
 1

Abstract— Stochastic computing utilizes compact arithmetic

circuits that can potentially lower the implementation cost in

silicon area. In addition, stochastic computing provides inherent

fault tolerance at the cost of a less efficient signal encoding. Finite

impulse response (FIR) filters are key elements in digital signal

processing (DSP) due to their linear phase-frequency response. In

this article, we consider the problem of implementing FIR filters

using the stochastic approach. Novel stochastic FIR filter designs

based on multiplexers are proposed and compared to conventional

binary designs implemented using Synopsys tools with a 28-nm cell

library. Silicon area, power and maximum clock frequency are

obtained to evaluate the throughput per area (TPA) and the

energy per operation (EPO). For equivalent filtering performance,

the stochastic FIR filters underperform in terms of TPA and EPO

compared to the conventional binary design, although the

stochastic design shows more graceful degradation in performance

with a significant reduction in energy consumption. A detailed

analysis is performed to evaluate the accuracy of stochastic FIR

filters and to determine the required stochastic sequence length.

The fault-tolerance of the stochastic design is compared with that

of the binary circuit enhanced with triple modular redundancy

(TMR). The stochastic designs are more reliable than the

conventional binary design and its TMR implementation with

unreliable voters, but they are less reliable than the binary TMR

implementation when the voters are fault-free.

Keywords—stochastic computing, FIR filter, throughput per

area, energy per operation, stochastic sequence length, fault

tolerance

NOTATION
P(𝑆): probability encoded by a stochastic sequence S

Nb: the bit resolution for the binary filter

Ns: the number of bits in stochastic sequence S

Nf: the number of taps in the FIR filter

X: a binary number, signed or unsigned

X[n]: the binary value of a time-series variable X at time n

S(X): a stochastic binary sequence encoding the probability
𝑋

𝐿
, where

L is the sequence length.

I. INTRODUCTION

HE importance of finite impulse response (FIR) filters in

digital signal processing and the potential benefits of

stochastic computing motivated us to investigate the possibility

of implementing stochastic FIR filters. Both manufacturing

variations and transient errors pose additional challenges to

reliable operation. Stochastic computing methods [1, 2] can be

exploited to address the above issues and thus possibly allow

operation with less reliable, leading edge processes in very low

voltage and/or high noise operating conditions.

In image processing, Li and Lilja showed that stochastic

circuits can outperform conventional binary designs for key

image processing algorithms with respect to important design

metrics [3]. Specifically, sequential stochastic computational

elements were built using finite state machines. Interesting

results for a stochastic implementation of the kernel density

estimation (KDE)-based image segmentation algorithm are

reported in [4]. Alaghi et al. investigated an edge-detection

algorithm for real-time image processing [5]. It was shown that

the area-delay product of the stochastic edge detection circuit is

only 8.7% of that of a conventional binary circuit. Qian and

Riedel compared stochastic hardware implementations of

polynomial arithmetic [6]. Chang and Parhi investigated novel

designs for both FIR and infinite impulse response (IIR) filters

based on stochastic logic [7]. Several low-pass and high-pass

filters with different cut-off frequencies were considered. In

those filters, the coefficients are encoded as stochastic selection

signals of multiplexers and XOR gates are used to invert the

inputs when the corresponding coefficients are negative

numbers. Our new approach works with both unsigned and

signed stochastic inputs directly without additional operations,

while requiring additional multiplexers as weight generators.

Another stochastic FIR filter was designed using a wire

selecting method in [8]. The authors claimed that the proposed

stochastic FIR filter is more cost-efficient than traditional filters

in terms of hardware resource for less than 9-bit

implementations. However, it is not clear whether or not the

stochastic filter can effectively match the performance of the

corresponding traditional filters. In [9], the authors proposed to

modify conventional ADCs to generate analog to stochastic

streams with minimal overhead to implement IIR filters. Input

to output frequency response spectra were computed to

demonstrate the idea. However, this method is limited to IIR

filters where feedback networks are needed.

In this paper, three different stochastic FIR filter designs are

investigated. The conventional weighted average (CWA)

design exploits basic stochastic arithmetic elements, such as the

XNOR gate for multiplication and the multiplexer for addition.

