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Abstract—Integrated circuit designs are verified in simulation 

over a set of process corners, which are combinations of expected 
transistor properties, power supply voltages, and die 
temperatures. The simulation time per corner can be long and 
semiconductor processes can have more than 1000 corners. 
Simulation is thus a serious bottleneck in design verification. We 
propose an algorithm that selects the smallest number of process 
corner simulations that are required to estimate minimum and/or 
maximum values of the output functions that model circuit 
behavior. Using our best corner selection algorithm, the required 
number of process corner simulations is reduced by an average of 
79% (a speed-up of 4.71) with respect to a set of 46 output 
functions from nine industrial benchmark circuits. 
 

Index Terms—Design verification, function approximation, 
Gaussian processes, process variations, machine learning.  
 

I. INTRODUCTION 

ntegrated circuit (IC) designs must be simulated for the 
range of process properties and operating conditions in a 

given set of “PVT corners”. Each corner is a combination of 
process properties (e.g., the relative switching speed of the 
transistors), power supply voltage(s), and the die temperature. 
The number of corners has increased to >1000 in some recent 
technologies [1]-[3]. Each corner simulation can be long, so it 
is desirable to identify a subset of the corners whose 
simulation results would still ensure design verification (DV). 
In DV the output properties (e.g., input-to-output delay, rise & 
fall times) of a circuit must be verified to stay within specified 
ranges. This means determining the maximum and/or 
minimum property values over all corners. This is a 
combinatorial optimization problem for an expensive-to-
evaluate function over a discrete and finite input space. 
Conventional Response Surface Methodology (RSM) [4]-[5] 
is inadequate given the large number of PVT properties. 

If nothing can be assumed about a function, then finding its 
optimal values requires a full factorial search of the input 
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space. However, if the form of the function is constrained, it 
may be possible to find the optimal values after only a 
fractional-factorial search. For example, Horn showed that if a 
function is “Lipschitz continuous”, it can be possible to safely 
prune away regions of the input space [6]. We will assume 
that the functions can be accurately modelled using Gaussian 
process models (GPMs) [7]. This implies that the functions are 
sufficiently well correlated and can be accurately represented 
using standard GPM covariance functions [8].  We will exploit 
the GPM’s ability to provide function value estimates and 
error estimates. GPMs have been used successfully to solve 
optimization problems in a wide variety of fields [7], [9]. 

Similar problems have been considered previously. In [2] 
McConaghy that mentions the FastPVT tool from Solido 
Design Automation (Saskatoon, Canada) that uses iterative 
function approximation based on nonlinear basis models 
together with simulation to select the best subset of corners. 
For 108 benchmark circuits, by being able to omit corners, 
FastPVT produced speed-ups ranging from 43.1× down to 
1.0× (no speed-up), with an average speed-up of 11.3× (i.e., 
omitting 91.15% of the corners). The description of FastPVT 
in [3] details a method that is different from our approach, 
where the function estimates and estimated errors from GPMs 
are combined to select corners. McConaghy also describes 
tools that that support Monte Carlo (MC) based DV [2][3], 
where the parameters of individual devices are subject to 
variation. MC-based DV methods are more general than 
corner-based methods, but are far more costly computationally 
and do not scale up easily to large circuits. Li et al. describe an 
iterative, nested gradient descent method for finding the worst-
case corner [10]. It was evaluated for an operational amplifier 
and shown to produce a speed-up of 21×. However, as noted 
by McConaghy, many industrial circuits have nonlinear 
behavior that is not well modeled by linear or quadratic 
functions. Gradient descent methods are well-known to have 
difficulties with nonlinear functions with local optima [11]. 
Sengupta et al. describe how statistical models of device 
variations together with RSM methods can be used to extract 
worst-case corners from detailed process data [12]. However, 
most designers will only have access to a fixed set of corners 
provided by the foundry or intellectual property (IP) vendor. 

The next section presents a problem framework, defines the 
baseline algorithm, and describes its performance. Sections 
III, IV and V describe improvements to the initial training set, 
the termination rule, and the next corner selection rule, 
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respectively. Section VI identifies inaccuracies in the GPM 
predictions and then proposes ways to compensate for them. 
Section VII presents performance evaluation results for the 
final version of the corner selection algorithm with nine 
industrial benchmark circuits (46 output functions) provided 
by Solido. Finally, Section VIII makes some concluding 
observations and proposes directions for future research. 

