithmic
multipliers (LMs) have become promising for NN training
[18]. A state-of-the-art 4-bit training strategy for DNNs has
been developed for the logarithmic radix-4 representation [19].
Significant progress has been made in exploiting reduced-
precision integers for inference; 8-bit FP representation [20]
and logarithmic 4-bit FP representation [19] have shown their
effectiveness in the training of DNNs. Lastly, application-
driven AC techniques have been developed to achieve domain-
specific hardware-efficient NN implementations [21] [22].

In this article, we propose five energy-efficient FP LMs for
error-tolerant, computation-intensive applications. Two novel
approximation methods are described for the logarithm and
anti-logarithm conversions that generate double-sided error
distributions. The multiplier designs consist of simple oper-
ators, such as adders and multiplexers, which lead to lower
power and area costs compared to conventional FP multipliers.
Finally, the application-level performance of the proposed FP
multipliers is evaluated for an image processing application
and several benchmark NNs. It is also found that the classifi-
cation accuracy can be slightly improved in some cases with
a significant reduction in energy consumption.

Some of our preliminary results were reported in [23]. The
novel contributions of this article are summarized as follows:

• A new approximation method for logarithm and anti-
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logarithm conversions generates a double-sided error dis-
tribution to minimize the accumulation of approximation
error in sums of products.

• Four new FP LMs exploit circuit optimizations. In par-
ticular, a radix-4 logarithm (R4L) approach is developed
that further reduces the hardware complexity.

• A detailed and comprehensive error evaluation reveals the
relation between the FP precision format and the error
behavior of the proposed multipliers.

• The proposed designs improve the hardware efficiency in
JPEG image compression and the training of NNs.

The rest of this article is organized as follows: In Section II,
technical background and related work are reviewed. Section
III introduces the proposed logarithmic approximation meth-
ods and logarithmic multiplications. Circuit designs of five
proposed FP multipliers and the proposed radix-4 logarithm
hardware reduction approach are presented in Section IV. Their
performance with respect to accuracy and hardware are given.
Section V presents case studies of error-tolerant applications.
Finally, conclusions are provided in Section VI.

II. BACKGROUND

A. Theory of Logarithm Approximation

Let Z be a number in the binary representation Z = 2e(1+
k), where k (0 ≤ k < 1) denotes the fractional part and e is
the exponent. Mitchell first proposed a simple method for a
logarithmic conversion, given in [24]:

log2 Z
∼= e+ k. (1)

If log2 (1 + k) is approximated by l, then Mitchell’s anti-
logarithm approximation can be expressed as:

2l ∼= l + 1, (2)

where 0 ≤ l < 1.
Mitchell’s approximation offers both high speed and low

hardware cost. However, it always underestimates the true
logarithm, which cause negative errors to accumulate in MAC
operations. To produce a double-sided error distribution, a
nearest-one logarithmic approximation finds the nearest power
of two for Z [25]. When Z − 2e < 2e+1 − Z, it uses the
same logarithm as Mitchell’s method; otherwise, Z is given
by Z = 2e+1(1 − y), where 0 ≤ y < 0.25, and thus the
logarithm is approximated as:

log2 Z
∼= e+ 1− y. (3)

B. Review of Approximate Multipliers

1) Logarithmic Multipliers (LMs): Mitchell’s approxima-
tion has been the basis for many other LMs. Operand decom-
position improves the accuracy of Mitchell’s approximation
by dividing the two inputs into four to reduce the number of
‘1’s in the inputs [26]. An improved operand decomposition
algorithm further reduces the energy consumption in LMs
[27]. The iterative LM (ILM) improves the accuracy through
a pipelined implementation with an error correction circuit
that leads to iterative calculations of compensation terms [28].

A truncated ILM further reduces the hardware complexity
[29]. A low-cost two-stage ILM compensates for errors in the
addition of approximate logarithms [30].

To further improve the hardware efficiency, Mitchell’s al-
gorithm has been combined with other approximation tech-
niques and optimized implementations of components. A
customizable signed LM utilizes logarithmic approximation
and truncation of operands, in which the one’s complement
representation is adopted to imprecisely handle negative num-
bers [31]. A cost-efficient two-stage logarithmic design uses a
truncated LM in an iterative structure [30]. In both the non-
iterative and iterative LMs, approximate adders are used to
add the mantissas to reduce energy and improve accuracy [32].
A set-one adder (SOA) sets the lower significant bits to ‘1’s
to compensate the accumulated errors in sums generated in
Mitchell’s LM. The lower significant sum bits are computed
using OR gates in the lower-part-or adder (LOA) and are set as
one of the inputs in the approximate mirror adder (MAA3) [33]
[34]. A two-stage LM employs different trimming strategies in
the least significant parts of the input operands and the man-
tissas of the trimmed operands, which leads to lower energy
and area cost [35]. A dynamic range LM relies on a truncation
scheme to dynamically compensate for the accumulated errors
generated by Mitchell’s approximation [36].

Unlike Mitchell’s approximation-based LMs, an improved
LM uses the nearest-one logarithmic approximation method
to produce double-sided error distributions [25]. A nearest-
one detector (NOD) was proposed to first detect the nearest
power of two and then produce the approximate logarithm.

2) Approximate Floating-Point Multipliers: Truncation
and voltage over-scaling techniques are commonly used for
approximate FP multipliers [37]–[41]. A configurable approxi-
mate FP multiplier utilizes the K-nearest neighbor (kNN) algo-
rithm to determine the truncated bits of a given input that can
minimize energy and area [8]. Using Mitchell’s approximation,
a logarithmic approximate FP multiplier (LAM) improves the
energy efficiency of NN training [14]. Moreover, configurable
FP multipliers have been studied to provide different levels of
accuracy in real-time [9] [10]. In [9], a configurable floating-
point unit avoids multiplication by discarding one mantissa or
adding and shifting two mantissas. The multiplication is also
replaced with addition in a runtime-configurable FP multiplier,
using an accuracy-tuning method [10]. However, neither of
these two configurable FP multipliers completely eliminates
multiplication since exact multiplication is still required when
the error rate exceeds a pre-determined value.

Approximate fixed-point multipliers are required for the
mantissa multiplication. For example, an approximate mod-
ified Booth encoding (AMBE) algorithm generates the partial
products and then uses an inexact 4-2 compressor to optimize
the mantissa multiplier [11]. This design also adopts bit
truncation in the partial products to generate variable accuracy.
Three approximate FP units are developed by proposing an ap-
proximate speculative multiplier and using gate-level pruning
with an approximate speculative adder [12].
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III. REPRESENTATION, FORMULATION AND
APPROXIMATION FOR MULTIPLICATION

A. FP Representation and Multiplication

1) IEEE 754 FP Representation: The IEEE 754 standard
defines the most commonly used formats for FP numbers.
These formats all contain a 1-bit sign S, a w-bit exponent
E and a q-bit mantissa M [42]. Fig. 1 shows the IEEE 754
representation of a single-precision FP number.

Fig. 1: The IEEE-754 single-precision format.