In the hardwired weighted average (HWA) design, the filter

coefficients or weights are given by repeating inputs to the

multiplexer. Finally, the multi-level weighted average (MWA)

design leverages the fact that every input signal is selected with

a certain weight determined by the selection inputs to a

multiplexer. The MWA design explicitly uses additional

multiplexers to generate filter coefficients as the weights to a

weighted adder. In all three designs, the weight of an input

signal is the probability of selecting that input signal. That

Design, Evaluation and Fault-Tolerance

Analysis of Stochastic FIR Filters

Ran Wang, Jie Han, Bruce F. Cockburn, and Duncan G.. Elliott

Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada

T

 2

probability is then encoded in the frequency at which the

corresponding combination of the selecting signals occurs in

the bit streams. It is shown that both HWA- and MWA-based

FIR filters have improved performance in terms of area, power

and speed, compared to the CWA design.

Different resolutions are considered to determine the

threshold (or break-even point) that defines the competitive

resolution range for stochastic circuits. 3-bit to 16-bit FIR filters

using both the stochastic and binary approaches are

implemented initially. Then the minimum required stochastic

sequence length that enables the stochastic circuit to filter

signals as accurately as the binary circuit is determined

empirically. The general metrics of throughput per area (TPA)

and energy per operation (EPO) are used to characterize and

compare the performance of the stochastic and conventional

circuits.

This article is a significant extension of [10]. It contains the

following main contributions.

 Stochastic FIR filters based on the HWA and MWA

designs are proposed by using multiplexers to implement

weighted adders. Different strategies are considered for

generating the filter coefficients.

 A detailed analysis is performed to evaluate the accuracy

of the binary and stochastic filters. The analytical results

provide an estimation of the minimum stochastic sequence

length that is required to ensure that the performance of the

stochastic filter matches that of a conventional filter.

 A detailed comparison is provided with respect to the fault

tolerance of the HWA- and MWA-based stochastic filters. The

conventional binary filter and its fault-tolerant triple modular

redundancy (TMR) implementation are considered in the

comparison.

In the sequel, we first review stochastic computing and

binary FIR filter designs in Section II. In Section III, the

stochastic FIR filter designs are presented. In Section IV, the

performance is compared by considering the magnitude

responses of both filters. In Section V, the simulation results

from a Synopsys synthesis tool are reported. In Section VI, the

accuracy of the FIR filters using both binary and stochastic

computing is assessed. The fault tolerance of stochastic and

conventional binary circuits are determined and compared in

Section VII. Section VIII concludes the paper.

II. BACKGROUND

A. Stochastic Computing

Stochastic computing involves processing numbers that are

encoded as real values, which are represented using stochastic

bit-streams. If there are N1 1’s in a bit stream containing Ns bits,

where N1 ≤ Ns, it represents either the (unsigned) unipolar

number N1/ Ns or the (signed) bipolar number (2N1–Ns)/ Ns [1,

2]. For example, “0001100101” denotes 2/5 in unipolar and -

1/5 in bipolar for Ns = 10 and N1 = 4. Stochastic computing

elements can often be built using very small circuits with low

power consumption [1]. To encode a binary number containing

Nb bits, the minimum sequence length is 𝑁𝑠,𝑚𝑖𝑛 = 2𝑁𝑏 .

However, the required sequence length 𝑁𝑠 is usually made

larger for increased accuracy during stochastic processing.

Therefore, a performance matching multiplier is introduced as

𝑃𝑀𝑀 = 𝑁𝑠/2𝑁𝑏 . The stochastic sequences are usually

generated using linear feedback shift registers (LFSRs) or other

similar pseudo-random bit sequence generators. Fig. 1 shows a

general stochastic computing system [2].

A stochastic weighted adder can be implemented with a

multiplexer. If data inputs X1 and X2 are both encoded as

unipolar (or bipolar) stochastic sequences, then the output Y of

a two-input multiplexer will also be unipolar (bipolar).

