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Abstract—Truncation is one of the most commonly used

approaches for circuit-level approximate computing. This paper
proposes a scheme for error compensation of arithmetic circuits
in which a so-called padding is utilized to compensate at the
output for the truncated bits of the input operands. Compensation
relies on adjusting the output results of an arithmetic circuit; the
padding takes a value determined by utilizing statistical
information based on profiling an arithmetic circuit to reduce the
average signed difference between the inexact and exact values
and so the mean square error. An extensive analysis and
simulation-based evaluation of error metrics are performed on
signed truncated adders, multipliers and dividers; an excellent
agreement is found. Additional design metrics such as power
consumption and circuit complexity are also assessed. Different
applications of approximate arithmetic circuits with the proposed
output error compensation scheme are presented. Matrix
multiplication and image processing (changing detection) are
investigated to show the effectiveness of the scheme proposed in
this paper.

Index Terms—Approximate Computing, Arithmetic Errors,
Computer Arithmetic, Error Compensation

I. INTRODUCTION
HE need for high performance digital systems is often
constrained by the requirement of low power/energy

consumption. In many applications such as those requiring
arithmetic functions for digital signal processing, low delay and
energy consumption of the arithmetic units are of primary
importance in the overall evaluation of the entire computing
system [1]. Most computer arithmetic applications require the
highest degree of accuracy; however, applications such as those
found in multimedia and image processing, can tolerate errors
and imprecision in computation and still produce meaningful
and useful results [2]. This allows imprecise or approximate
computation to redirect the existing design process to decrease
computational complexity and hardware requirements with
increases in performance and power efficiency [3].
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Approximate computing (AC) has been applied at circuit and
algorithmic levels. At circuit level, several arithmetic circuits
have been proposed; for example, in adders the most significant
bits are exactly computed, while several less significant bits are
computed inexactly using a simplified circuit. Approximate
mirror adders [4][5], approximate XOR/XNOR-based adders
[6] and lower-part-OR adders [7] are some examples of adder
circuits used for AC. [8][9] have implemented approximation
by employing speculative adders. Approximate multipliers
have utilized speculative adders for generating the partial
products [10]. [11] has proposed a compressor using only one
majority gate by AND-OR and XOR logic. [12] has introduced
the partial product perforation technique, in which the
generation of some partial products based on the modified
Booth encoding, is omitted. [13] has proposed three
Approximate Booth Multiplier Models (ABMM) to archive
low power operation, while preserving accuracy. Approximate
logic level synthesis has also been investigated [14]. [15] has
proposed a Systematic methodology for Automatic Logic
Synthesis of Approximate circuits (SALSA) that synthesizes an
approximate version of the circuit to meet pre-specified quality
bounds. At algorithmic level, the feature of incremental
refinement found in iterative algorithms, has been exploited to
achieve results that gradually increase the desired metric
[16][17]; for example, dynamic bit width adaptation has been
used to increase energy efficiency [18].
AC employs designs that produce imprecise results [19]. The

simplest scheme for AC is truncation, i.e. the removal of some
parts of less importance from the inputs of a circuit, such as the
least significant bits (LSBs) in an arithmetic circuit. Truncation
is simple to implement and control; the so-called reduced width
circuit has been extensively proposed for AC, but its
implications on error are rather severe, as inaccuracy increases
with the level of truncation. Statistical error compensation
exploits hardware features of the underlying implementation to
provide compensation, such that the output may be in error, but
it still guarantees that application-level specifications on
inaccuracy are met. Corrective schemes by which mitigation
can be implemented, remedy an inexact output when the error
(as measured by the relevant metrics) exceeds the desired level
for an application. Therefore, there is a compelling need to
provide adequate output compensation for approximate
arithmetic circuits employing input truncation.
In this paper, circuit-level input truncation is complemented

by utilizing a simple error compensation scheme at the output
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to reduce power consumption, circuit complexity and error
metrics. Using the proposed low complexity error
compensation scheme, the objective of significantly reducing
the average (signed) error introduced by truncation is met by
analyzing and proposing an appropriate value for the so-called
padding (which is generated based on the statistical information
of the input pattern and profiling an arithmetic circuit). The
proposed scheme is utilized for (signed) addition,
multiplication and division; an exhaustive simulation
assessment and error analysis are also provided to show the
effectiveness of the proposed scheme. Different applications of
approximate arithmetic circuits with the proposed error
compensation scheme are also presented.
The rest of the paper is organized as follows: Section 2

provides a brief overview of AC. The proposed compensation
scheme is outlined in Section 3. The detailed implementation
and evaluation for circuits such as the adder, multiplier and
divider using the proposed scheme are presented in Sections 4
to 6. The application of the proposed schemes to matrix
multiplication and image processing are presented in Section 7.
The paper ends with the conclusion in Section 8.

