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Abstract—The compact arithmetic units in stochastic 

computing can potentially lower the implementation cost with 

respect to silicon area and power consumption. In addition, 

stochastic computing provides inherent tolerance of transient 

errors at the cost of a less efficient signal encoding. In this paper, a 

novel FIR filter design using the stochastic approach based on 

multiplexers are proposed. The required stochastic sequence 

length is determined for different signal resolutions by matching 

the performance of the proposed FIR filter with that of the 

conventional binary design. Silicon area, power and maximum 

clock frequency are obtained to evaluate the throughput per area 

(TPA) and the energy per operation (EPO). For equivalent filtering 

performance, the stochastic FIR filter underperforms in terms of 

TPA and EPO compared to the conventional binary design, albeit 

with some advantages in circuit area and power consumption. The 

stochastic design, however, shows a graceful degradation in 

performance with a significant reduction in energy consumption as 

the stochastic sequences are shortened. The fault-tolerance of the 

stochastic circuit is compared with that of the binary circuit 

equipped with triple modular redundancy. It is shown that the 

stochastic circuit is more reliable than the conventional binary 

design and its triple modular redundancy (TMR) implementation 

with unreliable voters, but it is less reliable than the binary TMR 

implementation when the voters are fault-free. 

Keywords—Stochastic computing; FIR filter; throughput per 

area; energy per operation; fault tolerance. 

I. INTRODUCTION 

The importance of finite impulse response (FIR) filters in 

digital signal processing and the potential benefits of stochastic 

computing motivated us to explore the possibility of 

implementing stochastic FIR filters. Both manufacturing 

variations and transient errors pose additional challenges to 

reliable operation. Stochastic computing methods can be 

exploited to address the above issues and thus possibly allow 

operation with less reliable, leading edge processes in very low 

voltage and/or high noise operating conditions.  

In image processing, Li et al. showed that stochastic circuits 

can outperform conventional binary designs for key algorithms 

with respect to important design metrics [1]. Specifically, 

sequential stochastic computational elements were built using 

finite state machines [2]. Alaghi et al. investigated an edge-

detection algorithm for real-time image processing [3]. It was 

shown that the area-delay product of the stochastic edge 

detection circuit is only 8.7% of that of a conventional binary 

circuit. Qian and Riedel compared stochastic hardware 

implementations of polynomial arithmetic [4]. Chang and Parhi 

investigated novel designs for both FIR and infinite impulse 

response (IIR) filters based on stochastic logic [5]. Several low-

pass and high-pass filters with different cut-off frequencies were 

considered. 

In this paper, we investigate two stochastic FIR filter designs. 

The conventional weighted average (CWA) design exploits 

basic stochastic arithmetic elements such as the XNOR gate for 

multiplication and the multiplexer for addition. The hardwired 

weighted average (HWA) design leverages the fact that every 

input signal is selected with the same probability in a 

multiplexer. The weights are then given by the number of 

combined inputs of the multiplexer. Different resolutions were 

considered to determine the threshold (or break-even point) that 

defines the competitive resolution range for stochastic circuits. 

3-bit to 16-bit FIR filters using both stochastic and binary 

approaches are initially implemented. Then the minimum 

required sequence length that enables the stochastic circuit to 

work as accurately as the binary one is determined. The metrics 

of throughput per area (TPA) and energy per operation (EPO) 

are used for characterizing and comparing the performance of 

stochastic and conventional circuits. 

This paper makes the following original contributions. 

 A new stochastic FIR filter is designed using a novel HWA 

structure. In the HWA design, the filter coefficients or weights 

are given by repeating inputs to the multiplexer. It is shown that 

an HWA-based FIR filter has improved performance in terms of 

area, power and speed, compared to the CWA design. 

 A quantitative analysis of the frequency response of the 

filters, in terms of the passband ripple and stopband attenuation, 

is performed to determine the minimum stochastic sequence 

length required to ensure that the performance of a stochastic 

filter matches that of a conventional filter. 