However, the multiplexer selecting signal A must be encoded

as a unipolar sequence. Consider a stochastic implementation

of the weighted sum

 𝑌 = 𝐴1𝑋1 + 𝐴2𝑋2, (1)

where 𝐴1 and 𝐴2 are positive weights whose sum is one (i.e.,

𝐴1 + 𝐴2 = 1 and 𝐴1, 𝐴2 > 0). Data inputs 𝑋1 and 𝑋2 are

encoded as stochastic sequences S(X1) and S(𝑋2), and weights

A1 and A2 are encoded as unipolar stochastic sequences S(𝐴1)

and S(A2). For the multiplexer, the select input A is driven by

unipolar sequence S(A1), and so this input is 1 with probability

P(S(A1)), i.e.,

P(S(A1)) = A1 = 1 – A2. (2)

The multiplexer output Y will be 1 with probability P(S(Y)), i.e.,

 P(S(Y)) = A1∙P(S(X1)) + A2∙P(S(X2)). (3)

First consider the case of unipolar data inputs. By definition

the numbers encoded by sequences S(X1), S(X2) and S(Y) are

exactly 𝑃(𝑆(𝑋1)) = 𝑋1, 𝑃(𝑆(𝑋2)) = 𝑋2 and 𝑃(𝑆(𝑌)) = 𝑌,
respectively. Thus the computed output value Y will be the

desired weighted sum 𝐴1𝑋1 + 𝐴2𝑋2.

Now consider the case of bipolar data inputs. By definition,

the numbers encoded by S(X1), S(X2) and S(Y) are exactly
𝑋1+1

2
,

𝑋2+1

2
 and

𝑌+1

2
, respectively. Thus the output sequence S(Y) will

be 1 with probability P(S(Y)), i.e.,

𝑃(𝑆(𝑌)) =
𝐴1𝑋1+𝐴2𝑋2+𝐴1+𝐴2

2
=

𝐴1𝑋1+𝐴2𝑋2+1

2
. (4)

From the definition of the bipolar encoding, sequence S(Y)

encodes the number

 Y = 2 ∙ 𝑃(𝑆(𝑌)) − 1 = 𝐴1𝑋1 + 𝐴2𝑋2, (5)

which is again the desired weighted sum.

The same argument can be generalized to weighted sums

containing N ≥ 2 inputs implemented with N-input multiplexers,

where the weights 𝐴1, 𝐴2, … , 𝐴𝑁 sum up to 1.

Binary to
Stochastic
Converter

Binary
Input

Samples

Simpler
Digital Gate

Network

Stochastic
to Binary
Converter

Binary
Output

Samples

Fig. 1. A basic stochastic computing system.

B. Encoding Numbers as Unipolar and Bipolar Stochastic

Sequences

Stochastic number generators (SNGs) are typically based on

pseudo-random bit generators such as linear feedback shift

registers (LFSRs). For example, to generate the stochastic

sequence for a 4-bit unsigned binary number, the SNG in Fig.

2(a) is implemented with a 4-bit LFSR [2]. The SNG in Fig. 2(a)

converts a 4-bit unsigned binary number x to a stochastic

number (sequence) of length 16. The all-zero state must be

inserted into the maximum-length (15-state) nonzero state

sequence by adding extra combinational logic to a traditional 4-

bit LFSR (see Fig. 3) [2]. The SNG takes advantage of weight

generation. The bit streams named W3, W2, W1 and W0

represent the weights 1/2, 1/4, 1/8 and 1/16, respectively. The

 3

binary number x is converted bit-by-bit with different weights

assigned to them. Therefore, we have

𝑃(𝑆) =
1

2
∙ 𝑥[3] +

1

4
∙ 𝑥[2] +

1

8
∙ 𝑥[1] +

1

16
∙ 𝑥[0] =

(8∙𝑥[3]+ 4∙𝑥[2]+ 2∙𝑥[1]+ 1∙𝑥[0])

16
= 𝑥/16,

(13)

where S is the output sequence of the SNG and P(S) is the

probability that S represents. Thus S is the stochastic

representation of the binary number x.