II.  THE BASELINE CORNER SELECTION ALGORITHM 

A general framework from [13] was adapted in [14][15] for 
function optimization. Reference [14] describes earlier results 
that are extended in [15] and summarized here. The total cost 
tends to be minimized by reducing the number of corner 
simulations; however, the cost of missing the true optimum of 
an output function could be ruinous if a violation of correct 
behavior is missed before production. As in [13], we use an 
unsupervised machine learning strategy [11]. For convenience 
and without loss of generality, we seek only the maximum 
value of each output function over the corner domain: the 
same algorithm can be readily adapted to find the minimum. 

Let X denote the set of all corners, and let Xi  X denote the 
set of all corners simulated after i ≥ 1 iterations of GPM 
construction. Each Xi is a superset of the previous set Xi-1. 
G(Xi) denotes the GPM that is constructed from Xi and the 
corresponding simulated function values. We assume that the 
cost of computing each GPM G(Xi) is much less than the cost 
of simulating F(x) for one corner x. The set Δi = Xi+1 - Xi of 
corners added to Xi is constructed using both the function 
estimates Fpred(x) and errors σpred(x) produced by G(Xi). The 
criteria for selecting Δi might change as the search progresses 
to balance the priorities of exploring all regions of the domain 
versus building confidence that the maximum has indeed been 
found. An overly greedy heuristic for constructing Δi can 
cause the search to stop at a local maximum [11]. Increasing 
the size of Δi is a way of relaxing the “greed” by forcing the 
next search increment to be more diverse at the possible cost 
of performing less informative simulations. 

A. Algorithm Description 

Objective: Given a set X of corners over n ≥ 1 PVT 
parameters and given an expensive simulation model of a 
function F(x), where x  X, find the maximum value Fmax of  
F(x) over X and the corner xmax  X such that F(xmax) = Fmax. 

Step 1: Select the initial training set X1. This kind of 
problem is treated in the theory of the design of experiments 
[5][16]. Following advice from Solido, our initial training set 
design X1 of size n2 includes one modal corner together with 
n2 – 1 corners selected randomly from the 2n corners that have 
extremal values for every parameter. Simulate all corners in X1 
to determine the corresponding values of F(x). Set F(xmax?) to 
be the largest of these F(x) values, where xmax? is the 
corresponding corner. Compute G(X1) from X1 and the F(x) 
values [7]. We used the package ‘scikit-learn” to construct the 
GPMs [8]. The “absolute exponential” covariance function 
option was found to give the best results. Set counter i to 1. 

Step 2: For each unsimulated corner x  X – Xi, G(Xi) 
provides an estimate Fpred(x) of the function and an estimate 

σpred(x) of the error in Fpred(x) with respect to what the  
simulated F(x) would be [7][8]. Terminate the search and 
output F(xmax?) and xmax? if, for no unsimulated x  X – Xi, 
does Fpred(x) + k σpred(x) exceed the largest simulated F(xmax?) 
found so far in Xi. This is called the k-sigma termination rule. 
Parameter k > 0 is chosen to suit the required confidence that 
Fmax has indeed been found. In the baseline algorithm k = 3. 

Step 3: Create an increment Δi to Xi and let Xi+1 = Xi U Δi.  
Δi contains only one unsimulated corner x  X – Xi that has 
the greatest value of Fpred(x) + k σpred(x). We will call such an 
x a “worst-case” corner xworst.  Simulate all corners in Δi and 
update F(xmax?) and xmax? for the largest value of F(x) found in 
Xi+1. Compute G(Xi+1), increment i, and go back to Step 2. 

If the G(Xi) produces normally-distributed predictions of 
F(x) with standard deviation σpred(x), then for one unsimulated 
corner xworst that just barely passes the k-sigma termination 
rule with k = 3, the simulated value F(xworst) should exceed 
F(xmax) with a probability of close to Q(k) = Q(3.0) = 0.135%, 
where Q() denotes the Q-function [17]. Thus the k-sigma 
termination rule should ensure that with probability ϕ(k) = 1 – 
Q(k), the simulated value F(xworst) is indeed less than the 
greatest value F(xmax?) found so far. However, there will likely 
be n ≥ 2 unsimulated corners at that time and so a joint 
probability over those corners must be considered. An exact 
analysis might be possible (see [18]); however, we found that 
increasing k by ≥ 0.75 is a simple way of compensating for  ≥ 
12 equally worst-case corners. 