 A detailed comparison is provided with respect to the fault 

tolerance of the proposed stochastic and conventional binary 

filters. A fault-tolerant triple modular redundancy (TMR) 

implementation of the binary filter is also considered. 

II. BACKGROUND 

A. Stochastic Computing 

Stochastic computing involves processing numbers that are 

encoded as real values, which are represented using stochastic 

bit-streams. N1 1’s in a bit stream containing Ns bits represents 

either the (unsigned) unipolar number N1/ Ns or the (signed) 

bipolar number (2N1–Ns)/ Ns [6, 7]. For example, “0001100101” 

denotes 2/5 in unipolar and -1/5 in bipolar for Ns = 10 and N1 = 

4. To encode a binary number containing Nb bits, the minimum 

sequence length is  𝑁𝑠,𝑚𝑖𝑛 = 2𝑁𝑏 . However, the required 

sequence length 𝑁𝑠  is usually made larger for increased 



accuracy during stochastic processing. Therefore, a 

performance matching multiplier is introduced as  𝑃𝑀𝑀 =
𝑁𝑠/2𝑁𝑏. The stochastic sequences are usually generated using 

linear feedback shift registers (LFSRs). Fig. 1 shows a general 

stochastic computing system [6]. 
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Fig. 1. A basic stochastic computing system. 

B. Encoding Numbers as Unipolar and Bipolar Stochastic 

Sequences 

Stochastic number generation relies on pseudo-random bit 

generators such as LFSRs. For example, to generate the 

stochastic sequence for a 4-bit unsigned binary number, the 

stochastic number generator (SNG) in Fig. 2 is implemented 

with a 4-bit LFSR. The SNG in Fig. 2 converts a 4-bit unsigned 

binary number X to a stochastic number (sequence) of length 16. 

The SNG takes advantage of the weight generation. The bit 

streams named W3, W2, W1 and W0 represent the weights of 1/2, 

1/4, 1/8 and 1/16, respectively. The binary number x is 

converted bit-by-bit with different weights assigned to them. 

Therefore, we have P(S) = 1/2∙X[3] + 1/4∙X[2] + 1/8∙X[1] + 

1/16∙X[0] = (8∙X[3] + 4∙X[2] + 2∙X[1] + 1∙X[0]) / 16 = X/16, 

where S is the output sequence of the SNG and P(S) is the 

probability that S represents. This S is the unipolar stochastic 

representation of the binary number X. 
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Fig. 2. Unipolar stochastic number generator for unsigned numbers [6]. 

For signed numbers, we use bipolar stochastic representations. 

An Ns-bit stochastic sequence with N1 1’s encodes the 

probability of (2 ∙N1 – Ns)/Ns. To design an SNG for signed 

numbers, let us consider the mappings of a signed binary 

number to its stochastic representation. For example, for a 4-bit 

signed binary number in two’s complement, Table I shows its 

relationship with the probability that every single bit in the 

stochastic sequence is ‘1’ and the probability that the number is 

encoded in the bipolar representation, assuming that the 

sequence length is 16 bits. This relationship reveals that the 

stochastic conversion of a signed binary number can be 

implemented by the SNG for unsigned numbers, by simply 

inverting the sign bit and treating the remaining bits in the 

signed binary number as in an unsigned number. This SNG 

design is shown in Fig. 3. To invert the signal of the sign bit in 

the 4-bit signed number, a NOR gate is used to replace the AND 

gate connected to the sign bit and some inverters are reduced 

into one at the output of L3. 
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Fig. 3. Bipolar stochastic number generator for signed binary numbers in two’s 

complement. 

TABLE I. A MAPPING SCHEME OF SIGNED BINARY NUMBERS IN TWO’S 

COMPLEMENT AND THEIR STOCHASTIC REPRESENTATIONS. 