In this format, a number N can be expressed in a base-2
scientific notation as follows:

N = (−1)S · 2E−bias · (1 + x), (4)

where S is either 0 for a positive number or 1 for a negative
number. To ensure unsigned integers in the exponent field, a
bias (2(w−1)−1), such as 127 for the single-precision, is added
to the actual exponent value to get E. Thus E− bias denotes
the actual exponent value of N . With the hidden ‘1’, x is the
fractional part of the FP number, and hence 0 ≤ x < 1.

2) Floating-Point Multiplication: In the IEEE 754 format,
the FP multiplication involves three processes, including an
XOR operation for the sign bits, the addition of the exponents,
and the multiplication of the mantissa bits. Note that X is
used to denote the actual mantissa, 1 + x, in the following
formulation. Consider the product P = A × B, which is
computed as follows:

SP = SA ⊕ SB , (5)

XAB = (1 + xA)× (1 + xB), (6)

EP =

{
EA + EB − bias, XAB < 2,

EA + EB − bias+ 1, otherwise,
(7)

XP =

{
XAB , XAB < 2,

XAB/2, otherwise,
(8)

where the sign bit, exponent and mantissa of A, B and P are,
respectively, denoted with the corresponding subscripts. The
exponent and mantissa of product P relate to the comparison
of the obtained mantissa XAB with 2. Note that (5) is valid
for the sign computation of the proposed designs, so it will
not be discussed hereafter.

B. Logarithmic Approximation and Mathematical Formula-
tions for Multiplication

Since Mitchell’s approximation method computes underes-
timated products that lead to error accumulation in a MAC
summation, two novel approximation methods that produce a
double-sided error distribution are proposed.

1) Logarithmic Multiplication 1:

a) Logarithmic FP Representation: The proposed ap-
proximation method-1 is based on the conversion of a logarith-
mic FP representation that differs from the IEEE 754 format.
An FP number N is first converted into the format using
its nearest power of two, as per (3), and the corresponding
mantissa. Since the IEEE 754 FP format provides the largest
power of two smaller than N , by comparing the fraction x in
(4) with 0.5, the nearest power of two can be determined for
N .

If x ≥ 0.5, then N is closer to 2E−bias+1 than 2E−bias

(or equally away for the equality case). The exponent E is
incremented by 1 and, accordingly, the mantissa becomes 1+x

2 .
In contrast, the exponent and mantissa of N remain the same
as in (4) when x < 0.5. Let the converted exponent of N be
denoted by E

′
and the converted mantissa by X

′
. Then, for

approximation method-1 E
′

and X
′

are given by:

E
′
=

{
E, x < 0.5,

E + 1, x ≥ 0.5,
(9)

X
′
= 1 + x

′
=

{
1 + x, x < 0.5,
1+x
2 , x ≥ 0.5,

(10)

where 0.75 ≤ X
′
< 1.5.

b) Logarithm and Anti-logarithm Approximation: To
better introduce the approximation method and its usage
in multiplication, different notations are used. Consider the
logarithm of 1+ k, i.e., log2(1 + k) and the anti-logarithm of
l, i.e., 2l.

Due to the conversion in representation as per (10), the log-
arithm is applied to X

′
. Thus the range of 1+ k is [0.75, 1.5)

and the logarithm approximation method-1 is applied over the
domain −0.25 ≤ k < 0.5.

Since l is obtained as the sum of the two approximate
logarithms, whose range is [−0.5, 1), the anti-logarithm ap-
proximation method-1, as described in (2), is applied over the
domain region −0.5 ≤ l < 1.

The logarithm approximation method-1 of the function
log2(1 + k) is shown in Fig. 2, in which it is compared with
Mitchell’s method and the exact function. Note that method-
1 computes the same underestimated results as Mitchell’s
method when both input operands are closer to 2E−bias.
However, the input operands closer to 2E−bias+1 are converted
to overestimated logarithm values. As shown in Fig. 3, the
anti-logarithm approximation method-1 produces the same
overestimated results as Mitchell’s method when l is in the
range of [0, 1), whereas it underestimates the results when l
is negative. As a result, the proposed approximation method-1
can compute either underestimated or overestimated results,
depending on the input operands.

c) Mathematical Formulations: For the logarithmic N
using the logarithmic FP representation, the exponent is given
as (9) and the logarithm is approximated as follows:

log2(X
′
) = log2(1 + x

′
) ∼=

{
x, x < 0.5,
1+x
2 − 1, x ≥ 0.5.

(11)

For P = A × B in the logarithm domain, the exponent is
still computed by addition, whereas the multiplication of the
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Fig. 2: Approximations of log2(1 + k).
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Fig. 3: Approximations of 2l.

mantissas is converted to addition. Let X
′

AB = X
′

A ×X
′

B =
(1+x

′

A)×(1+x
′

B), and hence the logarithm of X
′

AB is given
by:

log2(X
′

AB) = log2(1+x
′

A)+log2(1+x
′

B)
∼= X̂A+X̂B , (12)

where X̂A and X̂B denote the approximate logarithms ob-
tained using (11).

Using the anti-logarithm approximation method-1, X
′

AB is
obtained as:

X
′

AB
∼= 2X̂A+X̂B ∼= 1 + X̂A + X̂B . (13)

According to (11), we obtain −0.5 ≤ X̂A + X̂B < 1, and
thus, 0.5 ≤ X

′

AB < 2. When X
′

AB < 1 (or X̂A + X̂B < 0),
X

′

AB cannot be directly represented as the mantissa for
the product P . In this case, X

′

AB is multiplied by 2 and,
accordingly, the exponent is reduced by 1.

Finally, the logarithmic FP multiplication in the proposed
multiplication-1 method is given by:

EP =

{
E

′

A + E
′

B − bias, X̂A + X̂B ≥ 0,

E
′

A + E
′

B − bias− 1, otherwise,
(14)

XP =

{
1 + X̂A + X̂B , X̂A + X̂B ≥ 0,

(1 + X̂A + X̂B)× 2, otherwise.
(15)

Note that E
′

A and E
′

B are the converted exponents, and X̂A

and X̂B are the approximate logarithms given in the converted
mantissas for A and B, respectively.