ANDAND

ANDAND

ANDAND
ANDAND

ANDAND

ANDAND

ANDAND

Unsigned Binary
Number X

Unsigned Binary
Number X

x[3]x[3] x[2]x[2] x[1]x[1] x[0]x[0]

L3L3

L2L2

L1L1

L0L0

Stochastic
Sequence

S(x)

Stochastic
Sequence

S(x)

W3W3

W2W2

W1W1

W0W0

OR

4-
b

it
 L

FS
R

 in
cl

u
d

in
g

al
l-

ze
ro

 s
ta

te

4-
b

it
 L

FS
R

 in
cl

u
d

in
g

al
l-

ze
ro

 s
ta

te

(a)

ANDAND

ANDAND

ANDAND
ANDAND

ANDAND

ANDAND

Signed Binary
Number X

Signed Binary
Number X

SignSign x[2]x[2] x[1]x[1] x[0]x[0]

L3L3

L2L2

L1L1

L0L0

Stochastic
Sequence

S(x)

Stochastic
Sequence

S(x)

W3W3

W2W2

W1W1

W0W0

OR

NOR

4-
b

it
 L

FS
R

 in
cl

u
d

in
g

al
l-

ze
ro

 s
ta

te

4-
b

it
 L

FS
R

 in
cl

u
d

in
g

al
l-

ze
ro

 s
ta

te

(b)
Fig. 2. (a) Unipolar stochastic number generator [2] and (b) Bipolar

stochastic number generator.

L0L0 L1L1 L2L2 L3L3

OR

MUX

XOR

1 0

Fig. 3. A 4-bit LFSR with the all-zero state.

For signed numbers, we use bipolar stochastic

representations [1]. An Ns-bit stochastic sequence with N1 1’s

encodes the probability of (2×N1 – Ns)/Ns. To design an SNG

for signed numbers, let us consider the mappings of a signed

binary number to its stochastic representation. For example, for

each 4-bit signed binary number in two’s complement, Table 1

shows the relationship with the probability that every single bit

in the stochastic sequence is ‘1’ and the probability that is

encoded in the bipolar stochastic representation, assuming that

the sequence length is 16 bits. This relationship reveals that the

stochastic conversion of a signed binary number can be

implemented by the SNG for unsigned numbers by simply

inverting the sign bit and treating the remaining bits in the

signed binary number as for an unsigned number. This SNG

design is shown in Fig. 2(b). To invert the signal of the sign bit

in the 4-bit signed number, a NOR gate is used to replace the

AND gate connected to the sign bit. Also, some inverters are

combined into one at the output of L3.

Table 1. The mapping scheme for unsigned binary numbers and their

corresponding stochastic representations.

Decimal

Signed Binary

Number in 2’s

complement

Probability of

any bit being

‘1’ in the 16-

bit sequence

Probability in bipolar

representation:

(𝟐 × 𝑁1 − 𝑁𝑠)/𝑁𝑠

7 0111 15/16 (2×15−16)/16 = 7/8

6 0110 14/16 (2×14−16)/16 = 6/8

5 0101 13/16 (2×13−16)/16 = 5/8

4 0100 12/16 (2×12−16)/16 = 4/8

3 0011 11/16 (2×11−16)/16 = 3/8

2 0010 10/16 (2×10−16)/16 = 2/8

1 0001 9/16 (2×9−16)/16 = 1/8

0 0000 8/16 (2×8−16)/16 = 0/8

−1 1111 7/16 (2×7−16)/16 = −1/8

−2 1110 6/16 (2×6−16)/16 = −2/8

−3 1101 5/16 (2×5−16)/16 = −3/8

−4 1100 4/16 (2×4−16)/16 = −4/8

−5 1011 3/16 (2×3−16)/16 = −5/8

−6 1010 2/16 (2×2−16)/16 = −6/8

−7 1001 1/16 (2×1−16)/16 = −7/8

−8 1000 0/16 (2×0−16)/16 = −8/8

C. FIR Filters

An Nf –tap FIR filter implements a sum of products over a

sliding window of the Nf most recent input samples, as specified

in (6). The coefficients H[i] (i = 0, 1, …, 𝑁𝑓 − 1) give the finite

impulse response of the filter.

𝑌[𝑛] = ∑ 𝐻[𝑖] 𝑋[𝑛 − 𝑖]
𝑁𝑓−1

𝑖=0
 (6)

The hardware implementation of an FIR filter consists of adders

and multipliers as well as delay units, which are typically

implemented as D flip flops (DFFs) (Fig. 4). To meet the

minimum resolution requirement in a stochastic design, the

stochastic sequence must be of length ≥ 𝑃𝑀𝑀 ∙ 2𝑁𝑏, where Nb

is the binary bit resolution and 𝑃𝑀𝑀 ≥ 1 . However, this

requires huge storage and almost certainly excessive latency [7].