II. REVIEW
AC spans a wide range of research activities from circuits to

programming languages. It includes arithmetic circuit design at
transistor and logic levels, approximate memory/storage
(including SRAM, DRAM and non-volatile memories), and
processor architectures (including neural networks,
general-purpose and reconfigurable processors such as
instruction set architectures (ISAs), graphic processing units
(GPUs) and FPGAs) [4]. Applications of AC include image and
signal processing, classification, recognition and machine
learning, among the many possible.
This paper focuses on arithmetic circuits; arithmetic circuits

are usually modular and homogeneous, often designed as arrays.
For AC, two approaches are usually utilized in a hardware array
for modular arithmetic design:
Cell Replacement. In this case, an approximate design

consists of removing at least an exact cell and replacing it by an
approximate cell; for example, the extent by which this
replacement process is performed in an array (such as a divider)
is quantified by the depth (d), i.e., the number of rows (and/or
columns) in the array with approximate cells. The approximate
cells have a smaller circuit complexity, so making the overall
design less complex, consuming less power and often in many
cases operating faster. These advantageous features are
accomplished at the expenses of introducing errors at the
outputs.
Cell Truncation. Truncation consists of fully removing at

least a cell (so no replacement with approximate cell(s)) in the
rows/columns in the array. Usually, cell truncation introduces
more error compared with cell replacement, while consuming
also less power. The tradeoff between error and power
dissipation must be carefully considered in a truncation
scheme.
For different truncation configurations, the inexact

computation circuit must be configured in hardware to meet the

specific requirements of an application; so, at least some parts
of a computational module should be turned on/off according to
the desired configuration and the reduced bit-width of the
arithmetic operation. In this paper, power gating is used to
accomplish a bit-width reduction. In this scheme, two
transistors are added to a generalized CMOS gate: a PMOS in
series with a pull-up network (PUN) and an NMOS in parallel
with a pull-down network (PDN) (Fig. 1). Note that there is
also a small increase in operational delay due to an additional
PMOS transistor. The value of the control signal CON is
determined by the target error; if the control signal CON is low,
then the circuit operates as a normal gate. When the control
signal is high, the output of the gate is forced to zero regardless
of the input signal. If only the input gates of a functional block
(or module) are modified, then a high value on CON turns off

the functional block, because there is no switching activity in
the connected gates. Power gating incurs in hardware and delay
overheads (albeit, they are both very small, nearly negligible in
most cases).

III. PROPOSED ERROR COMPENSATION SCHEME

Truncation is usually applied at the inputs and/or
intermediate results. When truncation is introduced only at the
inputs, the computation result resembles its exact counterpart in
the MSBs, but at a reduced bit width for computing, often
reducing power dissipation and circuit complexity. In this paper,
truncated approximate arithmetic circuits are considered;
truncation is introduced during the calculation (so reducing
computation and circuit complexities) and a so-called padding
is inserted at the output (Fig. 2). This approach is referred to as
compensation. The principle of error compensation is based on
partially adjusting/reducing the error introduced by input
truncation; this arrangement is based on a-prior acquired
statistical information of the approximate circuit. In general,
approximate circuits are truncated in the k least significant bits.
So rather than representing the truncated k bits with a
predetermined simple pattern (such as all ‘0’s), a k-bit padding
is used; padding takes a value to reduce the total average
distance as well as the mean square error in a specific
application. The value of padding is calculated by statistical
analysis and by considering the nature of the arithmetic
computation of the circuit.
The following conditions are assumed throughout this work.
1.The (exact) arithmetic circuit has a modular design, i.e. the

basic module (referred to as a cell) is employed in a
homogeneous scheme.

Fig. 1. Power gating scheme.
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2.The (exact) arithmetic circuit operates on a signed integer
format (using 2’s complement).

3.All designs for the proposed schemes have been
implemented in HDL and mapped to the FreePDK
45nm library.

The general flow of the proposed approximate and error
compensation schemes using padding is shown in Fig. 3

(a) (b) (c)

Fig. 2. Block diagrams of (a) exact circuit, (b) inexact circuit with conventional
truncation, and (c): input truncation with output padding.

Fig. 3. Design flow for AC by utilizing the proposed padding scheme.

 Truncation: Starting from an exact arithmetic circuit,
the first step employs input truncation for AC. By
truncating some of the cells in a modular design
implementation, circuit complexity and power
consumption can be significantly decreased; however,
for such inexact circuit, an error is also introduced due
to truncation of the least significant bits.

 Statistical profiling: An assessment (likely if possible,
involving exhaustive simulation) of the inexact circuit
is pursued. Specifically, the metric of average signed
error between the exact and the approximate outputs
for all input combinations is recorded; the distribution
of the signed error among all supplied input
combinations is then plotted.

 Adding padding based on the statistical profiling: In
2’s complement, once truncation is applied to an
arithmetic circuit, the inexact result is normally
smaller than the exact value. This occurs because in
most of these schemes, the least significant bits of the
inputs (or intermediate values) are truncated. After
obtaining statistic information, padding is added at the
output to the inexact result in place of the truncated
bits to compensate for the error. So, the value of the

output padding is based on the statistical distribution
of the exact output value. Under a uniform input
distribution, the signed average error is selected as the
value of the padding.

As shown in the next section, the most common arithmetic
operations are analyzed with respect to two operand signed
arithmetic in integer format. Under exact conditions, the
common feature of these operations is that the output
distribution is symmetric in both the negative and positive
ranges and centered by the largest number of occurrences on 0
as output value. This is a very important feature that can be
used for AC when utilizing input truncation to reduce the error.
Therefore, the basic principles of the proposed approach for

AC are based on the following features.
● Truncation with no padding results (such as by using

the commonly used pattern of all 0’s) in a shift of the
output distribution, while still remaining symmetric,
but not centered on 0 as the output value of largest
occurrence.