2) Logarithmic Multiplication 2:
a) Logarithm and Anti-logarithm Approximation: Con-

sider a given number N , when x ≥ 0.5, log2 N = (E +
1)+ ( 1+x

2 − 1) according to (11). By cancelling out the ‘+1’
and ‘−1’, we obtain log2 N = E + 1+x

2 , which leads to the
logarithm approximation method-2 given by (16). Note that
the conversions for the original exponent and the mantissa in
(9) and (10) are avoided in the approximation.

log2(1 + k) ∼=

{
k, 0 ≤ k < 0.5,
(1+k)

2 , 0.5 ≤ k < 1,
(16)

where the range of the approximate logarithm is [0, 1). Thus,
the range of l is [0, 2) (note that l is the sum of the
two approximate logarithms). Consider using Mitchell’s anti-
logarithm method, as shown in Fig. 3, when l ∈ [1.5, 2), larger
approximate results will be produced in both the logarithm
and anti-logarithm processes, which can lead to relatively
large error accumulation. Therefore, we propose to reduce the
anti-logarithm value by subtracting certain values to ensure
positive errors. The subtracted value is selected to reduce
the error accumulation effect as much as possible while
introducing relatively small hardware overhead. The trade-
off is assessed when determining the subtracted value. Using
different subtracted values with excessively small intervals in
the range of [1.5, 2) can substantially increase the hardware
overhead, whereas subtracting one single value in the range of
[1.5, 2) can be ineffectual or aggravate the error accumulation.
Based on empirical experiments for computing the overall
accumulative error with various subtracted values, 0.5 and
0.25 were selected for the domains [1.5, 1.75) and [1.75, 2),
respectively. The anti-logarithm approximation used in this
method is expressed as:

2l ∼=


l + 1, l < 1,

2× l, 1 ≤ l < 1.5,

2× l − 0.5, 1.5 ≤ l < 1.75,

2× l − 0.25, 1.75 ≤ l < 2,

(17)

The logarithm approximation method-2 is shown in Fig. 2.
When the mantissas of both input operands are smaller than
0.5, method-2 computes the same underestimated logarithm
approximation as Mitchell’s method; otherwise, it computes
overestimated results. As shown in Fig. 3, the same over-
estimated anti-logarithm approximation as Mitchell’s method
is produced when l ∈ [0, 1.5), whereas underestimated anti-
logarithm approximations are generated when l ∈ [1.5, 2).

b) Mathematical Formulations: Using the proposed
logarithm approximation method-2, as per (16) and the anti-
logarithm approximation, as per (17), XAB is obtained. When
X̂A + X̂B ≥ 1, XAB is divided by 2 to fit in the range of
[1, 2) and, accordingly, a carry to EA+EB is added to ensure
the correct result.
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Finally, logarithmic FP multiplication in the proposed
multiplication-2 method is given by:

EP =

{
EA + EB − bias+ 1, X̂A + X̂B ≥ 1

EA + EB − bias, otherwise,
(18)

XP =


1 + X̂A + X̂B , X̂A + X̂B < 1,

X̂A + X̂B , 1 ≤ X̂A + X̂B < 1.5,

X̂A + X̂B − 0.25, 1.5 ≤ X̂A + X̂B < 1.75,

X̂A + X̂B − 0.125, 1.75 ≤ X̂A + X̂B < 2.
(19)

C. Theoretical Error Analysis

The two proposed FP logarithmic multiplication methods in-
troduce approximation errors in both the logarithm conversion
and anti-logarithm conversion. The error distance is analyzed
with the exponent ignored for simplicity.

According to (5)-(8), the result of exact multiplication is
given by Pex = (1+xA)×(1+xB) = 1+xA+xB+xAxB . The
products for the proposed multiplication-1 and multiplication-
2 algorithms, denoted as Pap1 and Pap2, are given by:

Pap1


= 1 + xA + xB , xA, xB < 0.5, (20a)
1 + 2xA + xB , xA < 0.5, xB ≥ 0.5, (20b)
1 + xA + 2xB , xA ≥ 0.5, xB < 0.5, (20c)
2xA + 2xB , xA, xB ≥ 0.5, (20d)

Pap2



= 1 + xA + xB , xA, xB < 0.5, (21a)
3 + 2xA + xB

2
or 1 + 2xA + xB ,

xA < 0.5, xB ≥ 0.5, (21b)
3 + xA + 2xB

2
or 1 + xA + 2xB ,

xA ≥ 0.5, xB < 0.5, (21c)
1.5 + xA + xB or 1.75 + xA + xB ,

xA, xB ≥ 0.5. (21d)

By comparing the equations under different conditions, the
error, Err = Pex − Pap, can be derived as follows:

Err1 =


xAxB , xA, xB < 0.5, (22a)
xA(xB − 1), xA < 0.5, xB ≥ 0.5, (22b)
xB(xA − 1), xA ≥ 0.5, xB < 0.5, (22c)
(1− xA)(1− xB), xA, xB ≥ 0.5, (22d)

Err2 =



xAxB , xA, xB < 0.5, (23a)
xB + 2xAxB − 1

2
or xA(xB − 1),

xA < 0.5, xB ≥ 0.5, (23b)
xA + 2xAxB − 1

2
or xB(xA − 1),

xA ≥ 0.5, xB < 0.5, (23c)
xAxB − 0.5 or xAxB − 0.75,

xA, xB ≥ 0.5. (23d)

The largest positive error Err1 is 0.25 when both xA

and xB are 0.5, while the negative error Err1 that has the
maximum absolute value is close to -0.25 when either one
of xA or xB approaches 0.5 while the other one equals 0.5.
The largest positive Err2 is very close to 0.5. The negative
Err2 has the largest absolute value of -0.5 when both xA

and xB are 0.5. Therefore, the maximum |Err| is 0.25 and
0.5 for multiplication-1 and multiplication-2, respectively. In
comparison, the LAM [14], which uses Mitchell’s approxima-
tion method has the largest absolute error of 0.25 and always
underestimates the product. However, the average errors for
multiplication-1 and multiplication-2 can be reduced since the
positive errors and negative errors tend to cancel each other
in sum-of-products calculations.

IV. CIRCUIT DESIGNS OF FLOATING-POINT
LOGARITHMIC MULTIPLIERS

In this section, a generic circuit architecture is first in-
troduced for the proposed FP LMs. The circuit design for
these multipliers is then presented in detail. Lastly, the radix-4
logarithm (R4L) is considered to further reduce the hardware
cost of the proposed designs.

A. A Generic Circuit Architecture

Fig. 4 presents the generic circuit architecture for the
proposed FP LMs according to their mathematical formu-
lations. Taking advantage of the IEEE 754 FP format, the
sign S, the exponent E, and the mantissa M of the FP
number can be obtained directly. The w-bit E is given by
E[w − 1]E[w − 2] · · ·E[0]. 1.M is used to denote the actual
mantissa. Here, M contains q bits, e.g., 23 bits for single-
precision, after the binary point and the hidden ‘1’, given as
M [q − 1]M [q − 2] · · ·M [1]M [0]. Note that 1.M represents
1 + x in (4).