One solution to the relatively long latency and large storage

cost is to move the binary input signal samples through the

DFFs before they are expanded into stochastic bit streams (Fig.

5). At every stochastic clock cycle there will be one stochastic

bit generated by each of the SNGs. These stochastic bits and the

stochastic coefficients are then processed serially to form the

final output. In Fig. 5, S(X[n-i]) and S(H[i]) are the stochastic

bit streams encoding the values of X[n-i] and H[i], respectively,

where i = 0, 1, 2, 3. An Ns-bit stochastic sequence S(Y[n]) is

produced as the filter output over Ns stochastic clock cycles.

Note that the sample clock cycle contains Ns stochastic clock

cycles to allow one stochastic operation. The design in Fig. 5

requires four expensive SNG modules (based on four Nb-bit

LFSRs) but only three Nb-bit registers. Therefore, it has

relatively low cost and thus is chosen for further investigation.

× × × ×

+ + +D
1

D
2

D
3

CLOCK

X[n] H[3] H[2] H[1] H[0]

Y[n]

Fig. 4. A 4-tap FIR filter design (i.e., Nf = 4 in (6)).

 4

D
1

D
2

D
3

Sample_ClockX[n]

SNG SNG SNG SNG

X[n-1] X[n-2] X[n-3]

Multi-bit Signals

Stochastic Bit Streams

Sample_Clock

Stochastic_Clock

Sto
ch

a
stic_

C
lo

ck

× × × ×

S(H[0]) S(H[1]) S(H[2]) S(H[3])

+

S(X
[n

])

S(X
[n

-1
])

S(X
[n

-2
])

S(X
[n

-3
])

S(Y[n])

Fig. 5. A 4-tap Stochastic FIR filter design (i.e., Nf = 4 in (6)) [7].

III. PROPOSED STOCHASTIC FIR FILTERS

A. Conventional Weighted Average (CWA) Design

The conventional weighted average (CWA) design was built

using conventional stochastic arithmetic elements as a basis for

comparison with two novel stochastic designs introduced later.

At the core of an Nf -tap FIR filter is an Nf -input weighted

average function. For a 16-tap FIR filter, this function is

implemented using stochastic logic, see Fig. 6. The multiplexer

(MUX) is used as a simple adder. The XNOR gates implement

bipolar multiplications provided that the two input sequences,

i.e., the input sequence and the corresponding coefficient

sequence, are statistically independent [2]. Two Ns-bit bipolar

stochastic sequences S1 and S2 are said to be independent if

𝑃(𝑆1 ⊕ 𝑆2 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅) = 𝑃(𝑆1) ∙ 𝑃(𝑆2) (7)

where P(S1) and P(S2) denote the probabilities encoded by S1

and S2, respectively. 𝑆1 ⊕ 𝑆2 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ denotes the sequence produced

by an XNOR gate with S1 and S2 as input sequences. Note that

the selecting signals are unipolar sequences encoding the

probability of 0.5. In Fig. 6, all the numbers to data inputs are

converted by using bipolar SNGs (denoted by SNGb) and all the

numbers to selecting inputs are converted using unipolar SNGs

(denoted by SNGu).

16-input
 MUX

S(X[n])

Sel[0]

XNOR

S(H[0])
0

1

15

S(Y)
Counter

SNGb
X[n]

H[0]

S(X[n-1])
XNOR

S(H[1])

SNG
SNG

X[n-1]

H[1]

S(X[n-15])
XNOR

S(H[15])

SNG
SNG

X[n-15]

H[15]

Y

0.5 SNGu

SNGu

SNGu

SNGu

Sel[1]
Sel[2]

Sel[3]

0.5
0.5
0.5

D1

D15

S(X[n-2])
XNOR

S(H[2])
2

SNG
SNG

X[n-2]

H[2]

D2

Input
Sample

Sample
Clock

SNGb

SNGb

SNGb

SNGb

SNGb

SNGb

SNGb

Fig. 6. The 16-tap stochastic FIR filter using the conventional stochastic

design.