● The value of padding shifts back to the center value of
the distribution, while significantly reducing the
average signed error.

The value of the padding is dependent on the arithmetic
operation as well as the distribution of the two input values in
the inexact circuit. In this paper, a normal distribution is
assumed for the input values; this assumption is validated using
three applications in a later section as well as analytically. It
should be also noted that compensation by padding is analyzed
in this paper at an arithmetic level; while specific circuits for
these operations are considered, this technique can be utilized
for other arithmetic circuits provided the truncated part is
identified from the retained (not truncated) part. The proposed
technique is therefore an output-based compensation that
remedies on average the error of an arithmetic operation for
AC.

IV. ADDITION

Consider the operation of addition and as an example, the
case of adding two 8-bit operands in signed (2’s complement)
format, only those results with no under/overflow are
considered. For this operation, the distribution of the sum using
exhaustive simulation is shown in Fig. 4; the distribution is
symmetric with respect to a sum value of 0. Consider next an
n-bit ripple carry adder as implementation (Fig. 5). As a
truncated adder, only n-k cells are used for calculating the sum
(in Fig. 5, k=2); so, the least significant k cells are truncated and
when employing the proposed scheme, a k-bit padding must be
used for the sum (where the k-bit padding is considered as
having an unsigned value).
The distribution of the (inexact) sum for n=8 and k=2 can be

plotted for a specific padding value; the distributions for
padding values of 00 and 11 are plotted in Fig. 6 under an
exhaustive simulation. The shape of the error distribution is still
the same as in Fig. 4; however, the center value of the
distribution is a function of the value of the padding. It is
shifted in the negative range for a padding value of 00 and
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centered again for a padding value of 11 (3).

Fig. 4. Distribution of exact sum for 8-bits operand (signed) addition.

Fig. 5.Truncated inexact ripple carry adder (n=8, k=2).

(a)

(b)
Fig. 6. Distribution of inexact sum for 8-bits (signed) addition with truncation
k=2 for values of a) padding=00, and b) padding=11.

TABLE I
ERROR STATISTICS FOR SIGNED ADDITION WITH K=2 AND N=8 WITH PADDING

Padding
Value

0 Error
Count

Largest
error

distance

Average
distance

Average
signed error

00 3072 -6 3 -3
01 6144 -5 2.125 -2
10 9216 -4 1.5 -1
11 12288 -3 1.25 0

TABLE II
AVERAGE SIGNED ERROR (INEXACT-EXACT) FOR ADDER TRUNCATION

WITH/WITHOUT PADDING (N=8).
Average signed

error k=1 k=2 k=3 k=4

Padding ‘1’ ‘11’ ‘111’ ‘1111’
No padding -1 -3 -7 -15

After
padding 0 0 0 0

TABLE I shows the results for different error metrics (the
so-called 0-error count denotes the number of occurrences

when the output shows no error with respect to the exact value,
so at a 0 distance). The distribution is also a function of k;
TABLE II shows the average signed error results with different
truncation levels for n=8. For an input uniform distribution,
output padding can fully compensate the average signed error
introduced by truncation for an addition.
Compensation can be analyzed as follows; consider again as

an example an adder for n=8 and k=4; the exact result can be
expressed by:

Exact = A7A6A5A4A3A2A1A0 + B7B6B5B4B3B2B1B0

= A7A6A5A40000 + B7B6B5B40000 + A3A2A1A0
+ B3B2B1B0 (1)

Let

truncated sum = A3A2A1A0 + B3B2B1B0
Thus,

exact = A7A6A5A40000 + B7B6B5B40000 + truncated sum
For the inexact result,

Inexact = A7A6A5A40000 + B7B6B5B40000 + padding
Therefore,

error = inexact − exact = padding − truncated sum �2⁨

The distribution is symmetric, in this case it is centered at 15
and the range is [0, 30]. Using the results found by exhaustive
simulation, the distribution can be represented as a function
given by

Occurence = 3072 − 192 ∗ 15 − Truncated sum
Truncated sum = 0,1,…30

The average value of the truncated sum is given by

Avg sum = i=0
30 Truncated sumi� × Occurencei

i=0
30 Occurencei�

= 15

The error is equal to a smaller truncated sum to which the
padding value is added; so, the error distribution effectively
flips the truncated sum over the y-axis and then shifts it to the
right by M, where M denotes the value of the padding. If the
padding value is ‘0000’, the error distribution only flips the
truncated sum with a center value of -15 and the range is now
given by [-30, 0]. When the padding value is ‘1111’ (i.e. 15),
the error distribution flips the truncated sum and so it shifts it
right by 15, i.e. now the center value is at 0 and the range is
restored to [-15,15].
In the general case, a discrete signed error distribution with

both positive and negative errors is applicable. Let the largest
positive error be + ��.�th while the largest negative error be
− ��.�th . Each occurrence in the distribution is given by
�� with � ∈ − ��.�th, + ��.�th . The total signed error is
given by :

SEtotal =
i=1

+ Ep.max
i × Oi� −

j=1

+ EN.max
j × Oj� �3⁨

SEavg = SEtotal i=− EN.max
+ Ep.max Oi� �4⁨

The design of the tunable truncated inexact (ripple carry)
adder is shown in Fig. 7. It includes full adder cells, MUXes
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and Pull UP Networks (PUNs). The selector of each MUX (C3
to C0) is connected with its PUN that allows the MUX to select
the result from the full adder cell when the selector signal is 0 as
we assume that the largest truncation level of the adder is the
half bit-width for the operand. Padding is available to the final
result provided the digit has a selector signal with a value of 1,
i.e. to turn off the full adder cell for that digit. The simulation
results at different values of n and k for the area, delay and
power per the proposed scheme with padding are reported in
TABLE III; by increasing k, the working power and delay
metrics decrease as expected because of the power gated of the
truncated FAs. However, the auxiliary MUXes and the PUN
will introduce more area cost. If the truncation level k can be
fixed in specific applications, the padding can be directly
inserted to the LSB of the result without the FAs and MUXes,
which can save the circuit cost further.