Signed Binary 
Number in 2’s 
complement 

Decimal 

Probability of 
any bit being ‘1’ 

in the 16-bit 
sequence 

Stochastic Number 
in the bipolar 

representation: 
(2∙N1-Ns)/Ns 

0111 7 15/16 (2×15−16)/16=7/8 

0110 6 14/16 (2×14−16)/16=6/8 

0101 5 13/16 (2×13−16)/16=5/8 

0100 4 12/16 (2×12−16)/16=4/8 

0011 3 11/16 (2×11−16)/16=3/8 

0010 2 10/16 (2×10−16)/16=2/8 

0001 1 9/16 (2×9−16)/16=1/8 

0000 0 8/16 (2×8−16)/16=0/8 

1111 −1 7/16 (2×7−16)/16=−1/8 

1110 −2 6/16 (2×6−16)/16=−2/8 

1101 −3 5/16 (2×5−16)/16=−3/8 

1100 −4 4/16 (2×4−16)/16=−4/8 

1011 −5 3/16 (2×3−16)/16=−5/8 

1010 −6 2/16 (2×2−16)/16=−6/8 

1001 −7 1/16 (2×1−16)/16=−7/8 

1000 −8 0/16 (2×0−16)/16=−8/8 

C. FIR Filters 

An Nf –tap FIR filter implements a sum of products over a 

sliding window of the Nf most recent input samples, as specified 

in (1). The fixed filter coefficients H[i] (i = 0, 1, …, 𝑁𝑓 − 1) 

give the finite impulse response of the filter as 

𝑌[𝑛] =  ∑ 𝐻[𝑖] 𝑋[𝑛 − 𝑖]
𝑁𝑓−1

𝑖=0
. (1) 

The hardware implementation of an FIR filter consists of adders 

and multipliers as well as delay units implemented as D flip 

flops as in Fig. 4. To meet the resolution requirement, the 

stochastic sequence must be as long as 𝑃𝑀𝑀 ∙ 2𝑁𝑏, where Nb is 

the binary bit resolution and 𝑃𝑀𝑀 ≥ 1. However, it requires 

huge storage which leads to excessive latency [5]. 
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Fig. 4. A 4-tap FIR filter design (i.e., Nf = 4 in (1)). 

One solution to the relatively long latency and large storage 

cost is to move the binary input signal samples through the DFFs 

before they are expanded into stochastic bit streams (Fig. 5). At 

every stochastic clock cycle there is one stochastic bit generated 

by each of the stochastic number generators (SNGs). In Fig. 5, 

S(X[n-i]) and S(H[i]) are the stochastic bit streams encoding the 



values of X[n-i] and H[i], respectively, where i = 0, 1, 2, 3. An 

Ns-bit stochastic sequence S(Y[n]) is produced as the filter 

output over Ns stochastic clock cycles. The design in Fig. 5 

requires four expensive SNG modules but only three Nb-bit 

registers. It has relatively low cost and thus we chose it for 

further investigation. 
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Fig. 5. A 4-tap stochastic FIR filter (i.e., Nf = 4 in (1)) [5]. 

III. STOCHASTIC FIR FILTER DESIGN 

A. Conventional Weighted Average (CWA) Design 

At the core of an Nf -tap FIR filter is an Nf -input weighted 

average function. For a 16-tap FIR filter, this function is 

implemented using stochastic logic, see Fig. 6. The multiplexer 

is used as a simple adder. The XNOR gates implement bipolar 

multiplications provided that the two input sequences, i.e., the 

input sequence and the corresponding coefficient sequence, are 

statistically independent [6]. Two Ns-bit bipolar stochastic 

sequences S1 and S2 are said to be independent if 

𝑃(𝑆1 𝑋𝑁𝑂𝑅 𝑆2) =  𝑃(𝑆1) ∙  𝑃(𝑆2),  where P(S1) and P(S2) 

denote the probabilities encoded by S1 and S2, respectively. 