The sign bit of the product, SP , is obtained using an XOR
gate for the two input signs, SA and SB . For the multiplier that
uses approximation method-1, the exponents (EA and EB) and
the mantissas (1.MA and 1.MB) are converted into the nearest-
one FP representation, whereas for approximation method-2,
the conversion is not required. The converted exponents or
original exponents serve as the inputs of the adder, denoted
by E′

A and E′
B , and the sum is denoted by E′

P . The converted
mantissas are propagated to the logarithm approximation block
to compute the approximate logarithms, denoted as M ′

A and
M ′

B . Since the multiplication is replaced by the addition
operation in the logarithm domain, M ′

A and M ′
B are added

to obtain the sum, denoted by M ′
P , which is then used in

the anti-logarithm approximation block to compute its anti-
logarithm. In the following adjustment block, the approximate
anti-logarithm will be normalized to the range of [1, 2) if
needed, and E′

P will be adjusted accordingly, resulting in EP

and MP . EP is added with the bias to comply with the IEEE
standard and any exception (such as overflow, underflow, and
“not a number”) is reported. The two inputs are checked for
exceptions at the beginning of the computation. Note that the
rounding unit is not required in the inexact design since it is
already inherently imprecise.
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For the proposed multiplier designs, instead of being im-
plemented directly according to the equations, the circuits
are simplified to reduce the hardware complexity and latency.
Specifically, some arithmetic operations are replaced with
simpler operations. By merging multiple computations, the
circuit blocks in the same color, as shown in Fig. 4, are
integrated into a single block. In particular, the representation
conversion blocks of the exponent and the mantissa are shown
in dashed boxes since the conversion is not always required.

Pack/exception result
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Fig. 4: A generic circuit architecture for the proposed
designs.

B. FP Logarithmic Multiplier-1

1) Logarithm approximation and the addition of approxi-
mate logarithms: As shown in Fig. 5, two given mantissas,
MA and MB are the inputs for the two FP logarithm estimators
(FP-LEs), which compute the approximate logarithm of the
mantissa. For FPLM-1, both the representation conversion and
logarithm approximation for the mantissa are implemented
by an FP-LE. Simple wire routing is used to implement
the FP-LE, as shown in Fig. 5. The nearest power of two
for each FP number can be determined by simply checking
the leading bit of the explicit mantissa (without the hidden
1), M [q − 1], and hence a 2-to-1 multiplexer is used to
obtain the approximate logarithm, M ′. According to (11), the
left shifter for implementing the division by 2 is replaced
by wire routing. Therefore, (1 + x)/2 is implemented as
0.1M [q − 1] · · ·M [1]. When M [q − 1] = 1, the approximate
logarithm, (1+ x)/2− 1, is obtained as a negative number in
2’s complement, i.e., M ′ = 1.1M [q − 1] · · ·M [1]; otherwise,
M ′ is 0.M [q − 1] · · ·M [0]. In the case of M [q − 1] = 1, the
LSB of M ′, M [0], is discarded to keep M ′ in q + 1 bits.

M ′
A and M ′

B are then summed using a q + 1-bit adder.
2) Anti-logarithm approximation and value adjustment:

The anti-logarithm approximation and value adjustment are
implemented together using a multiplexer, as shown in Fig.
5. The (q + 1)-bit M ′

P obtained from the adder is the input
for this block. For FPLM-1, as per (15), since X̂A + X̂B can
be negative in some cases, the MSB of M ′

P , i.e., M ′
P [q] is

the sign bit of M ′
P in 2’s complement. When X̂A + X̂B <

0, M ′
P [q] = 1; otherwise, M ′

P [q] = 0. Therefore, M ′
P [q] is

used as the selection signal for the multiplexer. 1 + X̂A +
X̂B is implemented as 0.M ′

P [q − 1] · · ·M ′
P [0] or 1.M ′

P [q −
1] · · ·M ′

P [0] when M ′
P [q] = 1 or M ′

P [q] = 0, respectively.
According to (15), −0.5 ≤ X̂A + X̂B < 1, meaning that
M ′

P [q − 1] = 1 when M ′
P [q] = 1. Therefore, in the case of

M ′
P [q] = 1, 1.M ′

P [q−2] · · ·M ′
P [0]0 is obtained by performing

the ×2 operation on 0.M ′
P [q − 1] · · ·M ′

P [0].
3) Addition of exponents and value adjustment: The cir-

cuits for the exponent conversion, addition and value adjust-
ment, shown as the green blocks in Fig. 4, are implemented
together by integrating and simplifying multiple computations.
For FPLM-1, according to (9), the exponents of the two
operands are converted first, depending on the values of
MA[q − 1] and MB [q − 1]. Then the converted exponents are
added subsequently to obtain E′

P , which is decremented by 1
if M ′

P [q] = 1, as per (14). The required circuits to implement
these operations are simplified to one adder with a carry-in bit,
Carry E, that is determined by the modified value of EA and
EB . When MA[q − 1]MB [q − 1] are ‘00’ or ‘11’, M ′

P [q] can
only be ‘0’ or ‘1’, respectively; otherwise, M ′

P [q] can be ‘0’ or
‘1’ in either case. According to (11) and (14), when both man-
tissa values are smaller than 0.5 (MA[q− 1]MB [q− 1] = 00),
X̂A + X̂B ≥ 0 (M ′

P [q] = 0), which means E′
A + E′

B is not
modified; hence, Carry E = 0. When both mantissas are
greater than or equal to 0.5 (MA[q − 1]MB [q − 1] = 11),
X̂A + X̂B < 0 (M ′

P [q] = 1), which means that E′
A + E′

B is
decremented by 1, i.e., EA+1+EB +1−1 = EA+EB +1;
therefore, Carry E = 1.

Therefore, the Carry E for FPLM-1 is obtained as:
Carry E =

(M ′
P [q] + (MA[q − 1] +MB [q − 1] ) ) · (MA[q − 1] ·MB [q − 1] )

(24)
As shown in Fig. 5, four logic gates are used to generate
Carry E.

C. FP Logarithmic Multiplier-2

1) Logarithm approximation and addition of approximate
logarithms: As shown in Fig. 6, for FPLM-2, the FP-LE
implements the logarithm approximation for the mantissa. As
per (16), M [q − 1] is used to determine the boundary point
for computing the approximate logarithm, M ′. When M [q −
1] = 1, (1 + x)/2 is implemented as 0.1M [q − 1] · · ·M [1];
otherwise, x is obtained as 0.M [q−1] · · ·M [0]. In both cases,
the obtained hidden bit is 0, which has no effect on the sum.
Thus, M ′ is obtained using MA and MB as the inputs of
FP-LE without prefixing the hidden bit. Accordingly, a q-bit
adder is used for the addition of M ′

A and M ′
B with a carry-out

signal, Cout, as shown in Fig. 6. In the case of M [q− 1] = 1,
the LSB of M ′, M [0], is discarded to keep M ′ as q bits.

2) Anti-logarithm approximation and value adjustment:
The q-bit M ′

P and Cout obtained from the adder are used
to implement the anti-logarithm approximation and value
adjustment, as shown in Fig. 6. X̂A + X̂B in (19) is ob-
tained as Cout.M

′
P [q−1] · · ·M ′

P [0]. The four boundary points
in (19) are implemented by using Cout, M ′

P [q − 1] and
M ′

P [q − 2], which are then used to implement the select
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Fig. 5: The circuit design of the first proposed floating-point logarithmic multiplier, FPLM-1.
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Fig. 6: The circuit design of the second proposed floating-point logarithmic multiplier, FPLM-2.

signals for the three multiplexers. As per (19), the first sub-
function is determined by Cout = 0, and the mantissa,
1 + X̂A + X̂B , is then obtained as 1.M ′

P [q − 1] · · ·M ′
P [0].