Fig. 7. Tunable truncated inexact adder with output padding as compensation.

TABLE III
AREA, POWER AND DELAY FOR ADDITION SCHEME

Truncation
level

Area
(�m2)

Delay
(ns)

Power
(�w)

n=8
Exact 182.8 0.34 53.4
k=2 205.3 0.25 47.4
k=4 205.3 0.25 45.8

n=16
Exact 274.4 0.57 101.5
k=2 334.2 0.44 95.7
k=4 334.2 0.43 93.8
k=8 334.2 0.43 90.2

V. MULTIPLICATION

In this section, the more complex arithmetic operation of
signed multiplication is analyzed for AC with output
compensation.

Fig. 8. 3-bit operand binary multiplication.

Consider as an example the Baugh-Wooley multiplier as
implementation of a signed multiplier for calculating the
product of the two n-bit binary input operands ��t = (an−1, . . . ,
a1,a0) and �tt = (bn−1, . . . ,b1,b0) ) where an−1 and bn−1are the
sign bits. The result is represented by a 2n-bit output value M
= ��t ∙ �tt =(m2n−1, . . . ,m1,m0). The computation in a 3-bit
Baugh-Wooley multiplier is shown in Fig. 8.

In Fig.8 , each bit of the product (mi ) corresponds to the
cumulative sum of the partial products �akbi−k ,
i.e.mI,i=0,1,2,3,4 = k=0

i akbi−k� ).

Fig. 9. Exact AND partial product cell (PPC): (a) Logic circuit and (b) symbol.

There are two basic operations in the partial product: AND
and NAND; thus, two types of a partial product cell (PPC) are
required. Fig. 9 shows the first type of PPC; it computes a
single bit multiplication of ai and bj using an AND-gate. The
result is then added using a full adder (FA) cell with the
previous sum output Sin from a cell located above, and the
previous carry output Cin from a cell to the right to generate the
final Sout and Cout, the second cell (Fig. 10) differs only in the
gate (now a NAND).

Fig. 10. Exact NAND partial product cell (PPC): (a) logic circuit, and (b)
symbol.

Fig. 11. Distribution of exact (product) output for 8-bit operand signed
multiplication.

Consider next truncation. For an n-bit multiplier, truncation
can be implemented in two ways: 1) Horizontal truncation; and
2) Vertical truncation.
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Fig. 12. 8-bit exact multiplier.

Fig. 12 shows an 8-bit exact multiplier. Horizontal truncation
requires truncating the first k rows of partial products and then
adding a k-bits padding to the result (i.e. the final product);
therefore, a k×n partial product is truncated. An example of
horizontal truncation (n=8, k=2) is shown in Fig. 13; the black
dots identify those partial products that are truncated.

Fig. 13. Horizontal truncation for n=8, k=2.

Vertical truncation consists of truncating the least significant
k columns of the partial products and then appending a k-bit
padding to the result, i.e. the i=1

k i� partial products are
truncated. An example of vertical truncation (n=8, k=4) is
shown in Fig. 14.

Fig. 14. Vertical truncation for n=8, k=4; the x denotes a padding bit.

Consider next the padding value and vertical truncation. In
vertical truncation, padding is simple to implement. Consider
the multiplication of two 8-bit operands as an example, in this
case, initially an exhaustive simulation of the multiplication for
two 8-bit operands is conducted to assess the statistical
information on this arithmetic operation; this is a rather brute
force approach (certainly not possible for large values of n), but
it provides an excellent understanding of the entire
multiplication process and its inexact counterpart.
The simulation results with and without padding are

presented in TABLE IV for different values of k and n=8.
For each row of the partial products, the weight is different,

i.e. the weight of the next row is twice the weight of the current
row. Let w be the weight of the first row; the weights for an
8-bit multiplier are therefore given by 20×w, 21×w, … 27×w. If
k is the number of bits for vertical truncation, then there are k
truncated rows (from 0 to k-1); so for row i (i from 0 to k-1), the

weight is given by 2i×w and the number of truncated bits on
row i is k-i. If every truncated digit is replaced by a 0, the
average error introduced by row i is the product of the weight of
row i and the average value generated by the k-i bits.

