
TCAD-2016-0464.R2

1


Abstract—Integrated circuit designs are verified in simulation

over a set of process corners, which are combinations of expected
transistor properties, power supply voltages, and die
temperatures. The simulation time per corner can be long and
semiconductor processes can have more than 1000 corners.
Simulation is thus a serious bottleneck in design verification. We
propose an algorithm that selects the smallest number of process
corner simulations that are required to estimate minimum and/or
maximum values of the output functions that model circuit
behavior. Using our best corner selection algorithm, the required
number of process corner simulations is reduced by an average of
79% (a speed-up of 4.71) with respect to a set of 46 output
functions from nine industrial benchmark circuits.

Index Terms—Design verification, function approximation,
Gaussian processes, process variations, machine learning.

I. INTRODUCTION

ntegrated circuit (IC) designs must be simulated for the
range of process properties and operating conditions in a

given set of “PVT corners”. Each corner is a combination of
process properties (e.g., the relative switching speed of the
transistors), power supply voltage(s), and the die temperature.
The number of corners has increased to >1000 in some recent
technologies [1]-[3]. Each corner simulation can be long, so it
is desirable to identify a subset of the corners whose
simulation results would still ensure design verification (DV).
In DV the output properties (e.g., input-to-output delay, rise &
fall times) of a circuit must be verified to stay within specified
ranges. This means determining the maximum and/or
minimum property values over all corners. This is a
combinatorial optimization problem for an expensive-to-
evaluate function over a discrete and finite input space.
Conventional Response Surface Methodology (RSM) [4]-[5]
is inadequate given the large number of PVT properties.

If nothing can be assumed about a function, then finding its
optimal values requires a full factorial search of the input

Submitted on November 1, 2016. This work was supported in part by the
Natural Sciences and Engineering Research Council of Canada under
Strategic Project Grant STP 447513-13.

M. Shoniker completed an MSc degree in the Dept. of Electrical and
Computer Eng. Univ. of Alberta, Edmonton, AB T6G 1H9, Canada.

O. Oleynikov, B. F. Cockburn, J. Han, W. Pedrycz, and M. Rana are with
the Dept. of Electrical and Computer Eng., Univ. of Alberta, Edmonton, AB
T6G 1H9, Canada (e-mail: {oleyniko|cockburn|jhan8|wpedrycz}@ualberta.ca
and manishlistening@gmail.com).

space. However, if the form of the function is constrained, it
may be possible to find the optimal values after only a
fractional-factorial search. For example, Horn showed that if a
function is “Lipschitz continuous”, it can be possible to safely
prune away regions of the input space [6]. We will assume
that the functions can be accurately modelled using Gaussian
process models (GPMs) [7]. This implies that the functions are
sufficiently well correlated and can be accurately represented
using standard GPM covariance functions [8]. We will exploit
the GPM’s ability to provide function value estimates and
error estimates. GPMs have been used successfully to solve
optimization problems in a wide variety of fields [7], [9].

Similar problems have been considered previously. In [2]
McConaghy that mentions the FastPVT tool from Solido
Design Automation (Saskatoon, Canada) that uses iterative
function approximation based on nonlinear basis models
together with simulation to select the best subset of corners.
For 108 benchmark circuits, by being able to omit corners,
FastPVT produced speed-ups ranging from 43.1× down to
1.0× (no speed-up), with an average speed-up of 11.3× (i.e.,
omitting 91.15% of the corners). The description of FastPVT
in [3] details a method that is different from our approach,
where the function estimates and estimated errors from GPMs
are combined to select corners. McConaghy also describes
tools that that support Monte Carlo (MC) based DV [2][3],
where the parameters of individual devices are subject to
variation. MC-based DV methods are more general than
corner-based methods, but are far more costly computationally
and do not scale up easily to large circuits. Li et al. describe an
iterative, nested gradient descent method for finding the worst-
case corner [10]. It was evaluated for an operational amplifier
and shown to produce a speed-up of 21×. However, as noted
by McConaghy, many industrial circuits have nonlinear
behavior that is not well modeled by linear or quadratic
functions. Gradient descent methods are well-known to have
difficulties with nonlinear functions with local optima [11].
Sengupta et al. describe how statistical models of device
variations together with RSM methods can be used to extract
worst-case corners from detailed process data [12]. However,
most designers will only have access to a fixed set of corners
provided by the foundry or intellectual property (IP) vendor.