When 1 ≤ X̂A+X̂B < 1.5, meaning that CoutM
′
P [q−1] = 10,

X̂A+ X̂B is also obtained as 1.M ′
P [q− 1] · · ·M ′

P [0]. In these
two cases, Cout · M ′

P [q − 1], which is always 0, is used as
the select signal to pass M ′

P to the output. The third sub-
function is determined by CoutM

′
P [q−1]M ′

P [q−2] = 110, and
X̂A+X̂B−0.25 is implemented by 1.01M ′

P [q−3] · · ·M ′
P [0].

The fourth scenario occurs when CoutM
′
P [q− 1]M ′

P [q− 2] =

111. X̂A+X̂B−0.125 is obtained as 1.101M ′
P [q−4] · · ·M ′

P [0]
if M ′

P [q−3] is 0 or 1.110M ′
P [q−4] · · ·M ′

P [0] if M ′
P [q−3] is

1. In these two cases, Cout ·M ′
P [q− 1] = 1 selects the output

for MP [q− 1]MP [q− 2] and Cout ·M ′
P [q− 1] ·M ′

P [q− 2] is
used to select the output for MP [q − 3]. The logic gates for
computing MP [q − 1] · · ·MP [q − 2] are shown in Fig. 6 and

M ′
P [q − 4] · · ·M ′

P [0] is directly passed to the output as the
remaining bits.

3) Addition of exponents and value adjustment: For
FPLM-2, according to (18), EA and EB are summed and
increased by 1 if Cout = 1. Therefore, as shown in Fig. 6,
Cout is directly used to generate Carry E.

D. Designs using the Radix-4 Logarithm

The radix-4 logarithm (R4L) was introduced to reduce the
hardware complexity of the FP logarithm multipliers by ex-
ploiting the relation between the base 2 and base 4 logarithms.
The base 2 logarithm of a given number N , is two times of its
base 4 logarithm, i.e., log2 N = 2 log4 N . This indicates that
the base 4 logarithm can be stored with a 1-bit smaller bit-
width than the base 2 logarithm in a hardware implementation.
Therefore, we propose to convert the approximate logarithm
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of the mantissa to a radix-4 logarithm in an intermediate
computation process to reduce the hardware cost of an FP LM.
Radix-4 logarithm conversion is only used for the mantissa
since applying to the exponent leads to large errors.

The R4L approach is specified in Algorithm 1. The approx-
imate logarithms for the two mantissas, denoted by mA and
mB , are obtained by applying the logarithm approximation
to the mantissas. Note that depending on the requirement of
α(), the mantissa here can be prefixed with the hidden ‘1’.
mA and mB are converted to the radix-4 logarithm by simply
discarding the LSB, resulting in mA[q : 1] and mB [q : 1]. The
bit-width of the resulting approximate logarithm is reduced,
which leads to a smaller hardware cost for the adder. Then the
result, sum, is concatenated with ‘0’ to ensure the correctness
of the anti-logarithm approximation. When q is 1, the addition
can be implemented with just one OR gate. The output, MP ,
is obtained after normalizing the anti-logarithm result to make
it lie in the range of [0, 1).

Algorithm 1 A Radix-4 Logarithm (R4L) Approach

Input: Mantissas: MA and MB ; Bit-width of mantissa: q; Loga-
rithm approximation method: α(); Anti-logarithm approximation
method: β();

Output: Mantissa of the product: MP .
1: if q ≥ 1 then
2: mA ← α(MA)
3: mB ← α(MB)
4: if q > 1 then
5: sum← ADD(mA[q : 1], mB [q : 1])
6: else
7: sum← OR(mA[1], mB [1])
8: end if
9: h← β(sum & ‘0’)

10: MP ← NORM(h)
11: else
12: MP ← 0
13: end if

The R4L approach was applied to the proposed FPLM-1,
FPLM-2, and the conventional logarithmic multiplier (CLM)
that uses Mitchell’s approximation [24] to reduce their hard-
ware complexity. The obtained multiplier designs are denoted
as FPLM-1-r4, FPLM-2-r4, and CLM-r4.

V. PERFORMANCE EVALUATION

In this section, the performance of the five proposed multi-
pliers (FPLM-1, FPLM-2, FPLM-1-r4, FPLM-2-r4, and CLM-
r4) is evaluated by comparing them with the conventional
FP multiplier (FPM), LAM [14], CFPU2 [43] and FPmul-
T9 [44], with respect to accuracy and circuit efficiency. Note
that FPmul-T9 is evaluated in half-precision since it is a half-
precision design. The CFPU2, which has two tuning bits, is
used due to its good trade-off between the accuracy and the
hardware cost.

A. Accuracy Evaluation

1) Error Assessment: Two standard error metrics are
considered to evaluate the error characteristics of the proposed
FP LMs.

• The mean relative error distance (MRED) is the average
value of all possible relative absolute error distances.

• The average error (AE) is the average difference, which
can be positive or negative, between the exact and ap-
proximate products.

Four FP precision levels are considered for the evaluation of
each multiplier: 32-bit single-precision, 16-bit half-precision,
Brain FP (bfloat16) and 8-bit FP (FP8) format. The first
three precisions are respectively in the form of (1, 8, 23),
(1, 5, 10) and (1, 8, 7) bits for the sign, exponent and
mantissa, respectively. The FP8 is chosen in the form of
(1, 5, 2) bits since it was found to perform the best with
respect to classification accuracy after the simulation of using
various FP8 formats [20]. The product obtained by the single-
precision exact FP multiplier is used as the benchmark since
the truncation of mantissa bits inherently introduces errors for
the 16-bit and 8-bit implementations. A sample of 107 random
cases from the two most common general distributions, i.e.,
uniform and standard normal distributions, of input operands
were generated to obtain the results in Table I. Note that
the uniformly distributed random cases are generated over the
interval of [1, 2) to assess the errors introduced in the mantissa
computation. Due to the small bit-width of the FP8 format, all
the input combinations are enumerated and considered in the
uniformly distributed cases.

The results in Table I show that, for single-precision, FPLM-
1 is the most accurate multiplier design for both two distribu-
tions, with the lowest MRED and |AE|, followed by FPLM-1-
r4. For the bfloat16 format, FPLM-2-r4 achieves the smallest
|AE|, while FPLM-1 is the most accurate for MRED, which
is 39.6% more accurate than CFPU2 for the standard normal
distribution. Compared to the LAM, FPLM-1 performs up to
30.8% more accurately for the bfloat16 format with respect to
MRED, and achieves a smaller |AE| by up to 2.58×103 times
for single-precision. The smaller |AE|s show the advantage of
the double-sided error distribution obtained for the proposed
designs. Note that for the 32-bit precision, the error metrics
that are shown as identical have a difference of less than 10−6.
For the 16-bit precision, FPLM-1-r4 produces larger errors
than FPLM-1, whereas FPLM-2-r4 is slightly more accurate
than FPLM-2. This is due to the relation between its error
distribution and the bit-width, which is explained in the next
subsection. For FP8, all of the multipliers produce large errors.
FPLM-2 is the most accurate multiplier, achieving up to a
16.1% smaller MRED and up to 45.9% smaller |AE| than
LAM.