TABLE IV
AVERAGE SIGNED ERROR (INEXACT-EXACT) FOR VERTICAL TRUNCATION

WITH/WITHOUT PADDING (N=8)
Padding No Padding With Padding
‘0’
(k=1) -0.25 -0.25

‘01’
(k=2) -1.25 -0.25

‘100’
(k=3) -4.25 -0.25

‘1100’
(k=4) -12.25 -0.5

The k-i bits have a value in a range from 0 to 2t−� − 1. This
value determines the corresponding bits of the multiplicand; the
average value is in a range from 0 to 2t−� − 1 is (2t−� − 1⁨/2
and the average value for the multiplicand bit is 0.5 (between 0
and 1). Thus, the average value of the k-i bits is �2�t−�⁨ − 1⁨/4
(for example, k=2 and i=0, the average value of these 2-bits is
(002+012+102+112)/4× 1/2=0.75). The generalized expression
for the error introduced by row i is:

avg errori = 2iw × j=0
2k−i −1 j�

2k−i
×
1
2

= 2iw × 2k−i − 1 ×
1
4
=
2k − 2i

4 �10⁨
The total error for k rows (vertical truncation) is given by:

total error = avg errori� =
k − 1 2k + 1

4
�11⁨

Thus, to compensate this error, the padding should be an
integer with a value given by ��k − 1⁨× 2k + 1⁨/4 . Fig. 15
plots the average vertical truncation error varying the
truncation level k.

Fig. 15. Average vertical truncation error versus k for multiplication with
padding.

Consider next horizontal truncation; this truncation scheme
is more complicated than vertical truncation. As an example,
again an exhaustive simulation of the multiplication for two
8-bit operands is conducted with a string of 0 used as initial
padding. Next, to make the average signed error close to 0, a
padding should be added like a partial sum of the truncated
rows. As per the operation of a Baugh-Wooley multiplier, a 2n
padding is added to the exact result. Thus, different values of
padding are shown in TABLE V. Same as in TABLE IV, the
value of the average signed error using padding is negative.
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TABLE V
AVERAGE SIGNED ERROR (INEXACT-EXACT) FOR HORIZONTAL TRUNCATION

WITH/WITHOUT PADDING (N=8)
Padding No Padding With Padding

‘11111111’
(k=1) -383.75 -0.75

‘1001111111’
(k=2) -639.25 -0.25

‘10001111110’
(k=3) -1150.25 -0.25

‘100001111100’
(k=4) -2172.25 -0.25

Fig. 16. Example of padding for horizontal truncation (n=8, k=2).

For horizontal truncation of k rows, the value of row i is
equal to the multiplier (1st input) AND with the ith LSB of the
multiplicand (2nd input). As per the operations of a
Baugh-Wooley multiplier, a term of 2� must be added to obtain
the exact result.
For row 0, there are two scenarios: the LSB of the

multiplicand is either 1 or 0; the occurrence of either scenario
requires to take into account the following cases.

● If it is 0, in a Baugh-Wooley multiplier the (n-1)th bit of
that row will be 1, while the other bits will be 0.

● If it is 1, the n-2 to i bits will have a copy of the
corresponding bits of the 1st input. However, the
(n-1)th bit will flip. The row can take a value from 0 to
2� − 1.

Thus, the average error due to truncation of row 0 is:

avg errorrow 0 = 2 n−1 × 0.5 +
j=0

2n −1

j� × 0.5/2n

= �2n+1 − 1⁨/4 �12⁨

For row I, the weight is 2I of row 0, thus

avg errorrow i = avg errorrow 0 × 2i = 2 n+1 − 1 × 2i−2
The total average error is given by:

total error = avg errori� + 2 ntruncation

=
2 n+1 − 1

4
× 2k − 1 + 2 n �13⁨

For example, when n=8 and k=3, the total average error is:

�2�8+1⁨ − 1⁨/4 × 23 − 1 + 2 8 = 1150.25
This is the same as found from simulation for the considered

values of n as shown in Fig. 17. By comparing the results of
TABLE IV with TABLE V, horizontal truncation has an
average signed error larger than vertical truncation when no
output padding is applied; after padding, these two truncation

methods are similar as far as the average signed error after
compensation.

Fig. 17. Average horizontal truncation error versus k for different values of n
for multiplication with padding.

VI. NON-RESTORING DIVIDER

Two of the most commonly used division algorithms are
restoring and non-restoring; they are based on shift, subtraction
and addition operations in array dividers[20][21]. In these array
dividers, replicated units are used for the parallel divider;
similar units are used for comparison of the partial remainder
and divisor, while the shift operation is mostly implemented by
wiring.
Consider integer division, the operands are given by the

dividend A and the non-zero divisor D; the results of the
operation are the quotient Q and the remainder R, i.e.,

A = D × Q + R �14⁨
where the sign of the remainder R is the same as the dividend

A and |R|< |D|. A widely used algorithm for division is the
so-called non-restoring division.

Fig. 18. Exact non-restoring array divider cell (ExDCnr).

In this paper, non-restoring division is considered, because it
offers higher performance than the restoring one, i.e. in
non-restoring division, restoration is not required. In this
algorithm, the only operations are either addition or subtraction.
The non-restoring array division algorithm (like the restoring
one) is based on a modular architecture. The exact
non-restoring array divider cell (ExDCnr) is shown in Fig. 18;
ExDCnr is made up of a full subtractor and a XOR gate, it
performs addition and subtraction according to the sign of the
partial remainder in the previous row. Each row consists of
several cells and by connecting these rows and back each of
them to the next rows. The 8-by-4 non-restoring array divider is
shown in Fig. 19[22]. It computes the integer division for
A[7:0], D[3:0], Q[3:0] and R[3:0]. Truncation consists of fully
removing at least a cell, this process is shown by the shaded
cells in Fig. 20. The input A of the removed cell is left
unchanged and moved downwards in the remainder output
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direction, while the input D of the removed cell is discarded.