The next section presents a problem framework, defines the
baseline algorithm, and describes its performance. Sections
III, IV and V describe improvements to the initial training set,
the termination rule, and the next corner selection rule,

Automatic Selection of Process Corner
Simulations for Faster Design Verification

Michael Shoniker, Member, IEEE, Oleg Oleynikov, Bruce F. Cockburn, Member, IEEE, Jie Han,
Senior Member, IEEE, Manish Rana and Witold Pedrycz, Fellow, IEEE

I

TCAD-2016-0464.R2

2

respectively. Section VI identifies inaccuracies in the GPM
predictions and then proposes ways to compensate for them.
Section VII presents performance evaluation results for the
final version of the corner selection algorithm with nine
industrial benchmark circuits (46 output functions) provided
by Solido. Finally, Section VIII makes some concluding
observations and proposes directions for future research.

II. THE BASELINE CORNER SELECTION ALGORITHM

A general framework from [13] was adapted in [14][15] for
function optimization. Reference [14] describes earlier results
that are extended in [15] and summarized here. The total cost
tends to be minimized by reducing the number of corner
simulations; however, the cost of missing the true optimum of
an output function could be ruinous if a violation of correct
behavior is missed before production. As in [13], we use an
unsupervised machine learning strategy [11]. For convenience
and without loss of generality, we seek only the maximum
value of each output function over the corner domain: the
same algorithm can be readily adapted to find the minimum.

Let X denote the set of all corners, and let Xi  X denote the
set of all corners simulated after i ≥ 1 iterations of GPM
construction. Each Xi is a superset of the previous set Xi-1.
G(Xi) denotes the GPM that is constructed from Xi and the
corresponding simulated function values. We assume that the
cost of computing each GPM G(Xi) is much less than the cost
of simulating F(x) for one corner x. The set Δi = Xi+1 - Xi of
corners added to Xi is constructed using both the function
estimates Fpred(x) and errors σpred(x) produced by G(Xi). The
criteria for selecting Δi might change as the search progresses
to balance the priorities of exploring all regions of the domain
versus building confidence that the maximum has indeed been
found. An overly greedy heuristic for constructing Δi can
cause the search to stop at a local maximum [11]. Increasing
the size of Δi is a way of relaxing the “greed” by forcing the
next search increment to be more diverse at the possible cost
of performing less informative simulations.

A. Algorithm Description

Objective: Given a set X of corners over n ≥ 1 PVT
parameters and given an expensive simulation model of a
function F(x), where x  X, find the maximum value Fmax of
F(x) over X and the corner xmax  X such that F(xmax) = Fmax.

Step 1: Select the initial training set X1. This kind of
problem is treated in the theory of the design of experiments
[5][16]. Following advice from Solido, our initial training set
design X1 of size n2 includes one modal corner together with
n2 – 1 corners selected randomly from the 2n corners that have
extremal values for every parameter. Simulate all corners in X1
to determine the corresponding values of F(x). Set F(xmax?) to
be the largest of these F(x) values, where xmax? is the
corresponding corner. Compute G(X1) from X1 and the F(x)
values [7]. We used the package ‘scikit-learn” to construct the
GPMs [8]. The “absolute exponential” covariance function
option was found to give the best results. Set counter i to 1.

Step 2: For each unsimulated corner x  X – Xi, G(Xi)
provides an estimate Fpred(x) of the function and an estimate

σpred(x) of the error in Fpred(x) with respect to what the
simulated F(x) would be [7][8]. Terminate the search and
output F(xmax?) and xmax? if, for no unsimulated x  X – Xi,
does Fpred(x) + k σpred(x) exceed the largest simulated F(xmax?)
found so far in Xi. This is called the k-sigma termination rule.
Parameter k > 0 is chosen to suit the required confidence that
Fmax has indeed been found. In the baseline algorithm k = 3.

Step 3: Create an increment Δi to Xi and let Xi+1 = Xi U Δi.
Δi contains only one unsimulated corner x  X – Xi that has
the greatest value of Fpred(x) + k σpred(x). We will call such an
x a “worst-case” corner xworst. Simulate all corners in Δi and
update F(xmax?) and xmax? for the largest value of F(x) found in
Xi+1. Compute G(Xi+1), increment i, and go back to Step 2.