B. Hard-wired Weighted Average (HWA) Design

In the CWA design, the SNGs cannot be shared, due to the

requirement of signal independency. In the hard-wired

weighted average (HWA) design, however, the absolute values

of the coefficients can be implemented by assigning unbiased

stochastic sequences to the selecting inputs of the multiplexer.

In an unbiased stochastic sequence, the probabilities of each bit

being ‘1’ and ‘0’ are the same, i.e., 0.5. The probability is then

the same for selecting each of the inputs. However, a particular

data input can be given more weight in the multiplexer output

by connecting the input to multiple multiplexer inputs. Note

that the signs of the coefficients can be implemented by XOR

gates at the data inputs of the multiplexer. XOR gates invert the

corresponding input when the coefficient is negative. When the

coefficients are positive, the XOR gates become buffers.

In Fig. 7, for example, Wires 8 to 15 are associated with the

same input S(X[n-4]), where S(X[n-4]) is the stochastic bit

stream encoding the value of X[n-4]. Thus the probability of

selecting the input S(X[n-4]) is 8/16 or 1/2, which means the

coefficient of X[n-4] is either 1/2 or -1/2. Similarly, all the other

coefficients can be weighted by repeating inputs appropriately.

The weighted average function in (8) requires a multiplexer

with four selecting inputs. It can be implemented by a 16-input

multiplexer with combined data inputs as in Fig. 7.

𝑌 = 𝑠𝑖𝑔𝑛(𝐴[0]) ∙
1

16
 ∙ 𝑋[n] + 𝑠𝑖𝑔𝑛(𝐴[1]) ∙

1

16
 ∙ 𝑋[n − 1] +

𝑠𝑖𝑔𝑛(𝐴[2]) ∙
1

8
 ∙ 𝑋[n − 2] + 𝑠𝑖𝑔𝑛(𝐴[1]) ∙

1

4
 ∙ 𝑋[n − 3] +

𝑠𝑖𝑔𝑛(𝐴[0]) ∙
1

2
 ∙ 𝑋[n − 4].

(8)

The HWA design potentially improves upon the CWA design

in that the SNGs for the weights can be removed.

In general, to implement the Nf -tap FIR filter in (6) using an

Nb-bit resolution, the major steps are as follows:

 1) Convert the floating point coefficients H[i] in (6) to fixed

point Nb-bit binary numbers A[n−i], where i = 0, 1, …, 𝑁𝑓 − 1.

2) Calculate the sum of all the absolute values of the

coefficients 𝐴 = ∑ |𝐴[n − 𝑖]|
𝑁𝑓−1

𝑖=0
 where A[n− i] is an Nb-bit

binary number, for i = 0, 1, …, 𝑁𝑓 − 1.

3) The multiplexer has 2𝑁𝑚 data inputs and Nm selecting

inputs, where Nm is determined by 𝑁𝑚 = ⌈𝑙𝑜𝑔2 𝐴⌉ and ⌈∙⌉ is the

ceiling function. Each selecting input is an unbiased stochastic

sequence encoding the probability of 0.5.

4) The number of inputs to be combined is given by |𝐴[𝑖]|
for input X[n−i] (i = 0, 1, ..., 𝑁𝑓 − 1). The sign of the coefficient

A[i] (i = 0, 1, ..., 𝑁𝑓 − 1) is one of the inputs of the

corresponding XOR gate.

 5) Use a synthesis tool to optimize the design.

 5

16-input
MUX

S(X[n])

S(X[n-1])

S(X[n-2])

S(X[n-3])

Wire 0

Wire 1

Wire 2

Wire 3

Wire 4

Wire 5

Wire 6

Wire 7
S(X[n-4])

Wire 8

Wire 9

Wire 15

X[n]

SNGb
X[n-1]

SNGb
X[n-4]

D1

D4

SNGb
X[n-2]D2

Input
Sample

Sample
Clock

S(Y) Counter Y

Sel[0]0.5 SNGu

SNGu

SNGu

SNGu

Sel[1]
Sel[2]

Sel[3]

0.5
0.5
0.5

SNGb

D3
X[n-3]

XOR

XOR

XOR

Sign(A[4])

Sign(A[3])

Sign(A[2])

XOR

Sign(A[1])

XORSNGb

Sign(A[0])

Fig. 7. The hard-wired weighted average design of a 5-tap FIR filter.