2) The Relation between FP Precisions and Error Behav-
ior: According to Table I, the comparison results are the same
for 32- and 16-bit precisions, while they are different for the
FP8 format. Therefore, we investigated the relation between
the mantissa width and the error behavior of the proposed
designs. Fig. 7 shows the MREDs obtained when varying the
mantissa width for FP LMs and the FPM with the single-
precision. The MREDs for widths decreasing from 10 bits to
2 bits are presented due to the relatively small drop in accuracy
going from 23 bits to 11 bits. The lines with the marker show
the MREDs for the FPM and all FP LMs, respectively. For the
FPM, by considering single-precision as the baseline format,



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, X 2023 9

TABLE I: Error Metrics for the Multipliers

Multipliers Uniform Distribution Standard Normal Distribution
Single-Precision

MRED |AE| MRED |AE|(×10−5)
FPLM-1 0.0288 3.2× 10−5 0.0288 0.81
FPLM-2 0.0368 0.0416 0.0373 1.09

FPLM-1-r4 0.0288 3.2× 10−5 0.0288 0.83
FPLM-2-r4 0.0368 0.0416 0.0373 1.09

CLM-r4 0.0384 0.0833 0.0381 1.24
LAM 0.0384 0.0833 0.0381 1.24

CFPU2 0.0439 2.4× 10−5 0.0468 2.28
Half-Precision

MRED |AE| MRED |AE|(×10−5)
FPLM-1 0.0289 0.0021 0.0298 0.82
FPLM-2 0.0365 0.0399 0.0394 1.10

FPLM-1-r4 0.0290 0.0043 0.0311 0.83
FPLM-2-r4 0.0362 0.0382 0.0392 1.10

CLM-r4 0.0397 0.0862 0.0416 1.27
LAM 0.0391 0.0847 0.0409 1.26

CFPU2 0.0442 0.0032 0.0484 2.29
FPmul-T9 0.002 0.0002 0.0012 0.05

Bfloat16
MRED |AE| MRED |AE|(×10−5)

FPLM-1 0.0302 0.0175 0.0300 0.74
FPLM-2 0.0348 0.0280 0.0361 0.98

FPLM-1-r4 0.0330 0.0351 0.0326 1.16
FPLM-2-r4 0.0341 0.0143 0.0359 0.73

CLM-r4 0.0488 0.1066 0.0485 1.45
LAM 0.0436 0.0950 0.0433 1.32

CFPU2 0.0465 0.0181 0.0497 2.30
FP8

MRED |AE| MRED |AE|(×10−5)
FPLM-1 0.2311 0.5626 0.2159 4.83
FPLM-2 0.1626 0.3750 0.1586 2.61

FPLM-1-r4 0.4367 1.0000 0.4232 8.69
FPLM-2-r4 0.3201 0.7500 0.3078 5.74

CLM-r4 0.3201 0.7500 0.3078 5.74
LAM 0.1914 0.4375 0.1891 3.71

CFPU2 0.1652 0.3795 0.1598 3.54

the reduction of the bit-width leads to accuracy loss in the
product. As shown in Fig. 7, the FPM produces insignificant
errors when the mantissa width is from 10 bits to 7 bits,
whereas its MRED greatly increases when the mantissa width
is smaller than 7 bits. The MRED rapidly increases for all the
LMs with further decreases in the mantissa width from 6 bits
to 2 bits. The FPLM-1-r4 has the largest error increase and the
FPLM-2 becomes the most accurate, which produces smaller
errors than the FPM when the mantissa width is lower than 5
bits.

The average multiplication results of 104 uniformly dis-
tributed random numbers within [1, 2) are plotted with respect
to the reduced mantissa widths in Fig. 8 for 7 bits and 4 bits
to 2 bits (chosen to fit space limits). To clarify the trends, the
average values of products for each of the 50 samples were
computed after arranging the products in ascending order. As
shown in Fig. 8, with decreasing mantissa width, the FPM
generates increasingly smaller products (see the blue plus
sign) compared to the single-precision baseline results (see
the black dots). Meanwhile, since the LAM always produces
smaller products (see the lime green diamonds) than the
FPM, the error distances between the LAM and the baseline
result are increased with decreasing mantissa width. However,
multipliers FPLM-1 (see the green circles) and FPLM-2 (see
the orange squares) can produce both underestimated and
overestimated products.

When the mantissa width is lower than 7-bit, the overesti-
mated products have smaller error distances to the baseline
products compared to the underestimated products, which
eventually reduces the overall error distances. This trend is
prominent especially when the mantissa width is from 4-
bit to 2-bit, as shown in Fig. 8(b) to Fig. 8(d), where the
overestimated products are closer to the baseline products.
FPLM-2 is more accurate when the mantissa width is from
5-bit to 2-bit since it produces a larger number of larger
overestimated products than FPLM-1.

FPLM-1-r4, FPLM-2-r4, and CLM-r4 show similar error
behavior and smaller products compared to FPLM-1, FPLM-
2, and LAM, respectively. In particular, when the mantissa
width is larger than 6-bit, FPLM-2-r4 is more accurate than
FPLM-2. Compared to FPLM-2, for the same inputs, FPLM-
2-r4 produces a smaller underestimated product or a smaller
overestimated product, as shown in Fig. 8(a). The overesti-
mated products computed by FPLM-2-r4 have smaller error
distances to the baseline products than those computed by
FPLM-2 and a larger number of them are produced than the
underestimated products, therefore reducing the overall error
distances of FPLM-2-r4. However, when the mantissa width
is smaller than 7-bit, the error caused by the width truncation
becomes dominant, leading to a larger number of underesti-
mated products compared to the baseline results. When the
mantissa width is 2-bit, a significant error increase for FPLM-
1 occurs. The limited mantissa width causes additional errors,
which increases the approximation error and leads to large
underestimated errors when the input mantissa is larger than
1.5. As shown in Fig. 8(d), the products of FPLM-1 have a
larger error distance to the baseline product for the sample
sets from 160 to 200.
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Fig. 7: MREDs of the multipliers as a function of the
mantissa width, with respect to the single-precision

conventional FP multiplier.

B. Hardware Evaluation

The five proposed FPLMs and the comparative designs,
i.e., LAM [14], CFPU2 [43] and FPmul-T9 [44], were im-
plemented in Verilog and an FPM was obtained using the
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(b) For a 4-bit mantissa.
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(c) For a 3-bit mantissa.
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(d) For a 2-bit mantissa.

Fig. 8: Average product of each sample set (50 samples per set) for the five proposed multipliers, LAM [14], and FPM with
reduced mantissa widths (7-, 4-, 3-, and 2-bit) compared to the single-precision FPM (with a mantissa width of 23 bits).