If the G(Xi) produces normally-distributed predictions of
F(x) with standard deviation σpred(x), then for one unsimulated
corner xworst that just barely passes the k-sigma termination
rule with k = 3, the simulated value F(xworst) should exceed
F(xmax) with a probability of close to Q(k) = Q(3.0) = 0.135%,
where Q() denotes the Q-function [17]. Thus the k-sigma
termination rule should ensure that with probability ϕ(k) = 1 –
Q(k), the simulated value F(xworst) is indeed less than the
greatest value F(xmax?) found so far. However, there will likely
be n ≥ 2 unsimulated corners at that time and so a joint
probability over those corners must be considered. An exact
analysis might be possible (see [18]); however, we found that
increasing k by ≥ 0.75 is a simple way of compensating for ≥
12 equally worst-case corners.

B. Simulation Results for the Baseline Algorithm

We evaluated the baseline algorithm using nine benchmark
circuits, which provided 46 output functions, see Table 1. The
simulated outputs at each corner, but not the circuit netlists,
were provided by Solido from a mix of typical and
challenging industrial circuits. Circuit “shift_reg”, presumably
a shift register, was especially interesting. Its three output
functions (“delay”, “fall time” & “rise time”) proved difficult
to learn. This circuit had five PVT parameters, see Table 2.
Following standard practice [19], the “process” parameters
give the relative speed of the N- and P-type transistors:
T(ypical)T, S(low)S, F(ast)S, SF, FF). These five values
conflate some independent variations affecting the two types.

Table 1. Benchmark Circuit Characteristics

Circuit Name Provided
Data Set

Data Set
Size

PVT
Parameters

Output
Functions

shift reg Full 1080 5 3
buffer chain Full 1800 10 6

bitcell Full 120 5 2
mux Fractional 120 8 7

charge pump1 Fractional 216 8 5
charge pump2 Fractional 324 8 5

sense amp Fractional 120 10 7
bias gen Fractional 120 3 10
op amp Fractional 120 6 1

Table 2. PVT Parameters for the “shift_reg” Benchmark Circuit

Process ss, sf, fs, ff, tt vvcc (V) 3.2, 3.3, 3.4
Temp. -50, -25, 0, 27, 50, 75, vvdd (V) 1.4, 1.5, 1.6
(C) 100, 125 vvref (V) 1.6, 1.65, 1.7

TCAD-2016-0464.R2

3

We thus remapped the five conventional process values to two
separate three-valued process parameters. This changed the
“full factorial” datasets in Table 1 to “fractional factorial”.
This change had little effect, slightly slowing down converg-
ence on average but increasing the accuracy of termination.

Consider the 2-D scatter plots of the function values versus
the predicted errors in Fig 1. Fig. 1(left) shows the plot after
35 simulations of the “delay” output. The 35 simulated outputs
appear as dots on the vertical axis since their uncertainty is
near-zero. The maximum simulated value, F(xmax?), found so
far is the uppermost dot on the vertical axis. The predicted
values Fpred(x) appear as dots to the right of the vertical axis
with errors σpred(x). The convex hull around the upper right
side of the predicted points, employed later, was efficiently
computed using a modified version of Graham’s scan
algorithm [20]. György and Kocsis also used hull plots [21].

The so-called “k-sigma” termination rule is that all predicted
values Fpred(x) must be less than F(xmax?) – k σpred(x) for some
suitable k > 0. This rule appears in Fig. 1 as six lines,
corresponding to k = 1, …, 6, that fall down and to the right
with a vertical intercept of F(xmax?) and with slopes of -1, …, -
6, respectively. The hull plots clarify how the algorithm
selects corners to simulate. In Fig. 1(left), the next corner that
will be selected, xworst, has the greatest value of the cost
function Fpred(x) + k σpred(x). xworst has the greatest perpen-
dicular distance from the k-sigma rule. As the algorithm
progresses, predicted values are replaced with simulated
values and the corresponding dots move left to the vertical
axis. Fig. 1(right) shows the scatter plot after 100 simulations
for “delay”. The dots for the remaining predicted values shift
downwards and to the left. In Fig. 1(right) the convex hull has
fallen below the 1-, 2- and 3-sigma lines. Our confidence that
we have found the Fmax (i.e, F(xmax?) = Fmax) increases as the
hull moves down past rules with increasing values of k.