B. Simulation Results for the Baseline Algorithm 

We evaluated the baseline algorithm using nine benchmark 
circuits, which provided 46 output functions, see Table 1. The 
simulated outputs at each corner, but not the circuit netlists, 
were provided by Solido from a mix of typical and 
challenging industrial circuits. Circuit “shift_reg”, presumably 
a shift register, was especially interesting. Its three output 
functions (“delay”, “fall time” & “rise time”) proved difficult 
to learn. This circuit had five PVT parameters, see Table 2. 
Following standard practice [19], the “process” parameters 
give the relative speed of the N- and P-type transistors: 
T(ypical)T, S(low)S, F(ast)S, SF, FF). These five values 
conflate some independent variations affecting the two types. 

Table 1. Benchmark Circuit Characteristics 

Circuit Name Provided 
Data Set 

Data Set 
Size 

PVT 
Parameters 

Output 
Functions 

shift reg Full 1080 5 3 
buffer chain Full 1800 10 6 

bitcell Full 120 5 2 
mux Fractional 120 8 7 

charge pump1 Fractional 216 8 5 
charge pump2 Fractional 324 8 5 

sense amp Fractional 120 10 7 
bias gen Fractional 120 3 10 
op amp Fractional 120 6 1 

Table 2. PVT Parameters for the “shift_reg” Benchmark Circuit 

Process ss, sf, fs, ff, tt vvcc (V) 3.2, 3.3, 3.4 
Temp.  -50, -25, 0, 27, 50, 75,  vvdd (V) 1.4, 1.5, 1.6 
(C) 100, 125 vvref (V) 1.6, 1.65, 1.7 
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We thus remapped the five conventional process values to two 
separate three-valued process parameters. This changed the 
“full factorial” datasets in Table 1 to “fractional factorial”. 
This change had little effect, slightly slowing down converg-
ence on average but increasing the accuracy of termination.  

Consider the 2-D scatter plots of the function values versus 
the predicted errors in Fig 1. Fig. 1(left) shows the plot after 
35 simulations of the “delay” output. The 35 simulated outputs 
appear as dots on the vertical axis since their uncertainty is 
near-zero. The maximum simulated value, F(xmax?), found so 
far is the uppermost dot on the vertical axis. The predicted 
values Fpred(x) appear as dots to the right of the vertical axis 
with errors σpred(x). The convex hull around the upper right 
side of the predicted points, employed later, was efficiently 
computed using a modified version of Graham’s scan 
algorithm [20]. György and Kocsis also used hull plots [21]. 

The so-called “k-sigma” termination rule is that all predicted 
values Fpred(x) must be less than F(xmax?) – k σpred(x) for some 
suitable k > 0. This rule appears in Fig. 1 as six lines, 
corresponding to k = 1, …, 6, that fall down and to the right 
with a vertical intercept of F(xmax?) and with slopes of -1, …, -
6, respectively. The hull plots clarify how the algorithm 
selects corners to simulate. In Fig. 1(left), the next corner that 
will be selected, xworst, has the greatest value of the cost 
function Fpred(x) + k σpred(x). xworst has the greatest perpen-
dicular distance from the k-sigma rule. As the algorithm 
progresses, predicted values are replaced with simulated 
values and the corresponding dots move left to the vertical 
axis. Fig. 1(right) shows the scatter plot after 100 simulations 
for “delay”. The dots for the remaining predicted values shift 
downwards and to the left. In Fig. 1(right) the convex hull has 
fallen below the 1-, 2- and 3-sigma lines. Our confidence that 
we have found the Fmax (i.e, F(xmax?) = Fmax) increases as the 
hull moves down past rules with increasing values of k.  

The corner selection rule must minimize the probability that 
termination occurs before Fmax has been found. Deriving this 
probability is impractical but one can approximate it by re-
running the algorithm for, say, 100 randomly-generated 
choices of X1 to determine the fraction of those runs that found 
Fmax. Fig. 2 shows the results of experiments for the “delay”, 
“fall time” and “rise time” outputs of “shift_reg”. Each 
symbol in Fig. 2 corresponds to 100 runs with equal-sized 
initial training sets with different random choices of the 
extremal corners. The training sets had sizes 49 (n2 corners), 