Note that the selecting signals (representing the probability of 

0.5) are encoded as unipolar sequences by unipolar SNGs 

(denoted by SNGu). All the numbers to data inputs are converted 

by bipolar SNGs (denoted by SNGb).  
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Fig. 6. A 16-tap FIR filter implemented using stochastic logic [5]. 

B. Hard-wired Weighted Average (HWA) Design 

In the CWA design, the SNGs cannot be shared, due to the 

requirement of signal independency. In the hard-wired weighted 

average (HWA) design, however, the absolute values of the 

coefficients can be implemented by assigning unbiased 

stochastic sequences to the selecting inputs of the multiplexer. 

In an unbiased stochastic sequence, the probabilities of each bit 

being ‘1’ and ‘0’ are the same, i.e., 0.5. The probability is then 

the same for selecting each of the inputs. However, a particular 

data input can be given more weight in the multiplexer output 

by connecting the input to multiple multiplexer inputs. Note that 

the signs of the coefficients can be implemented by XOR gates 

at the data inputs of the multiplexer. XOR gates help invert the 

corresponding input when the coefficient is negative. When the 

coefficients are positive, XOR gates become buffers. 

In Fig. 7, for example, Wires 8 to 15 are associated with the 

same input S(X[4]), where S(X[4]) is the stochastic bit stream 

encoding the value of X[4]. Thus the probability of selecting the 

input S(X[4]) is 8/16 or 1/2, which means the coefficient of X[4] 

is either 1/2 or -1/2. Similarly, all the other coefficients can be 

weighted by repeating inputs appropriately. The weighted 

average function in (2) requires a multiplexer with four selecting 

inputs. It can be implemented by a 16-input multiplexer with 

combined data inputs as in Fig. 7. 
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The HWA design potentially improves the CWA design in that 

the SNGs for the weights can be removed. 
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Fig. 7. The hard-wired weighted average design of a 5-tap FIR filter 

In general, to implement the Nf -tap FIR filter in (1) using an 

Nb-bit resolution, the major steps are as follows:  

 1) Convert the floating point coefficients H[i] in (1) to fixed 

point Nb-bit binary numbers A[i], where i = 0, 1, …, 𝑁𝑓 − 1. 

2) Calculate the sum of all the absolute values of the 

coefficients 𝐴 = ∑ |𝐴[𝑖]|
𝑁𝑓−1

𝑖=0
 where A[i] is an Nb-bit binary 

number, for i = 0, 1, …, 𝑁𝑓 − 1. 

3) The multiplexer has 2𝑁𝑚  data inputs and Nm selecting 

inputs, where Nm is determined by 𝑁𝑚 = ⌈𝑙𝑜𝑔2 𝐴⌉ and ⌈ ⌉ is 

the ceiling function. Each selecting input is an unbiased 

stochastic sequence encoding the probability of 0.5. 

4) The number of inputs to be combined is given by |𝐴[𝑖]| for 

input X[i] (i = 0, 1, ..., 𝑁𝑓 − 1). The sign of the coefficient A[i] 

(i = 0, 1, ..., 𝑁𝑓 − 1) is one of the inputs of the corresponding 

XOR gate.  

5) Use a synthesis tool to optimize the design. 



IV. PERFORMANCE EVALUATION OF THE CONVENTIONAL 

BINARY AND THE PROPOSED STOCHASTIC FIR FILTERS 

A low-pass FIR filter is considered for evaluating the 

proposed stochastic and binary filter designs with specifications 

in Table II. The number of taps is Nf = 267. The sequence length 

Ns is given by Ns = 2𝑁𝐿𝐹𝑆𝑅 , where 𝑁𝐿𝐹𝑆𝑅 is the number of bits in 

an LFSR. Various sequence lengths have been investigated for 

different resolutions to compare with the conventional binary 

design. 𝑁𝐿𝐹𝑆𝑅 is varied from 3 up to 30 (i.e., 𝑁𝐿𝐹𝑆𝑅  = 3, 4, …, 

30) to determine the sequence length. The resolution Nb ranges 

from 3 bits to 16 bits. The magnitude responses of the filters are 

then obtained. Passband ripples (PRs) and stopband attenuations 

(SAs) are used to evaluate the performance of the binary design 

for various resolutions and the stochastic design for different 

sequence lengths. PR and SA are defined as the maximum 

magnitude response of a frequency in the passband and stopband, 

respectively.  