The corner selection rule must minimize the probability that
termination occurs before Fmax has been found. Deriving this
probability is impractical but one can approximate it by re-
running the algorithm for, say, 100 randomly-generated
choices of X1 to determine the fraction of those runs that found
Fmax. Fig. 2 shows the results of experiments for the “delay”,
“fall time” and “rise time” outputs of “shift_reg”. Each
symbol in Fig. 2 corresponds to 100 runs with equal-sized
initial training sets with different random choices of the
extremal corners. The training sets had sizes 49 (n2 corners),

36 ( ¾ n2), 24 ( ½ n2), and 12 ( ¼ n2). The points for the
same functions and X1 sizes have been linked up to show the
increasing “probability” of finding Fmax as more corners are
simulated. For each curve the leftmost point shows the number
of simulations when the 3-sigma termination rule was first
satisfied; subsequent points show when the 4, 5, …, 10-sigma
termination rules were first satisfied. For “delay” when the 4-
sigma termination rule was first reached going from 49 to 142
corner simulations, all 100 runs found Fmax. For this output,
the 3-sigma termination rule is clearly insufficient and at least
the 6-sigma rule should be used. Had the 6-sigma termination
rule been used to verify “delay”, the number of simulations
would have fallen from 1080 to 461, for a reduced effective
“speed-up” of 2.34×. Fig. 3 also illustrates the greater
difficulty of “fall time” and “rise time” compared with
“delay”. Function “fall time” required 571 simulations to
satisfy the 5-sigma termination rule, when all 100 runs found
Fmax. The speed-up would then be 1080/571 = 1.89×. For “rise
time”, after 935 corners only 98 of the runs found Fmax.

III. IMPROVEMENTS TO THE INITIAL TRAINING SET

The baseline algorithm uses an initial training set X1 of size
n2, but it is unclear if this is a good choice for the 46 output
functions or for any other circuit. For some circuits the n2 size
is clearly too big. For example, the “sense amp” benchmark
circuit has 10 PVT parameters and 120 corners. An initial
training set of size 102 = 100 would not allow significant
speed-up. We thus investigated the effects of reducing the size
of X1. A smaller initial training set might allow the termination
rule to be reached with fewer corner simulations since the
learning algorithm can start adapting the GPM sooner.

The results in Fig. 2 show how performance varied for
initial training sets of size n2, ¾ n2, ½ n2, and ¼ n2. For the
“delay” output, all four sizes of X1 converged onto Fmax, with
the n2 size converging a bit faster than the three smaller sizes.
For the “fall time” output, all four set sizes converged in
roughly the same number of corner simulations, although the
smallest initial training set size (¼ n2) lagged the three other
sizes for most of their runs. For the hardest “rise time” output,
the algorithm failed to find the true Fmax with 100%
probability (over the 100 trials) after 895 corner simulations
when the initial training set size was smaller than n2.

Fig. 1. Convex hull plots for the “delay” Output of “shift_reg” after (left)
35 and (right) 100 PVT Corners have been Simulated.

Fig. 2 Probability of finding Fmax with increasing numbers of corner
simulations for outputs “delay”, “fall time” and “rise time” in benchmark
circuit “shift_reg”, assuming initial training set sizes of 49 (n2), 36 ( ¾ n2),
24 ( ½ n2), and 12 ( ¼ n2), with 100 random sets for each plotted point.

TCAD-2016-0464.R2

4

For the functions “delay”, “rise time” and “fall time” it
appears that shrinking X1, while retaining the same increment
size of one new corner simulation per iteration, did not lead to
faster or more reliable convergence onto the function’s Fmax.
The benefit of using a larger X1 might be that it forces the
algorithm to invest a larger number of simulations in a less
greedy initial exploration of the full input domain.

We also investigated the convergence performance using a
much smaller X1 whose size is determined by the rule
max(0.01m, 2n), where m is the number of corners. This rule
avoids the situation where a set X1 of size n2 would be an
overly large fraction of all corners. A second improvement
was made to X1 by selecting the extremal corners iteratively
where each new corner is at a maximum Manhattan distance
from all extremal corners selected earlier. The values within
each PVT parameter domain were mapped to integer sequ-
ences of the form 0, 1, …, max_value to provide the necessary
grid points in the n-dimensional PVT corner domain.