C. Multi-level Weighted Average (MWA) Design

In general, the function of a weighted adder is given by

Y = α ∑ A[i] X[n − i]
𝑁𝑓−1

𝑖=0
, (9)

where α = 1/ ∑ A[i]
𝑁𝑓−1

𝑖=0
. To implement a stochastic weighted

average using multiplexers, the weights are generated from the

absolute values of the coefficients A[i] (i = 0, 1, …, 𝑁𝑓).

Therefore, (9) can be changed to

Y = α ∑ |A[i]| ∙ sign(A[i]) X[n − i]
𝑁𝑓−1

𝑖=0
, (10)

where α = 1/ ∑ |A[i]|
𝑁𝑓−1

𝑖=0
. To implement the weighted adder

for an Nf -tap FIR filter, ⌈log2 𝑁𝑓⌉ selection signals are required.

As an example, consider the design of a 4-tap FIR filter. In this

case, A[0], A[1], A[2] and A[3] are the conventional binary

coefficients determined by the filter specification. The sign of a

coefficient is implemented using an XOR gate at the data input

of the weighted adder. If the coefficient is positive, the XOR

gate becomes transparent without changing the input value. If

the coefficient is negative, the XOR gate acts like an inverter to

invert the corresponding input value. The two selection signals

are determined by the weights or filter coefficients, and they are

used to select one of the four multiplexer inputs (see Fig. 8 (b)).

The probability that each combination appears (e.g. Sel[0] = 0,

Sel [1] = 1) is the normalized coefficient for that input

(e.g.|A[1]| ∙ α). The stochastic representation of a number must

lie within the interval of [0, 1], so the coefficients are already

normalized by the factor α in (9) and (10). The relationship

between the specified coefficients and the probabilities of

selecting the corresponding inputs (see Fig. 8) is given by
P{Sel[0] = 0} = (|A[0]| + |A[1]|) ∙ α,

(11)

P{Sel[0] = 1} = 1 − (|A[0]| + |A[1]|) ∙ α,

(12)
P{Sel[1] = 0 | Sel[0] = 0} = |A[0]|/(|A[0]| + |A[1]|),

(13)
P{Sel[1] = 1 | Sel[0] = 0} = |A[1]|/(|A[0]| + |A[1]|),

(14)
P{Sel[1] = 0 | Sel[0] = 1} = |A[2]|/(|A[2]| + |A[3]|),

(15)
P{Sel[1] = 1 | Sel[0] = 1} = |A[3]|/(|A[2]| + |A[3]|).

(16)

Here, P{Sel[X] = Y} denotes the probability that the select

signal Sel[X] (X = 0 or 1) is Y (Y = 0 or 1). P{ Sel[X1] = Y1 |

Sel[X2] = Y2 } denotes the probability of the select signal bit

Sel[X1] (X1 = 0 or 1) being Y1 (Y1 = 0 or 1) under the condition

that the select signal bit Sel[X2] (X2 = 0 or 1) is Y2 (Y2 = 0 or

1). Stochastic sequences can then be generated to represent the

corresponding select signals. Equations (11) through (16) can

be implemented using the Weight Generator (WG) in Fig. 8 (a).

Then the weighted addition can be realized using the Weighted

Adder (WA) in Fig. 8 (b) with the selecting signals provided by

instances of the WG in Fig. 8 (a).

MUX
(WG)S(P{Sel[1] = 1 | Sel[0] = 1})

Sel[1]

Sel[0]

S(P{Sel[1] = 1 | Sel[0] = 0})

MUX
(WA)

S(X[0])

S(X[1])

S(X[2])

S(X[3])

Y

Sel[1]

Sel[0]

(a) (b)
Fig. 8. A 4-term sum of products implemented using (a) a stochastic Weight

Generator (WG) and (b) a stochastic Weighted Adder (WA).