36 ( ¾ n2), 24 ( ½ n2),  and 12 ( ¼ n2). The points for the 
same functions and X1 sizes have been linked up to show the 
increasing “probability” of finding Fmax as more corners are 
simulated. For each curve the leftmost point shows the number 
of simulations when the 3-sigma termination rule was first 
satisfied; subsequent points show when the 4, 5, …, 10-sigma 
termination rules were first satisfied. For “delay” when the 4-
sigma termination rule was first reached going from 49 to 142 
corner simulations, all 100 runs found Fmax. For this output, 
the 3-sigma termination rule is clearly insufficient and at least 
the 6-sigma rule should be used. Had the 6-sigma termination 
rule been used to verify “delay”, the number of simulations 
would have fallen from 1080 to 461, for a reduced effective 
“speed-up” of 2.34×. Fig. 3 also illustrates the greater 
difficulty of “fall time” and “rise time” compared with 
“delay”. Function “fall time” required 571 simulations to 
satisfy the 5-sigma termination rule, when all 100 runs found 
Fmax. The speed-up would then be 1080/571 = 1.89×. For “rise 
time”, after 935 corners only 98 of the runs found Fmax. 

III. IMPROVEMENTS TO THE INITIAL TRAINING SET 

The baseline algorithm uses an initial training set X1 of size 
n2, but it is unclear if this is a good choice for the 46 output 
functions or for any other circuit. For some circuits the n2 size 
is clearly too big. For example, the “sense amp” benchmark 
circuit has 10 PVT parameters and 120 corners. An initial 
training set of size 102 = 100 would not allow significant 
speed-up. We thus investigated the effects of reducing the size 
of X1. A smaller initial training set might allow the termination 
rule to be reached with fewer corner simulations since the 
learning algorithm can start adapting the GPM sooner. 

The results in Fig. 2 show how performance varied for 
initial training sets of size n2, ¾ n2, ½ n2, and ¼ n2. For the 
“delay” output, all four sizes of X1 converged onto Fmax, with 
the n2 size converging a bit faster than the three smaller sizes. 
For the “fall time” output, all four set sizes converged in 
roughly the same number of corner simulations, although the 
smallest initial training set size (¼ n2) lagged the three other 
sizes for most of their runs. For the hardest “rise time” output, 
the algorithm failed to find the true Fmax with 100% 
probability (over the 100 trials) after 895 corner simulations 
when the initial training set size was smaller than n2. 

 

Fig. 1.  Convex hull plots for the “delay” Output of “shift_reg” after (left) 
35 and (right) 100 PVT Corners have been Simulated. 

 
Fig. 2  Probability of finding Fmax with increasing numbers of corner 
simulations for outputs “delay”, “fall time” and “rise time” in benchmark
circuit “shift_reg”, assuming initial training set sizes of 49 (n2), 36 ( ¾ n2),
24 ( ½ n2), and 12 ( ¼ n2), with 100 random sets for each plotted point. 



TCAD-2016-0464.R2 
 

4 

For the functions “delay”, “rise time” and “fall time” it 
appears that shrinking X1, while retaining the same increment 
size of one new corner simulation per iteration, did not lead to 
faster or more reliable convergence onto the function’s Fmax. 
The benefit of using a larger X1 might be that it forces the 
algorithm to invest a larger number of simulations in a less 
greedy initial exploration of the full input domain. 

We also investigated the convergence performance using a 
much smaller X1 whose size is determined by the rule 
max(0.01m, 2n), where m is the number of corners. This rule 
avoids the situation where a set X1 of size n2 would be an 
overly large fraction of all corners. A second improvement 
was made to X1 by selecting the extremal corners iteratively  
where each new corner is at a maximum Manhattan distance 
from all extremal corners selected earlier. The values within 
each PVT parameter domain were mapped to integer sequ-
ences of the form 0, 1, …, max_value to provide the necessary 
grid points in the n-dimensional PVT corner domain. 

IV.  IMPROVEMENTS TO THE TERMINATION RULE 

We investigated the causes for the algorithm’s occasional 
failures to find Fmax. Premature termination was found to be 
often caused by failure to detect  Fmax at an unsimulated corner 
when that corner was adjacent, in a Manhattan sense, to the 
final F(xmax?). The predicted errors produced by the GPM were 
evidently overly small for unsimulated corners near xmax?. 