IV. IMPROVEMENTS TO THE TERMINATION RULE

We investigated the causes for the algorithm’s occasional
failures to find Fmax. Premature termination was found to be
often caused by failure to detect Fmax at an unsimulated corner
when that corner was adjacent, in a Manhattan sense, to the
final F(xmax?). The predicted errors produced by the GPM were
evidently overly small for unsimulated corners near xmax?.

We improved the reliability of the termination rule by
including a multiplier factor E(x) that magnifies the predicted
error σpred(x) for corners near xmax? to make it more likely that
those corners will be simulated. After some experimentation,
we defined E(x) to be 1.25 when an unsimulated corner x
differs from xmax? by one Manhattan step, and to have the
value 1.15 when x differs from xmax? by two Manhattan steps;
otherwise, E(x) has value 1.0 (no enhancement). This three-
level E(x) produced more reliable termination compared to
two-level E(x)’s that we considered. Four-level E(x)’s greatly
increased the run time without improving termination.

V. IMPROVEMENTS TO THE NEXT CORNER SELECTION RULE

After computing the first GPM from the initial training set
X1, the baseline algorithm enlarges Xi at each iteration step i ≥
1 by adding one unsimulated corner xworst that has the greatest
value of Fpred(x) + k σpred(x), where k > 0 is the sigma
confidence parameter. Adding only one corner allows the
GPM to be updated sooner so that Fmax might be found faster.
However, faster convergence was actually obtained when
multiple roughly equally worst-case corners are added [15].

Table 3 shows the successive improvements that were made
to the algorithm to this point. The columns headed “3-σ”, …,
“6-σ” show the number of corner simulations required to
satisfy the 3-, …, 6-sigma termination rules, respectively,
when the predicted errors σpred(x) are used without enhance-
ment and where the Xi’s grow by one xworst at each step.
Asterisks indicate cases where the Fmax was not found in all
100 trials (but still found in most trials). The next column
gives the number of corners to reach termination after the 3-
level E(x) is applied to σpred(x). The last column shows the

number when Xi+1 is constructed by adding all of the corners
in the ith convex hull to Xi. Note that Fmax was correctly found
for all three output functions for the last version of the
algorithm. The cost (in number of corner simulations) fell for
“delay” and “fall_time” but increased for “rise_time”.

Table 3. Number of Corner Simulations Required to Reach Termination

Note: Asterisks indicate where Fmax was reached in most but not all 100 trials.

Output
Function

3-σ
k=3

4-σ
k=4

5-σ
k=5

6-σ
k=6

6-σ
3-lev. E(x)
1-corner

6-σ
3-lev. E(x)
Full hull

delay 95* 141 283 461 511 290 (3.72×)
fall_time 229* 399* 571 710 710 300 (3.60×)
rise_time 242* 362* 475* 572* 539* 816 (1.32×)

Table 4. Single-Output Function Performance for the Benchmark Circuits

Circuit

Name

Initial
Training
Set Size

Corners
to Find

Fmax

Corners
Until
Term.

Min., Max. and
Mean Speed-

Ups
shift reg 14 of 1080 84-306 478-1047 1.03, 2.25, 1.46
buffer_
chain

20 of 1800 29-45 99-365 4.93, 18.18,
13.32

bitcell 10 of 120 12 26 4.61, 4.61, 4.61

mux 16 of 120 16-69 18-113 1.06, 6.67, 2.90
charge_
pump1

16 of 216 16-23 38-50 4.32, 5.68, 5.02

charge_
pump2

16 of 324 16-23 53-71 4.56, 6.11, 5.31

sense_amp 20 of 120 20 35-114 1.05, 3.53, 2.37
bias_gen 10 of 120 10 36-41 2.93, 3.33, 3.18
op_amp 12 of 120 12 46 2.61, 2.61, 2.61

VI. IMPROVEMENTS TO THE FUNCTION MODEL

For most of the circuits, the algorithm had significant speed-
up. However, for some functions convergence was slow
and/or termination was premature. The problem arises from
inaccuracy in both the Fpred(x) and σpred(x) values. If the
distributions of Fpred(x) are truly Gaussian with standard
deviations given by σpred(x), then 99.7% of the time the
absolute error should be less than or equal to 3σpred(x). We
found that for randomly chosen training sets of increasing
size, the σpred(x) values were increasing worse underestimates.