TABLE II. LOW-PASS FIR FILTER SPECIFICATIONS. 

Specifications Values 

Cut-off frequency fc 100 Hz 

Transition band bandwidth BW 30 Hz 

Minimum stop-band attenuation -50 dB 

Maximum peak-to-peak pass-band ripple 0.1 dB 

In Table III, the PRs and SAs are shown for different bit 

resolutions and sequence lengths. The HWA-based stochastic 

FIR filter suffers from both quantization errors and random 

fluctuations. The stochastic FIR filter has a gradually-improving 

performance as the sequence length increases. For each bit 

resolution, the minimum sequence length 𝑁𝑠  was found that 

matched the performance of the stochastic FIR filter to that of 

the conventional 𝑁𝑏 -bit binary FIR filter. The performance 

matching multiplier (PMM) is then calculated by 𝑃𝑀𝑀 =
𝑁𝑠/2𝑁𝑏.  

The minimum resolution to achieve the filter specifications 

in Table II is 13 bits for the binary design. The attenuation in the 

stopband is -51.45 dB and the passband ripple is 0.039 dB. The 

magnitude responses of the stochastic and binary filters are 

plotted in Fig. 8. The HWA-based design with the minimum 

sequence length suffers from a maximum PR of 0.210 dB, as 

shown in Fig. 8(b). The SA for the HWA-based FIR filter is only 

-31.54 dB (Fig. 8(b)). To match the performance of the binary 

filter, the oversampling rate has to be increased to 512 (Fig. 8(c)). 

The PR and SA are 0.035 dB and -51.57 dB, respectively, for 

the stochastic filter in this case. 

A shorter sequence length can be used for the stochastic filter 

to obtain a possibly still useful degraded performance. For 

example, if the PMM is 32 instead of 512, the SA becomes -

44.12 dB and the PR is 0.06 dB (see Fig. 9(a)). The time per 

operation is reduced to only 1/16 of the previous result, which 

indicates a graceful degradation in the performance of the 

stochastic design. In contrast, an 11-bit conventional binary 

implementation of the filter shows similarly degraded 

performances with an SA of -45.58 dB and a PR of 0.05 dB (see 

Fig. 9(b)), however with little saving in energy consumption. 

This trade-off will be further discussed in the next section. 

 
(a) 

 

      (b)                                                  (c) 
Fig. 8. Magnitude responses of 13-bit FIR filters: (a) Conventional binary 

design, (b) Stochastic HWA design without performance matching (PMM  = 1), 

(c) Stochastic HWA design with performance matching (PMM  = 512). 

 
       (a)                                                   (b) 

Fig. 9. Magnitude responses of lower-quality FIR filters: (a) 13-bit stochastic 

HWA design with PMM = 32 and (b) 11-bit conventional binary design. 

V. SIMULATION RESULTS 

The Synopsys design compiler with an STM 28-nm cell 

library [8] was used to synthesize a high-level design in VHDL 

to a standard cell ASIC design. The FIR filters specified in Table 

II were simulated for various resolutions from 3 bits up to 16 

bits. In Table III, the circuit performance is compared with 

respect to silicon area, power consumption and delay. Although 

the core of the stochastic circuit is implemented using simple 

logic gates, the interfacing circuits require a relatively large 

number of SNGs and counters, especially for FIR filters with a 

large number of taps. The hardware cost of the binary circuits 

grows faster than the stochastic circuits, so for larger 

resolutions, the stochastic HWA circuit becomes increasingly 

advantageous over a binary design. The auxiliary circuits such 

as the SNGs and counters, however, make this advantage of 

stochastic circuits less significant. 