Fig. 19. Exact non-restoring array divider (8-by-4) [22].

Error generation and propagation can be qualitatively
analyzed by the location of the replaced or truncated cells in the
divider. An approximate scheme consists of replacing or
truncating only a portion of the divider; this leads to different
approximate configurations with different accuracy for the
output values (Q and R). In a divider, the dividend A and the
divisor D are provided as inputs at the north side, while the
quotient Q and the reminder R are generated at the west and the
south sides respectively (Fig. 19). Therefore, each cell (located
at a unique position in the divider) plays a different role in
generating the error.

Fig. 20. Example of truncation for 8-to-4 bit divider.

So, for a general analysis, consider a 2N-N divider under the
assumption that the truncation level is K,

A = D × Q + R
= D × Q' + D × Q'' + R �15⁨

where Q’ represents the N-k bits (MSB) of Q (as output of the
array divider), Q’’ represents the K bits (LSB) of Q. In the exact
case, A − Rex = D × Q' + D × Q'' . In the truncated case, Q’’
has a value of 0 (without adding the padding value), so A −
Rex = D × Q' + Error �from �15⁨⁨.
For signed division, only the quotient is considered, because

in most applications only the quotient is needed. Thus,

Error = D × Q'' �16⁨
Error is a function of k, i.e. it can be {D × 0, D × 1, D ×

2,…,D × �2K − 1⁨} . If A and D follow a uniform distribution,
then Error will also follow a uniform distribution; so, the
average value of Error is �2k − 1⁨/2 × D and the error distance
for the quotient is given by �2k − 1⁨/2. Under a uniform
distribution, a 2k−1 padding value is then added to the quotient
to reduce the average signed error.
TABLE VI shows that for division, the average signed error

is reduced using padding. It is not zero as for addition; such
error is now constant at a value of -0.5.

TABLE VI
AVERAGE SIGNED ERROR (EXACT-INEXACT) FOR TRUNCATION WITH/WITHOUT

PADDING FOR QUOTIENT

Padding No Padding With Padding
‘1’
(k=1) 0.5 -0.5

‘10’
(k=2) 1.5 -0.5

‘100’
(k=3) 3.5 -0.5

‘1000’
(k=4) 7.5 -0.5

VII. COMPARISON

A. Multiplier
In this section, 8-bit and 16-bit approximate multipliers are

compared. [23] has proposed radix-4 approximate Booth
multipliers with accuracy that can be adjusted by utilizing a
so-called approximate factor. [24] has proposed fixed-width
truncated Booth multipliers with a rather simple error
compensation. Also, for these designs, they are implemented in
Verilog and synthesized by the Synopsys Design Compiler
using the FreePDK 45 nm Library. The two input values to the
multiplier are randomly generated by a uniform distribution;
simulations consist of a sample of 1 million.

TABLE VII
AREA, POWER, DELAY, ASE AND APE PRODUCT FOR DIFFERENT MULTIPLIER

TRUNCATION SCHEMES

Multiplier Type
Area

(�m2)

Delay

(ns)

Power

(�w)
ASE

NMED

(× 10−3)

APE

Product

N=8

Exact Multiplier 757.8 0.75 163.4 - - -

Proposed k=2 (V) 624.0 0.63 144.9 -0.29 1.1 26221

Proposed k=2 (H) 601.4 0.62 142.3 -0.74 12.6 63329

Proposed k=4 (V) 500.5 0.59 108.9 -0.38 2.1 20712

Proposed k=4 (H) 451.7 0.61 96.2 -0.41 13.5 17816

Radix-4Multiplier

k=2 [23]
639.9 0.64 151.8 -0.27 0.9 26227

Radix-4Multiplier

k=4 [23]
592.5 0.64 140.1 -0.39 1.5 32374

Fix-width

Multiplier [24]
593.2 0.73 137.9 -1.24 6.7 101435

N=16

Exact Multiplier 2607.4 1.23 618.6 - - -

Proposed k=4 (V) 2441.6 1.14 594.6 -1.24 1.4 1800201

Proposed k=4 (H) 2406.8 1.13 578.1 -1.47 11.5 2045315

Proposed k=8 (V) 1999.0 1.09 484.7 -2.85 3.8 2761409

Proposed k=8 (H) 1871.7 1.09 464.2 -2.93 13.3 2545710

Radix-4Multiplier

k=4 [23]
2585.0 1.14 594.8 -0.96 1.2 1476056

Radix-4Multiplier

k=8 [23]
2462.2 1.12 539.5 -2.11 2.9 2802833

Fix-width

Multiplier [24]
2304.4 1.18 529.9 -3.25 7.8 3968580

V for Vertical truncation; H for Horizontal truncation.
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Power consumption, delay, area, NMED[25] and Average
Signed Error (ASE) are evaluated and reported in TABLE VII.
In order to compare the different approximation schemes, a
metric called APE (Area, Power and Error) Product is used. It is
the absolute value of the product of the area, power
consumption and Average Signed Error. The smaller product
value indicates the better performance in the combinational
dimensions.
As shown in TABLE VII, the proposed multiplier incurs in

an area and power consumption smaller than [23]; however, its
accuracy is marginally worse than [23]. The fix-width
multiplier in [24] has the least area and power consumption, but
it is also the least accurate multiplier among the three schemes.
In the term of the APE Product, generally, the proposed scheme
has the least APE product among the multiplier in [23] and [24],
one exception is configuration of horizontal truncation N=8 and
k=2. The compensation padding added to this configuration
results a large ASE which leads the worse APE Product value.
In the term of the NMED metric, the horizontal truncation
padding scheme has the largest NMED. This is because the
padding added to the horizontal truncation has larger absolute
value which lead a larger error distance compared to the
vertical truncation padding.