Using cross-validation [11] we computed a boosting factor,
, that corrects the predicted errors σpred(x) so that predicted
values Fpred(x) will just lie within ± 3  σpred(x) of the actual
F(x) values. The product ×σpred(x) can then replace σpred(x) in
the termination and next corner selection rules.  can be
recomputed using cross-validation for each Xi. As each
simulated corner appears as a test data point for a learned
model in cross-validation, the ratio j = | F(x) - Fpred(x) | / 3
σpred(x) is calculated. Defining an overall boosting factor  to
be the maximum value of all the j ratios improved the
behavior of the selection algorithm. However, it is expensive
to re-compute a new  for every Xi. With little loss in
effectiveness,  can be computed first using cross-validation
with X1, then recomputed after every subsequent multiple of
10% of the input space, and projected linearly elsewhere.

VII. EVALUATION OF THE IMPROVED ALGORITHM

A final version of the algorithm was evaluated against 46
functions from the 9 circuits in Table 1. The initial set X1 had

TCAD-2016-0464.R2

5

size q = max(0.01m, 2n, 10) and included one “typical” corner
plus q-1 spaced-out extremal corners.  is calculated using 10-
fold cross-validation with extrapolation. The same three-level
factor E(x) is used to boost σpred(x) for corners x that are near
the present xmax?. The training set increment includes all points
on the convex hull and the termination rule used k = 4.

Table 4 summarizes results that are reported in greater detail
in [15]. The average speed up over all 46 functions was 4.71,
which is a saving of 79%, that is, (1 – 1/4.71) × 100%, below
a full factorial set. However, the speed-ups in the last column
had significant variability across circuits and across the
functions in each circuit. Circuit “buffer_chain” had six
relatively easy-to-learn outputs, which allowed for speed-ups
ranging from 4.93× to 18.18× with a mean of 13.32× (i.e., a
92% reduction in corners simulated).

The hardest benchmarck was “shift_reg”, with a mean
speed-up of 1.46× (a 31.5% reduction in corner simulations).
Its “delay” function required 478 corners to reach termination
(a 2.25× speed-up). Although the Fmax was encountered at the
84th corner, 394 additional simulations were required to reach
termination. The “fall_time” function was the hardest. Its Fmax
was found after 163 corner simulations, but termination
required 47 simulations (a 1.03× speed-up). Only 33
simulations were avoided, a 3.06% reduction below 1080. The
“rise_time” function was slightly less difficult. The Fmax was
found after 306 simulations with termination occurring after
988 simulations (a 1.09× speed-up). Only 92 corner sim-
ulations were avoided, an 8.5% reduction below full factorial.

We identified two scenarios where the algorithm converged
incorrectly. A discontinuity, like an isolated spike or a narrow
ridge, was hard to model as a GPM. The “fall_time” and
“rise_time” functions indeed have ridges, with three adjacent
corners having near-equally high values. The “sen_dip_pctg”
function of “sense_ amp” has a broad plateau region where the
function varies irregularly in value by only 0.14%.

VIII. CONCLUSIONS AND FUTURE RESEARCH

We considered the problem of automatically minimizing the
number of corners that must be simulated to determine the
maximum (or minimum) value of an output function that
describes behavior of an arbitrary circuit. We proposed an
algorithm that iteratively builds up a Gaussian Process Model
for the function being verified. The GPM produces estimates
for the unsimulated function values and errors for those
values; these estimates are combined to select the corners to
simulate next as well as to determine when to stop the search.

Nine benchmark circuits, with 46 functions, were con-
sidered. The algorithm always successfully found the
maximum function value, but the reduction in the number of
corner simulations varied considerably. The algorithm
produced an average speed-up of 4.71×, which is a reduction
of 79% in the number of simulations. However, for some
circuit output functions little or no speed-up could be obtained
over a full-factorial search. FastPVT [2] produced a speed-up
of 11.3× for a different set of benchmarks. It is unclear how
robust this speed-up is to the choice of initial training set.

Three priorities in future work are to increase the number of
benchmark circuits, to better understand what causes some
output functions to be so hard to learn using the iterative
GPM-based approach, and to coordinate the search for
multiple functions from the same circuit. Additional function
models (e.g., [22]) will be considered in addition to GPMs.

ACKNOWLEDGMENT

The authors thank Solido Design Automation Inc. for their
technical advice and assistance during the project.