 

 



TABLE III: PERFORMANCE OF THE CONVENTIONAL BINARY (B) AND THE 

PROPOSED STOCHASTIC (S) FIR FILTER. 𝑵𝒃 : BIT RESOLUTION, 𝑵𝒔 : 

SEQUENCE LENGTH, PR: PASSBAND RIPPLE, SA: STOPBAND ATTENUATION 

AND PMM: PERFORMANCE MATCHING MULTIPLIER. 

𝑁𝑏 𝑁𝑠 
PR (dB) SA (dB) PMM 

CB  HWA 

(dB) 
CB HWA 

3 64 3.078 2.582 -3.91 -7.14 8 

4 256 4.788 1.414 -9.93 -11.49 16 

5 512 2.860 1.324 -13.11 -14.70 16 

6 1,024 1.462 0.801 -17.80 -17.90 16 

7 2,048 0.722 0.552 -24.02 -20.65 16 

8 8,192 0.391 0.209 -27.63 -27.53 32 

9 16,384 0.18 0.282 -31.13 -31.95 32 

10 65,536 0.103 0.071 -36.37 -36.02 64 

11 524,288 0.052 0.050 -45.58 -44.60 256 

12 1,048,576 0.032 0.037 -49.94 -48.32 256 

13 4,194,304 0.039 0.034 -51.45 -51.57 512 

14 16,777,216 0.035 0.036 -54.59 -55.51 1,024 

15 134,217,728 0.036 0.035 -55.91 -54.89 4,096 

16 536,870,912 0.036 0.036 -54.96 -55.32 8,192 

 

Note that both the binary and stochastic circuits have been 

optimized for maximum throughput by adding pipeline registers 

as determined by the Synopsys synthesis tool. The area could be 

over-estimated for this reason. Long latency has been a major 

challenge for stochastic circuits. Adopting a faster clock is a 

potential way to reduce latency. With the help of timing analysis, 

the clock can be pushed to the limit according to the slack time. 

The results are shown in Table IV. The required stochastic 

sequence length is given by 2𝑁𝑏 ∙ 𝑃𝑀𝑀, where Nb (Nb = 3, 4, …, 

16) is the binary resolution and PMM is the performance 

matching multiplier. The reported power consumptions are 

estimated at the fastest clocks for each of the resolutions. It can 

be seen that the stochastic circuits are more compact and they 

consume less energy per clock cycle than binary 

implementations. In the comparison of the two stochastic 

designs, the HWA-based FIR filter is more cost-efficient in 

terms of area, power and speed (see Table IV).  

TABLE IV. COMPARISON OF HARDWARE COST, POWER CONSUMPTION AND 

MINIMUM CLOCK PERIOD FOR CONVENTIONAL BINARY (B) FILTERS, CWA-

BASED STOCHASTIC (C) FIR FILTERS AND HWA-BASED STOCHASTIC (H) 

FIR FILTERS INCLUDING AUXILIARY CIRCUITS. 

R 
Area (× 𝟏𝟎𝟑 𝛍𝐦𝟐) Power (mW) 

Min Clock 

Period (× 𝟏𝟎 ps) 