B. Divider
In [22], several approximate dividers have been proposed; at

array level, exact cells are either replaced by inexact cells, or
truncated in the approximate divider designs. For all designs,
all metrics are generated using the Synopsys Design Compiler
with the FreePDK 45 nm Library. The input dividend and
divisor are randomly generated using simulation with a uniform
distribution and 1 million iterations. The results of area, power,
delay and APE Product are shown in TABLE VIII.

TABLE VIII
AREA, POWER, DELAY, ASE AND APE PRODUCT FOR DIFFERENT DIVIDER

TRUNCATION SCHEMES

Multiplier Type
Area

(�m2)

Delay

(ns)

Power

(�w)
ASE

NMED

(× 10−2)

APE

Product

N=8

Exact Divider 757.8 0.75 163.4 - - -

Proposed k=2 697.4 0.70 184.9 -0.54 3.4 69633

Proposed k=4 514.1 0.69 145.7 -0.58 6.1 43445

Divider in [22]

Truncation k=2
663.5 0.67 179.4 0.64 8.6 76180

Divider in [22]

Replacement k=2
812.4 0.79 197.6 0.47 2.5 75449

Divider in [22]

Truncation k=4
498.1 0.66 138.5 7.35 11.6 507053

Divider in [22]

Replacement k=4
793.5 0.78 189.7 0.51 5.3 76769

N=16

Exact Divider - - -

Proposed k=4 2502.3 1.32 618.6 -0.80 4.2 1238338

Proposed k=8 1685.4 1.20 503.7 -1.28 6.8 1086638

Divider in [22]

Truncation k=4
2397.2 1.30 601.9 3.51 9.7 5064490

Divider in [22] 3195.1 1.44 706.5 0.61 2.9 1376976

Replacement k=4

Divider in [22]

Truncation k=8
1504.4 1.20 491.1 10.4 13.8 7683633

Divider in [22]

Replacement k=8
2962.7 1.43 674.2 0.88 3.3 1757758

In TABLE VIII, the proposed scheme incurs in less power
consumption, area and delay [22]; however, the accuracy of the
proposed scheme is marginal worse than the replacement
policy of [22]. For the truncated policy of [22], power
consumption, area and delay are better than the proposed
scheme; however, the accuracy of proposed scheme is
significantly improved compared to [22]. For the APE Product
term, the proposed scheme has the least APE Product value
compared with the dividers of replacement and truncation
policies in [22]. The truncation policy in [22] produces
significant ASE value which lead a large APE Product.

VIII. APPLICATIONS

In this section, three applications of the proposed schemes
are presented; they utilize compensation with the different
arithmetic operations analyzed in the previous section.

A. Matrix Multiplication
Matrix multiplication (MM) is one of the most important

operations in different fields of science, engineering and
technology, as utilized in signal and image processing, system
theory, statistical and numerical analysis. [26][27] Consider the
multiplication of two N×N matrices A and B, so

P =

P11 P12 … P1N
P21 P22 … P2N
⋮ ⋮ ⋱ ⋮
PN1 PN2 … PNN

= A × B

=

A11 A12 … A1N
A21 A22 … A2N
⋮ ⋮ ⋱ ⋮
AN1 AN2 … ANN

×

B11 B12 … B1N
B21 B22 … B2N
⋮ ⋮ ⋱ ⋮
BN1 BN2 … BNN

�17⁨

where

Pij =
k=1

N

Aik ∙ Bkj�

The cumulative sum(i.e. k=1
N Aik ∙ Bkj� ) must be calculated; so,

a processing unit needs to have two functions: (1) calculate the
product of the two binary input operands ( Aikand Bkj ); (2)
calculate the cumulative sum of the products. Therefore, in the
execution of this algorithm, a processing unit consists of an
adder and a multiplier with signed operands.
Thus, for the processing unit of matrix multiplication, its

functionality can be expressed by the following equation:
Sout = A × B+ Sin �18⁨

To implement an approximate processing unit of the matrix
multiplication, an inexact adder and inexact multiplier are
employed. For simulation, the inputs A, B and ��� are 16-bit
values; they are randomly generated, and 1 million simulation
runs are used.
Fig. 21 shows the average signed error (ASE) ratio of the

MM unit at different truncation levels (on the x axis the number
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of truncated bits). The ratio is defined as:

ASE ratio =
ASE with padding

ASE without padding �19⁨

The ratio is the absolute value of the average signed error
with padding versus the average signed error without padding,
i.e. when the ratio is smaller, compensation is more effective.

Fig. 21. Average signed error (ASE) ratio for different truncation level of MM.