REFERENCES
[1] K. L. Kuhn et al., “Process technology variation,” IEEE Trans. Electron

Devices, vol. 58, no. 8, pp. 2197-2208, Aug. 2011.
[2] D. De Jonghe et al., “Advances in Variation-Aware Modeling,

Verification, and Testing of Analog ICs,” Design, Automation & Test in
Europe Conf., Dresden, Mar. 12-16, 2012, pp. 1615-1620.

[3] T. McConaghy, K. Breen, J. Dyck and A. Gupta, Variation-Aware
Design of Integrated Circuits: A Hands-on Field Guide, New York:
Springer Science+Business Media, 2013.

[4] G. E. P. Box and K. B. Wilson, “On the experimental attainment of
optimal conditions,” J. of the Royal Statistical Society, Series B, vol. 13,
no. 1, pp. 1-45, 1951.

[5] R. H. Myers, D. C. Montgomery, C. M. Anderson-Cook, Response
Surface Methodology: Process and Product Optimization using
Experiments, 3rd ed., Hoboken, NJ: John Wiley & Sons, 2009.

[6] M. Horn, “Optimal algorithms for global optimization in case of
unknown Lipschitz constant,” J. of Complexity, vol. 22, no. 1, pp. 50-70,
Feb. 2006.

[7] C. E. Rasmusssen and C. K. I. Williams, Gaussian Processes for
Machine Learning, Cambridge, MA: MIT Press, 2006.

[8] F. Pedregosa et al., Scikit-learn: Machine Learning in Python, J. of
Machine Learning Research, vol. 12, pp. 2825-2830, 2011.

[9] G. Su, “Accelerating Particle Swarm Optimization Algorithms Using
Gaussian Process Machine Learning,” Proc. Int. Conf. on
Computational Intelligence and Natural Computing (CINC), Wuhan,
China, June 6-7, 2009, pp. 174-177.

[10] M. Li, D. Zhou, and X. Zeng, “NIO: A Fast and Accurate Verification
Method for PVT Variations,” Proc. 12th IEEE Int. Conf. Solid-State and
Integr. Circ. Technol. (ICSICT), Guilin, China, Oct. 28-31, 2014, 3 pp.

[11] E. Alpaydin, Introduction to Machine Learning, 3rd ed., Cambridge,
MA: MIT Press, 2014.

[12] M. Sengupta et al., “Application-specific worst case corners using
response surfaces and statistical models,” IEEE Trans. CAD, vol. 24, no.
9, pp. 1372-1380, Sept. 2005.

[13] D. R. Jones, M. Schonlau, W. J. Welch, “Efficient Global Optimization
of Expensive Black-Box Functions,” J. of Global Optimization, vol. 13,
pp. 455-592, 1998.

[14] M. Shoniker, B.F. Cockburn, J. Han and W. Pedrycz “Minimizing the
number of process corner simulations during design verification,” in
Design, Automation & Test in Europe, Dresden, 2015, pp. 289-292.

[15] M. Shoniker, “Accelerated Verification of Integrated Circuits Against
the Effects of Process, Voltage and Temperature Variations,” M.Sc.
thesis, Dept. Elect. Comp. Eng., U. Alberta, Edmonton, Canada, 2015.

[16] T. P. Ryan, Modern Experimental Design, Hoboken, NJ: Wiley, 2007.
[17] N. A. Weiss, Introductory Statistics, 10th ed., New York: Pearson, 2015.
[18] C. Visweswariah et al., “First-Order Incremental Block-Based Statistical

Timing Analysis,” Proc. 41st Design Automation Conference (DAC),
San Diego, CA, June 7-11, 2004, pp. 331-336.

[19] N. H. E. Weste and D. Harris, CMOS VLSI: A Circuits and Systems
Perspective, 4th ed, Boston, MA: Pearson Addison-Wesley, 2010.

[20] R. L. Graham, “An Efficient Algorithm for Determining the Convex
Hull of a Planar Point Set,” Inform. Process. Lett., v. 1, pp. 132-3, 1972.

[21] A. Gyorgy and L. Kocsis, “Efficient multi-start strategies for local
search algorithms,” J. Artif. Int. Res., vol. 41, pp. 407-444, May 2011.

[22] Y. Tenne and S. W. Armfield, “A Novel Evolutionary Algorithm for
Efficient Minimization of Expensive Black-box Functions with
Assisted-Modelling,” IEEE Congress on Evolutionary Computation
(CEC), Vancouver, Canada, July 16-21, 2006, pp. 3219-3226.