B C H B C H B C H 

3 12.76 14.94 12.85 24.24 20.35 19.82 39 37 34 

4 21.26 15.41 15.55 35.50 29.79 29.05 41 37 35 

5 31.89 21.02 18.75 47.86 40.17 38.02 42 40 36 

6 44.65 26.84 21.99 61.22 51.39 47.96 44 40 36 

7 59.53 27.98 24.71 75.49 63.36 59.06 47 41 39 

8 76.54 27.69 27.41 90.59 76.04 71.55 49 41 40 

9 95.68 33.54 29.98 106.5 89.38 84.66 49 42 41 

10 116.9 36.24 33.12 123.1 103.3 97.23 50 43 41 

11 140.3 38.34 36.51 140.5 117.9 109.0 51 47 42 

12 165.8 44.99 43.53 138.5 133.1 125.2 54 47 44 

13 193.5 46.57 44.91 158.5 148.7 140.7 55 47 44 

14 223.3 50.16 48.06 177.1 164.8 159.2 57 49 45 

15 255.1 53.74 50.82 196.3 181.5 174.8 59 49 46 

16 289.2 57.32 54.89 226.6 198.6 189.6 64 50 46 

The stochastic circuits, however, suffer from the long 

latency caused by the required stochastic sequences, which 

makes the designs less competitive. Hence, a seemingly low-

power design may take more clock cycles to run an arithmetic 

operation, which might in fact need more energy rather than 

saving it. The operational efficiency of such a design is captured 

by the throughput per area (TPA), defined as the number of 

operations per circuit area in a unit time, and the energy per 

operation (EPO), obtained as the product of the power and time 

required to complete one operation. In an evaluation, the 

stochastic FIR filter must work as effectively as the 

conventional binary FIR filter. The effectiveness is measured 

using passband ripple (PR) and stopband attenuation (SA) in 

Table III. The sequence length is a key factor that determines 

the efficacy of a stochastic design. When computing the TPA 

and the EPO, therefore, the required sequence lengths in Table 

III must be used, making the stochastic design even less 

competitive at higher resolutions.  

Fig. 10 shows the plots of EPO and TPA, respectively, for the 

binary and stochastic circuits (with and without the auxiliary 

circuits). The y-axes in both plots are the base-10 logarithms of 

the original metrics. The x-axes are bit resolutions from 3 bits to 

16 bits. The figures show that the stochastic approach is not 

competitive in terms of EPO and TPA. The higher the resolution, 

the less competitive the stochastic implementation becomes. 

This is caused by the required sequence length, which grows 

exponentially with the bit resolution. When the auxiliary circuits 

are not considered, the stochastic circuit performs better in terms 

of the TPA than the binary design for resolutions under 5 bits. 

 
(a) 

 
(b) 

Fig. 10. (a) EPO and (b) TPA comparisons: HWA Design (with/without 

auxiliary circuits such as SNGs and counters) and Binary Design 

Although the stochastic design suffers from a long latency, 

its performance degrades gracefully as the energy is reduced, 

which could be beneficial in a failing battery scenario.  Take the 

13-bit design as an example. A lower-quality stochastic filter 

(Fig. 9) is implemented using 262,144 bits (in contrast to 

4,194,304 bits required by a good-quality stochastic filter that 

matches the performance of a 13-bit conventional binary filter). 

An 11-bit conventional binary filter shows similarly degraded 



performance. The EPOs of these lower-quality filters are shown 

in Table V. As the stochastic filter only requires 1/16 of the 

original sequence length, the EPO saving is 93.33% below that 

of the good-quality stochastic filter. However, the 11-bit binary 

filter saves only 17.81% of the energy per operation compared 

to the 13-bit binary filter. 

TABLE V: ENERGY SAVINGS BY LOWER-QUALITY IMPLEMENTATIONS OF 

CONVENTIONAL BINARY (B) AND HWA-BASED FIR FILTERS. 

 Implementations B HWA 

EPO of High Quality Filter (pJ) 87.15  253700027 

EPO of Lower Quality Filter (pJ) 71.63  15856251 

Energy Saving (%) 17.81  93.75 

VI. FAULT TOLERANCE ANALYSIS 

Stochastic computing has been known to be intrinsically 

fault-tolerant. When one bit in a binary circuit flips, it can cause 

a serious error if the erroneous bit is among the MSBs. However, 

any bit in a stochastic sequence has the same weight, so the 

effect of a single bit flip is insignificant in a relatively long 

stochastic sequence. To measure the reliability of a design, the 

average absolute error (AAE) is defined as 𝐴𝐴𝐸 =
1

𝑀
∙

1

22𝑁𝑏+4 ∑ |𝑋𝑖 − 𝑋𝑖
′|𝑀−1

𝑖=0 , where 𝑋𝑖 and 𝑋𝑖
′ are the expected correct 

output and the actual output, respectively, and M is the number 

of simulations. For simplicity, 
1

22𝑁𝑏+4  is used as a constant 

coefficient so that the AAEs lie between 0 and 1 (𝑁𝑏 = 13 here). 