The following conclusions can be drawn from Fig. 20.
1) The ASE ratio decreases at a larger truncated adder (so

improving the effectiveness of the proposed scheme);
2) At the same adder truncation level, the ratio is inversely

correlated with the truncation level of the multiplier.
When the truncation level is high and compensation is used,

the average error is significantly reduced compared to the case
when no output compensation is used.
TABLE IX lists the evaluation results for matrix

multiplication using three approximate multipliers. The power,
area, delay and ASE are measured.

TABLE IX
AREA, POWER, DELAY AND ASE FOR DIFFERENT MULTIPLIER TRUNCATION

SCHEMES (N=16, ADDER TRUNCATION LEVEL=8)

Multiplier Type
Area

(�m2)

Delay

(ns)

Power

(�w)
ASE

NMED

(× 10−3)

Proposed k=4 (V) 2770.8 1.59 661.2 -6.81 6.8

Proposed k=4 (H) 2735.0 1.58 644.5 -10.68 7.2

Proposed k=8 (V) 2315.0 1.54 550.3 -15.35 12.8

Proposed k=8 (H) 2183.9 1.54 529.6 -15.77 13.6

Radix-4 multiplier k=4 [23] 2918.6 1.59 661.4 -4.80 5.4

Radix-4 multiplier k=8 [23] 2792.1 1.57 605.6 -8.99 10.7

Fix-width multiplier [24] 2629.5 1.63 595.9 -17.47 19.1
V for Vertical truncation; H for Horizontal truncation.

In this evaluation, the truncation level of the approximate
adder is fixed to 8 bits. Three multiplier implementations are
used for comparison; for the proposed multiplier, the power
consumption and area are the smallest among the three
implementations. The Radix-4 multiplier is the most accurate
implementation, but it has the largest values for power
dissipation and area. The fix-width multiplier’s accuracy is the
worst among the three considered multipliers. The cascading
arrangement of an approximate multiplier followed by an adder
results in an increase of the error compared to a scheme with
only a multiplier (as shown in TABLE VII). However, when
the exact adder is utilized in this evaluation, the error has a at
similar value as reported previously in TABLE VII.

B. Image Processing: Changing Detection
In this section, the proposed approximate scheme for

division is evaluated for the changing detection application in
image processing. The approximate divider with padding is
assessed for pixel division. For image analysis, if only integer
division is performed, then the results are typically rounded at
the output to the next lowest integer. A 16-to-8 approximate
divider is used to compute the inputs X and Y of a 8-bit
grayscale images. The fractional change or ratio between
corresponding pixel values is then calculated. If there is no
movement between two frames, then the output image mostly
consists of single-value pixels. If there is movement, then the
pixels in those regions of the image in which the intensity
spatially changes, will exhibit significant differences between
the two frames. To evaluate changing detection by division, a
series of 8-bit images are used; these eight images are from the
publicly available database of [28]. Then, the average Peak
Signal Noise Ratio (PSNR) and Structural Similarity Index
(SSIM) of approximate result with exact result are measured for
all permutations among the 8 images at different values of k (56
pairs in total). Based on the circuit metric reported in section
VII, the figure of merit including power and image quality are
also calculated. It is defined as PPS Product
(PSNR × SSIM × Power Consumption-1). The structure with
larger PPS product value indicates that it has the better
combination FOM. The results are reported in TABLE X and
example images are shown in Fig. 22.

Fig. 22. An example of changing detection (N=16, k=1).

TABLE X
AVERAGE PSNR FOR 2N-N DIVIDER AT DIFFERENT TRUNCATION LEVEL FOR

CHANGING DIRECTION APPLICATION, N=8
Divider Type k=1 k=2 k=4

Proposed scheme

PSNR 48.18dB 45.87dB 43.39dB

SSIM 0.9921 0.9906 0.9819

PPS 0.237 0.246 0.292

Approximate divider

truncation k=8 [22]

PSNR 44.93dB 41.87dB 38.78dB

SSIM 0.9875 0.9830 0.9714

PPS 0.226 0.229 0.272

Approximate divider

replacement k=8 [22]

PSNR 49.26dB 46.25dB 44.58dB

SSIM 0.9925 0.9911 0.9825

PPS 0.232 0.232 0.231

Compared to the approximate divider with truncation of [22],
the accuracy of the proposed divider is significantly improved;
however, it is slightly worse than a replacement policy.
However, TABLE VIII reveals that the power consumption of
the proposed scheme is significantly reduced compared to the
replacement policy of [22]. Moreover, the PPS product shows
that the proposed scheme is the best among the three considered
approximate dividers.
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IX. CONCLUSION
This paper has presented a general scheme for error

compensation for approximate computing operations using
arithmetic circuits. The proposed schemes utilize output
compensation in adders, multipliers and dividers when signed
integer operations are executed. Following input truncation of
the LSBs, padding is added to reduce the average (signed) error
based on statistical information of these arithmetic operations;
under a normal distribution, it has been shown that the
distributions of these operations in the exact case are
symmetric.
The reduction in error by compensation for these 3 arithmetic

operations is proved analytically under the uniform distribution
case. Then, application of this scheme to matrix multiplication
and image procession has shown that the proposed scheme is
very efficient and versatile. In all considered cases, the
improvement in error metrics is substantial, for example for
image processing (changing direction), the results show that a
reduction of 20 to 40 to the Mean Square Error (MSE) can be
achieved with only a marginal impact on the division
implementation in terms of delay and hardware overhead.
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