We improved the reliability of the termination rule by 
including a multiplier factor E(x) that magnifies the predicted 
error σpred(x) for corners near xmax? to make it more likely that 
those corners will be simulated. After some experimentation, 
we defined E(x) to be 1.25 when an unsimulated corner x 
differs from xmax? by one Manhattan step, and to have the 
value 1.15 when x differs from xmax? by two Manhattan steps; 
otherwise, E(x) has value 1.0 (no enhancement). This three-
level E(x) produced more reliable termination compared to 
two-level E(x)’s that we considered. Four-level E(x)’s greatly 
increased the run time without improving termination. 

V. IMPROVEMENTS TO THE NEXT CORNER SELECTION RULE 

After computing the first GPM from the initial training set 
X1, the baseline algorithm enlarges Xi at each iteration step i ≥ 
1 by adding one unsimulated corner xworst that has the greatest 
value of Fpred(x) + k σpred(x), where k > 0 is the sigma 
confidence parameter. Adding only one corner allows the 
GPM to be updated sooner so that Fmax might be found faster. 
However, faster convergence was actually obtained when 
multiple roughly equally worst-case corners are added [15]. 

Table 3 shows the successive improvements that were made 
to the algorithm to this point. The columns headed “3-σ”, …, 
“6-σ” show the number of corner simulations required to 
satisfy the 3-, …, 6-sigma termination rules, respectively, 
when the predicted errors σpred(x) are used without enhance-
ment and where the Xi’s grow by one xworst at each step. 
Asterisks indicate cases where the Fmax was not found in all 
100 trials (but still found in most trials). The next column 
gives the number of corners to reach termination after the 3-
level E(x) is applied to σpred(x). The last column shows the 

number when Xi+1 is constructed by adding all of the corners 
in the ith convex hull to Xi. Note that Fmax was correctly found 
for all three output functions for the last version of the 
algorithm. The cost (in number of corner simulations) fell for 
“delay” and “fall_time” but increased for “rise_time”. 

 
Table 3. Number of Corner Simulations Required to Reach Termination 

Note: Asterisks indicate where Fmax was reached in most but not all 100 trials. 

Output 
Function  

3-σ 
k=3 

4-σ 
k=4 

5-σ 
k=5 

6-σ 
k=6 

6-σ 
3-lev. E(x) 
1-corner 

6-σ 
3-lev. E(x) 
Full hull 

delay 95* 141 283 461 511 290 (3.72×) 
fall_time 229* 399* 571 710 710 300 (3.60×) 
rise_time 242* 362* 475* 572* 539* 816 (1.32×) 

 
Table 4. Single-Output Function Performance for the Benchmark Circuits 

Circuit 

Name 

Initial 
Training 
Set Size 

Corners 
to Find 

Fmax 

Corners 
Until 
Term. 

Min., Max. and 
Mean Speed-

Ups 
shift reg 14 of 1080 84-306 478-1047 1.03, 2.25, 1.46 
buffer_ 
chain 

20 of 1800 29-45 99-365 4.93, 18.18, 
13.32 

bitcell 10 of 120 12 26 4.61, 4.61, 4.61 

mux 16 of 120 16-69 18-113 1.06, 6.67, 2.90 
charge_ 
pump1 

16 of 216 16-23 38-50 4.32, 5.68, 5.02 

charge_ 
pump2 

16 of 324 16-23 53-71 4.56, 6.11, 5.31 

sense_amp 20 of 120 20 35-114 1.05, 3.53, 2.37 
bias_gen 10 of 120 10 36-41 2.93, 3.33, 3.18 
op_amp 12 of 120 12 46 2.61, 2.61, 2.61 

VI. IMPROVEMENTS TO THE FUNCTION MODEL 

For most of the circuits, the algorithm had significant speed-
up. However, for some functions convergence was slow 
and/or termination was premature. The problem arises from 
inaccuracy in both the Fpred(x) and σpred(x) values. If the 
distributions of Fpred(x) are truly Gaussian with standard 
deviations given by σpred(x), then 99.7% of the time the 
absolute error should be less than or equal to 3σpred(x). We 
found that for randomly chosen training sets of increasing 
size, the σpred(x) values were increasing worse underestimates. 