Synopsys DesignWare IP library (DW fp mult). All of the
designs were synthesized using the Synopsys Design Compiler
(DC) for STM’s CMOS 28-nm process assuming a supply
voltage of 1.0V and a die temperature of 25◦C. The “ultra
compile” option was used in the synthesis for optimization. All
of the designs in the four precision formats were evaluated at
a clock frequency of 250 MHz. The critical path delay, area
and power dissipation are reported by the Synopsys DC. Note
that the evaluation does not include layout parasitics.

As shown in Table II, for the 32-bit and 16-bit implemen-
tations, the proposed CLM-r4 is the most energy-efficient and
smallest design. It incurs a 68× smaller power-delay product
(PDP) and a 18× smaller area compared to the FPM for
the single-precision implementation. The other four proposed
designs are more hardware-efficient and more accurate than
CFPU2; they have a larger hardware cost compared to the
LAM while being more accurate. The proposed designs are
not as accurate as the FPmul-T9 but with 6× to 13× energy
savings. For the FP8 format, FPLM-1-r4 achieves a 19%
smaller PDP and a 6.8% smaller area compared to LAM. The
FPLM-2 requires slightly smaller power and area compared
to LAM while being 16% more accurate. FPLM-2-r4 and
CLM-r4 are also more energy-efficient and smaller than LAM.
It is important to note that, according to [40], the power
of the accurate FP multiplier is dominated by the mantissa
multiplication, accounting for over 80%, and the rounding unit
for nearly 18%. Therefore, the reduction in power and area
can be largely attributed to the elimination of the mantissa
multiplier and the rounding unit in the proposed designs.

VI. APPLICATION EVALUATIONS

A. JPEG Compression
1) Experimental Setup: The five proposed FP LMs were

evaluated using JPEG compression for the four precision lev-

TABLE II: Circuit Measurements of the FP Multipliers

Power (µW ) Area (µm2) Delay (ns) PDP (fJ)
Single-Precision

FPM 643.4 2666 3.54 2277.6
FPLM-1 30.8 240.5 2.36 72.8
FPLM-2 25.8 211.9 2.20 56.9

FPLM-1-r4 29.9 234.1 2.27 67.9
FPLM-2-r4 22.8 198.6 2.11 48.2

CLM-r4 17.3 146.7 1.92 33.2
LAM 17.7 149.3 1.98 35.0

CFPU2 372.7 1888 3.56 1326.8
Half-Precision

FPM 157.5 868.8 3.03 477.2
FPLM-1 15.1 119.9 1.25 18.9
FPLM-2 13.4 108.3 1.05 14.1

FPLM-1-r4 14.2 113.4 1.18 16.7
FPLM-2-r4 12.7 103.1 0.98 12.4

CLM-r4 9.5 78.6 0.91 8.7
LAM 9.9 81.2 0.97 9.6

FPmul-T9 58.7 333.1 1.98 116.2
CFPU2 83.8 540.6 3.19 267.3

Bfloat16
FPM 107.8 724.6 2.90 312.6

FPLM-1 15.0 123.3 1.23 18.5
FPLM-2 14.1 115.7 1.05 14.8

FPLM-1-r4 14.1 116.8 1.16 16.3
FPLM-2-r4 13.4 110.4 0.98 13.1

CLM-r4 11.2 93.8 0.91 10.2
LAM 11.6 96.4 0.97 11.2

CFPU2 45.2 404.5 2.59 117.1
FP8

FPM 41.0 327.5 2.10 86.14
FPLM-1 7.25 55.1 0.49 3.55
FPLM-2 7.14 54.1 0.48 3.42

FPLM-1-r4 6.73 50.9 0.40 2.69
FPLM-2-r4 6.81 52.0 0.40 2.72

CLM-r4 6.81 52.0 0.40 2.72
LAM 7.23 54.6 0.46 3.32

CFPU2 12.2 128.2 1.13 13.78
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els. The required matrix multiplications in the discrete cosine
transform (DCT) and inverse DCT (IDCT) were implemented
using the FP LMs. The quality of the compressed image
was assessed by comparing it with the original image using
the peak signal noise ratio (PSNR). The JPEG compression
of 256×256-pixel standard test images including “Lena” and
“cameraman” were performed with the standard quantization
matrix. The compression quality factor was set to 50 in the
experiment.

2) Evaluation Results: The average PSNR values obtained
with the two test images, using different FP multipliers for the
four precision levels, are shown in Table III.

Among the FP multipliers, FPLM-1 achieves the highest
PSNR for the 32-bit and 16-bit precisions; FPLM-2 performs
the best for the FP8 format, followed by FPLM-1. For 32-bit
and 16-bit precisions, images processed by FPLM-1, FPLM-
2, FPLM-1-r4, and FPLM-2-r4 show similar qualities as the
accurate result, while images compressed using the LAM
and CLM-r4 show significant losses in quality. This suggests
that the double-sided error distributions produced by FPLM-1,
FPLM-2, FPLM-1-r4, and FPLM-2-r4 can effectively reduce
error accumulation in the multiple matrix multiplications of
both the DCT and IDCT. For the FP8 format, all reconstructed
images show considerably lower quality due to the relatively
large errors produced by using FP multipliers. Overall, com-
pared with LAM, the proposed FPLM-1, FPLM-2, FPLM-1-
r4, and FPLM-2-r4 multipliers produce higher image qualities
with a larger PSNR by up to 4.7 dB; CLM-r4 offers higher
energy and area savings with a very close image quality. It is
also shown that the obtained PSNRs follow the error analysis
results for the FP multipliers.

TABLE III: Average PSNR (dB) for JPEG Compression
using FP Multipliers with Different Precisions

Single-Precision Half-Precision Bfloat16 FP8
FPM 32.27 32.26 32.05 15.26

FPLM-1 30.10 30.08 29.67 15.23
FPLM-2 30.01 30.01 29.61 15.31

FPLM-1-r4 30.10 30.07 29.20 13.40
FPLM-2-r4 30.01 30.00 29.12 13.63

CLM-r4 24.91 24.85 23.87 13.63
LAM 24.91 24.86 24.32 15.26

CFPU2 28.67 28.64 28.11 14.98

B. Neural Network Applications

1) Experimental Setup: The FP multipliers were used in
the training phase of a multi-layer perceptron (MLP) and a
convolutional neural networks (CNN) by using the Pytorch
framework [45]. The same multiplier is used both in the
training phase and in the inference engine. It is noted that
the training process is affected by many factors, which are
explored for determining the training procedure for our exper-
iments as discussed below.

a) Datasets and Network Models: Four classification
datasets, fourclass [46], HARS [47], MNIST [48] and CIFAR-
10 [49], were used for the evaluation. A small MLP network
was used in training for the fourclass dataset. The MLP
networks used for the HARS and MNIST are (561, 40, 6)

and (784, 128, 10) models, respectively. AlexNet was used to
classify the CIFAR-10 dataset.

b) Hyperparameter Configurations: To fairly evaluate
the effect of approximate multiplication on training, for each
dataset the same training procedure (e.g., the same optimizer)
is used for all the models using different FP multipliers. In
all cases, the mini-batch training strategy [50] is used; the
batch size for the CIFAR-10, MNIST, HARS and fourclass
are set to 64, 128, 300 and 100, respectively. In addition, five
trials were done using different random initialization for each
training simulation.

c) Early Stopping Criterion: The stopping criterion has
an important impact on obtaining the trained parameters, i.e.,
weights and biases, and thereby it affects the classification
accuracy [51]. In order to obtain optimal generalization per-
formance and to avoid overfitting, an early stopping strategy
terminates the training if the validation loss does not improve
for a number of (t) epochs or the set maximum number
of epochs is reached. t is set to 100, 100, 200, and 1000
for CIFAR-10, MNIST, HARS, and fourclass, respectively.
By doing so, a desirable trade-off is achieved between the
training time and validation loss. The trained parameters are
then obtained at the epoch that achieves the lowest validation
loss. The maximum number of training epochs is set to 30k;
for each epoch, the entire training set is shuffled.