The AAE indicates how seriously the injected error affects the 

circuit output.  

We investigate the AAE for the conventional binary 13-bit 

low-pass FIR filter with 267 taps as well as the stochastic HWA 

design using a sequence length of 4,194,304 bits (see Table III) 

under various injected error rates. In addition, redundant copies 

of the binary circuit can be used to obtain fault tolerance in the 

form of triple modular redundancy (TMR) with unreliable and 

fault-free voters. The stochastic computational models in [9] are 

used to facilitate the fault-tolerance analysis. XOR gates are 

used to inject errors into the circuit. The majority voters in the 

TMR circuits are bitwise not word-wise.  

TABLE VI. AVERAGE ABSOLUTE ERROR OF THE STOCHASTIC (S) AND 

BINARY (B) CIRCUITS WITH AND WITHOUT REDUNDANCY AT VARIOUS 

INJECTED ERROR RATES.  

Error  

Rate (%) 

Average Absolute Error (%) 

S B Binary TMR 

Error-free Voter Unreliable Voter 

0 0 0 0 0 

0.1 0.065 1.507 0.004 0.126 

0.2 0.136 2.325 0.009 0.225 

0.5 0.326 3.290 0.035 0.581 

1 0.574 5.209 0.111 1.203 

2 1.226 6.368 0.198 2.382 

5 2.948 10.942 0.337 5.794 

10 5.696 21.477 1.123 12.050 

The AAEs obtained from 200 simulations with a sequence 

length of 100,000 bits are given in Table VI. It shows that the 

AAE increases as the injected error rate increases. The 

conventional binary circuit is not as fault-tolerant as the 

stochastic circuit. The binary TMR circuit with unreliable voters 

has increased reliability, but it is still not as reliable as the 

stochastic approach. However, the binary TMR circuit with 

reliable voters becomes more fault-tolerant than the stochastic 

circuit.  

VII. CONCLUSIONS 

In this paper, a stochastic hard-wired weighted average 

(HWA) design is proposed to implement FIR filters. The HWA 

design takes advantage of simply repeating the input wires of a 

multiplexer to implement the weights of different data inputs. 

The stochastic design has a smaller circuit area and lower power 

consumption, compared with the conventional stochastic design 

using simple arithmetic elements. 

Compared to binary FIR filter circuits, the proposed 

stochastic design has a significant advantage in circuit area, 

especially for higher resolutions. In terms of throughput per area 

and energy per operation, however, the stochastic design does 

not show any advantages over its binary counterpart. This is 

primarily due to the significant latency in stochastic computing, 

because long sequences must be used to match the performance 

of a binary filter. A shorter stochastic sequence, however, would 

make the stochastic circuit degrade gracefully in performance 

compared to the binary design. Graceful degradation to reduce 

power in stochastic circuits is easily achieved by changing the 

stochastic bit counter limit, but is difficult to achieve in bit-

parallel binary circuits. 

A binary TMR circuit using error-free voters is more reliable 

than the stochastic design. Due to the intrinsic fault tolerance 

capacity, however, the proposed stochastic design shows 

significant advantages in reliability over the conventional binary 

design and its TMR implementation when the voters are subject 

to errors. These results suggest future work on sum-of-product 

based fault-tolerant circuit design using stochastic computing 

techniques. Massively parallel designs, where the overhead 

circuits can be shared across arrays of stochastic data paths, 

should also be considered for stochastic implementation.  
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