Using cross-validation [11] we computed a boosting factor, 
, that corrects the predicted errors σpred(x) so that predicted 
values Fpred(x) will just lie within ± 3  σpred(x) of the actual 
F(x) values. The product ×σpred(x) can then replace σpred(x) in 
the termination and next corner selection rules.  can be 
recomputed using cross-validation for each Xi. As each 
simulated corner appears as a test data point for a learned 
model in cross-validation, the ratio j = | F(x) - Fpred(x) | / 3 
σpred(x) is calculated. Defining an overall boosting factor  to 
be the maximum value of all the j ratios improved the 
behavior of the selection algorithm. However, it is expensive 
to re-compute a new  for every Xi. With little loss in 
effectiveness,  can be computed first using cross-validation 
with X1, then recomputed after every subsequent multiple of 
10% of the input space, and projected linearly elsewhere. 

VII. EVALUATION OF THE IMPROVED ALGORITHM 

A final version of the algorithm was evaluated against 46 
functions from the 9 circuits in Table 1. The initial set X1 had 
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size q = max(0.01m, 2n, 10) and included one “typical” corner 
plus q-1 spaced-out extremal corners.  is calculated using 10-
fold cross-validation with extrapolation. The same three-level 
factor E(x) is used to boost σpred(x) for corners x that are near 
the present xmax?. The training set increment includes all points 
on the convex hull and the termination rule used k = 4. 

Table 4 summarizes results that are reported in greater detail 
in [15]. The average speed up over all 46 functions was 4.71, 
which is a saving of 79%, that is, (1 – 1/4.71) × 100%, below 
a full factorial set. However, the speed-ups in the last column 
had significant variability across circuits and across the 
functions in each circuit. Circuit “buffer_chain” had six 
relatively easy-to-learn outputs, which allowed for speed-ups 
ranging from 4.93× to 18.18× with a mean of 13.32× (i.e., a 
92% reduction in corners simulated). 

The hardest benchmarck was “shift_reg”, with a mean 
speed-up of 1.46× (a 31.5% reduction in corner simulations). 
Its “delay” function required 478 corners to reach termination 
(a 2.25× speed-up). Although the Fmax was encountered at the 
84th corner, 394 additional simulations were required to reach 
termination. The “fall_time” function was the hardest. Its Fmax 
was found after 163 corner simulations, but termination 
required 47 simulations (a 1.03× speed-up). Only 33 
simulations were avoided, a 3.06% reduction below 1080. The 
“rise_time” function was slightly less difficult. The Fmax was 
found after 306 simulations with termination occurring after 
988 simulations (a 1.09× speed-up). Only 92 corner sim-
ulations were avoided, an 8.5% reduction below full factorial. 

We identified two scenarios where the algorithm converged 
incorrectly. A discontinuity, like an isolated spike or a narrow 
ridge, was hard to model as a GPM. The “fall_time” and 
“rise_time” functions indeed have ridges, with three adjacent 
corners having near-equally high values. The “sen_dip_pctg” 
function of “sense_ amp” has a broad plateau region where the 
function varies irregularly in value by only 0.14%. 

VIII. CONCLUSIONS AND FUTURE RESEARCH 

We considered the problem of automatically minimizing the 
number of corners that must be simulated to determine the 
maximum (or minimum) value of an output function that 
describes behavior of an arbitrary circuit. We proposed an 
algorithm that iteratively builds up a Gaussian Process Model 
for the function being verified. The GPM produces estimates 
for the unsimulated function values and errors for those 
values; these estimates are combined to select the corners to 
simulate next as well as to determine when to stop the search. 

Nine benchmark circuits, with 46 functions, were con-
sidered. The algorithm always successfully found the 
maximum function value, but the reduction in the number of 
corner simulations varied considerably. The algorithm 
produced an average speed-up of 4.71×, which is a reduction 
of 79% in the number of simulations. However, for some 
circuit output functions little or no speed-up could be obtained 
over a full-factorial search. FastPVT [2] produced a speed-up 
of 11.3× for a different set of benchmarks. It is unclear how 
robust this speed-up is to the choice of initial training set. 

Three priorities in future work are to increase the number of 
benchmark circuits, to better understand what causes some 
output functions to be so hard to learn using the iterative 
GPM-based approach, and to coordinate the search for 
multiple functions from the same circuit. Additional function 
models (e.g., [22]) will be considered in addition to GPMs. 

ACKNOWLEDGMENT 

The authors thank Solido Design Automation Inc. for their 
technical advice and assistance during the project. 

REFERENCES 
[1] K. L. Kuhn et al., “Process technology variation,” IEEE Trans. Electron 

Devices, vol. 58, no. 8, pp. 2197-2208, Aug. 2011. 
[2] D. De Jonghe et al., “Advances in Variation-Aware Modeling, 

Verification, and Testing of Analog ICs,” Design, Automation & Test in 
Europe Conf., Dresden, Mar. 12-16, 2012, pp. 1615-1620. 