2) Evaluation Results:
a) Classification Accuracy Analysis: The comparison

of the average classification accuracies of five trials for using
different FP multipliers for the four precisions is shown in Fig.
9. Note that for a better visualization, the percentage shown
in Fig. 9 is the difference between the accuracy of using an
approximate multiplier and that of using FPM at the same
precision level.

The classification accuracy fluctuates for each specific mul-
tiplier regarding different datasets, FP precision formats, and
random initialization. However, the differences are subtle,
especially for 32-bit and 16-bit precisions. For each trial, the
difference in classification accuracy is < 1% in most cases for
these multipliers. Considering the average results, as shown in
Fig. 9, the difference is even smaller (< 0.4%) for MNIST and
HARS. This average difference is slightly larger for CIFAR-
10 (< 2%) and fourclass (< 2.4%). For the FP8 format,
an average accuracy loss of 3% is observed by using the
FPM compared to the using FPM in 32-bit precision. The
classification accuracy of using FPLM-1-r4 degrades the most
across all the datasets (> 2%) since FPLM-1-r4 has a large
MRED and AE in the FP8 format.

For the CIFAR-10 and MNIST datasets, FPLM-1-r4 and
CLM-r4 achieve the highest average classification accuracies
in the single-precision and bfloat16 formats, respectively;
FPmul-T9 performs the best in the half-precision, followed
by the FPLM-2-r4. It is interesting to observe that all of
the multipliers slightly improve the classification accuracy in
many cases. For HARS and fourclass, the FPLM-1 is the
best in the single-precision. For the FP8 format, the FPLM-2
outperforms the other multipliers for CIFAR-10, MNIST and
fourclass while improving the classification accuracy; FPLM-1
achieves the best for HARS with an improved accuracy.
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(a) For CIFAR-10. (b) For MNIST.

(c) For HARS. (d) For fourclass.

Fig. 9: Comparison of the average classification accuracy of four datasets with approximate multipliers: a negative percentage
means a decrease and a positive percentage means an increase in the accuracy with respect to using FPM.

Overall, the evaluation result indicates that NNs using the
five proposed multipliers and the other FP multipliers can lead
to very close classification accuracies for CIFAR-10, MNIST
and HARS with the 32-bit and 16-bit precision formats, while
the accuracies of classifying a small dataset, i.e., fourclass,
or using the FP8 format have slightly larger differences.
Compared to LAM and CFPU2, FPLM-1 performs better in
most cases and FPLM-2 is better in the FP8 format; in the
cases that other proposed designs achieve a lower accuracy, the
energy reduction is the trade-off. Our designs achieve better
hardware efficiency at the cost of a larger accuracy loss in
half-precision compared to FPmul-T9. The average difference
for the half-precision and FP8 format is larger than the other
two precisions due to the smaller bit-width of the exponent.

The classification accuracy is not strictly consistent with
the error analysis results for the FP multipliers. These results
indicate that a smaller multiplication error does not always
lead to a higher classification accuracy. However, for the FP8
format, the performance of using different multipliers loosely
follows the error analysis results for the multipliers in Table I.
This is possible since the iterative computation in the training
process, including both forward and backward propagation,
depends on many different factors. These factors vary for each
dataset, network structure and random initialization.

b) Hardware Evaluation: Since the proposed designs
perform well for classification with low energy in the bfloat16
format, an artificial neuron in the bfloat16 format was imple-
mented to assess the overall hardware cost of NNs. The FP
adder used in the neuron was obtained using the Synopsys
DesignWare IP library (DW fp add).

The simulation results in Table IV were obtained at a clock

frequency of 125 MHz. It was shown that a neuron using the
proposed CLM-r4 dissipates the least energy with the smallest
area, which is up to 4.2× smaller in energy with an area up
to 2.2× smaller than the neuron using FPMs.

TABLE IV: Circuit Assessment of the Artificial Neuron

Power(µW ) Area(µm2) Delay(ns) PDP(fJ)
FPM 144.2 1075.1 6.5 941.6

FPLM-1 59.1 537.1 4.4 263.3
FPLM-2 57.9 522.4 4.2 247.3

FPLM-1-r4 57.6 526.3 4.3 252.6
FPLM-2-r4 56.9 514.8 4.2 239.6

CLM-r4 54.1 483.23 4.1 223.7
LAM 54.8 486.1 4.2 230.2

CFPU2 78.6 1052.8 6.1 479.4

VII. CONCLUSIONS

In this article, FP logarithmic multipliers are proposed for
error-tolerant computation-intensive applications by using two
novel approximation methods that benefit from double-sided
error distributions in the logarithm and anti-logarithm con-
versions. The radix-4 logarithm is used to further reduce the
hardware complexity. For the 32-bit and 16-bit precisions, the
proposed FPLM-1 multiplier is the most accurate design with
up to 30.8% smaller MRED and 103× smaller average error
compared to a recent FP design, LAM [14]. CLM-r4 is the
most energy-efficient multiplier and the smallest design with
up to 68× smaller PDP and up to 18× smaller area compared
to the conventional FP multiplier. For the FP8 format, FPLM-
1-r4 is the most energy-efficient and the smallest design. From
the experimental results, the double-sided error distribution
benefits from error cancellation in low-precision computations.
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Using the proposed FP logarithmic multipliers in JPEG
image compression achieves higher image quality than LAM,
with a larger PSNR of up to 4.7 dB. Compared to NNs
implemented using a conventional FP multiplier, the evaluation
for benchmark NNs using proposed designs shows up to
4.2× and 2.2× reductions in energy and area, respectively,
while achieving similar classification accuracies. Particularly,
the proposed FPLM-1 achieves higher classification accuracy
in most cases and FPLM-2 performs better in FP8 format,
compared to LAM. Moreover, higher classification accuracies
can be obtained by using the proposed designs compared to
the use of the conventional FP multiplier. We also found that
no single FP logarithmic multiplier performed the best across
all the datasets with different precisions. Therefore, the impact
of FP logarithmic multipliers on the training process of NNs
remains an important topic for future research.
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