[3] T. McConaghy, K. Breen, J. Dyck and A. Gupta, Variation-Aware 
Design of Integrated Circuits: A Hands-on Field Guide, New York: 
Springer Science+Business Media, 2013. 

[4] G. E. P. Box and K. B. Wilson, “On the experimental attainment of 
optimal conditions,” J. of the Royal Statistical Society, Series B, vol. 13, 
no. 1, pp. 1-45, 1951. 

[5] R. H. Myers, D. C. Montgomery, C. M. Anderson-Cook, Response 
Surface Methodology: Process and Product Optimization using 
Experiments, 3rd ed., Hoboken, NJ: John Wiley & Sons, 2009. 

[6] M. Horn, “Optimal algorithms for global optimization in case of 
unknown Lipschitz constant,” J. of Complexity, vol. 22, no. 1, pp. 50-70, 
Feb. 2006. 

[7] C. E. Rasmusssen and C. K. I. Williams, Gaussian Processes for 
Machine Learning, Cambridge, MA: MIT Press, 2006. 

[8] F. Pedregosa et al., Scikit-learn: Machine Learning in Python, J. of 
Machine Learning Research, vol. 12, pp. 2825-2830, 2011. 

[9] G. Su, “Accelerating Particle Swarm Optimization Algorithms Using 
Gaussian Process Machine Learning,” Proc. Int. Conf. on 
Computational Intelligence and Natural Computing (CINC), Wuhan, 
China, June 6-7, 2009, pp. 174-177. 

[10] M. Li, D. Zhou, and X. Zeng, “NIO: A Fast and Accurate Verification 
Method for PVT Variations,” Proc. 12th IEEE Int. Conf. Solid-State and 
Integr. Circ. Technol. (ICSICT), Guilin, China, Oct. 28-31, 2014, 3 pp. 

[11] E. Alpaydin, Introduction to Machine Learning, 3rd ed., Cambridge, 
MA: MIT Press, 2014. 

[12] M. Sengupta et al., “Application-specific worst case corners using 
response surfaces and statistical models,” IEEE Trans. CAD, vol. 24, no. 
9, pp. 1372-1380, Sept. 2005. 

[13] D. R. Jones, M. Schonlau, W. J. Welch, “Efficient Global Optimization 
of Expensive Black-Box Functions,” J. of Global Optimization, vol. 13, 
pp. 455-592, 1998. 

[14] M. Shoniker, B.F. Cockburn, J. Han and W. Pedrycz “Minimizing the 
number of process corner simulations during design verification,” in 
Design, Automation & Test in Europe, Dresden, 2015, pp. 289-292. 

[15] M. Shoniker, “Accelerated Verification of Integrated Circuits Against 
the Effects of Process, Voltage and Temperature Variations,” M.Sc. 
thesis, Dept. Elect. Comp. Eng., U. Alberta, Edmonton, Canada, 2015. 

[16] T. P. Ryan, Modern Experimental Design, Hoboken, NJ: Wiley, 2007. 
[17] N. A. Weiss, Introductory Statistics, 10th ed., New York: Pearson, 2015. 
[18] C. Visweswariah et al., “First-Order Incremental Block-Based Statistical 

Timing Analysis,” Proc. 41st Design Automation Conference (DAC), 
San Diego, CA, June 7-11, 2004, pp. 331-336. 

[19] N. H. E. Weste and D. Harris, CMOS VLSI: A Circuits and Systems 
Perspective, 4th ed, Boston, MA: Pearson Addison-Wesley, 2010. 

[20] R. L. Graham, “An Efficient Algorithm for Determining the Convex 
Hull of a Planar Point Set,” Inform. Process. Lett., v. 1, pp. 132-3, 1972. 

[21] A. Gyorgy and L. Kocsis, “Efficient multi-start strategies for local 
search algorithms,” J. Artif. Int. Res., vol. 41, pp. 407-444, May 2011. 

[22] Y. Tenne and S. W. Armfield, “A Novel Evolutionary Algorithm for 
Efficient Minimization of Expensive Black-box Functions with 
Assisted-Modelling,” IEEE Congress on Evolutionary Computation 
(CEC), Vancouver, Canada, July 16-21, 2006, pp. 3219-3226. 