The overall schematic of a 16-tap FIR filter using the

proposed weighted average structure is shown in Fig. 9. Three

multiplexers (WG1, WG2 and WG3) are needed as weight

generators for the four selecting signals. For the selecting

signals, Sel[0] comes directly from a SNG that encodes its

corresponding binary value. The signal Sel[0] is a stochastic

sequence encoding P{Sel[0] = 1} as shown in Equation (12).

Sel[1] is the output of the 2:1 MUX whose selecting signal is

Sel[0]. Signals Sel[2] and Sel[3] are generated similarly.

Therefore we have four different sizes of multiplexers in the

core of the stochastic FIR filter design. The 16:1 MUX (WA)

implements the sum of products as a weighted average while

the other three multiplexers implement weight generators. Note

that the bipolar SNGs are used at the data inputs of the weighted

adder, and unipolar SNGs are used elsewhere.

WG1
(2-input

MUX)P{Sel[1] = 1 | Sel[0] = 1}

Sel[1]

P{Sel[1] = 1 | Sel[0] = 0}

Sel[2]

Sel[3]

WG2
(4-input

MUX)
P{Sel[2] = 1 | Sel[1] = 1,Sel[0] = 1}

WG3
(8-input

MUX)

P{Sel[3] = 1 | Sel[2] = 1,Sel[1] = 1,Sel[0] = 1}

P{Sel[3] = 1 | Sel[2] = 0,Sel[1] = 0,Sel[0] = 0}

Sel[0]

P{Sel[2] = 1 | Sel[1] = 1,Sel[0] = 0}

P{Sel[2] = 1 | Sel[1] = 0,Sel[0] = 1}

P{Sel[2] = 1 | Sel[1] = 0,Sel[0] = 0}

P{Sel[3] = 1 | Sel[2] = 1,Sel[1] = 1,Sel[0] = 0}

WA
(16-input

 MUX)

S(X[15])

S(Y)
Counter

Y

X[n-15]
D15

SNGb

SNGu

SNGu

SNGu

SNGu

SNGu

SNGu

SNGu

SNGu

SNGu

SNGu

P{Sel[0] = 1}

XORSign(A[n-15])

S(X[2])

X[n-2]
D2

SNGb
XORSign(A[n-2])

S(X[1])

X[n-1]
D1

SNGb
XORSign(A[n-1])

S(X[0])

X[n]
SNGb

XORSign(A[n])
Input Sample

Sample Clock

Fig. 9. The 16-tap FIR filter implemented with the multi-level weighted average

(MWA) design.

 6

IV. PERFORMANCE EVALUATION OF THE CONVENTIONAL

BINARY AND THE PROPOSED STOCHASTIC FIR FILTERS

A low-pass FIR filter design was considered to evaluate the

proposed stochastic and binary filter designs. Detailed

specifications of the low-pass filter are given in Table 2.

Table 2. Low-pass FIR filter specifications

Specifications Values

Cut-off frequency fc 100 Hz

The width of the transition band BW 30 Hz

Minimum stop-band attenuation -50 dB

Maximum peak-to-peak pass-band ripple 0.1 dB

The filter was designed using a Hamming window, with the

embedded Matlab function fir1(). The number of taps is 267,

i.e., Nf = 267. The filter coefficients are obtained to meet the

specifications in Table 2. The binary filter operates by

converting the floating point numbers to fixed point numbers at

different resolutions. The stochastic filters are built using the

hard-wired weighted average (HWA) design and the multi-level

weighted average (MWA) design. The sequence length Ns is

given by 𝑁𝑆 = 2𝑁𝐿𝐹𝑆𝑅, where 𝑁𝐿𝐹𝑆𝑅 is the number of bits in an

LFSR. Various sequence lengths were investigated for different

resolutions to compare with the conventional binary design. In

this experiment, 𝑁𝐿𝐹𝑆𝑅 was varied from 3 up to 30 (i.e, 𝑁𝐿𝐹𝑆𝑅 =

3, 4, …, 30) to determine the sequence length. The resolution

Nb ranges from 3 bits to 16 bits. The magnitude responses of the

filters were then investigated. Passband ripples (PRs) and

stopband attenuations (SAs) are used to evaluate the

performance of the binary design for various resolutions and the

stochastic designs for different sequence lengths. Here PR and

SA are defined as the maximum passband overshoot

amplification and the minimum stopband attenuation,

respectively. In this experiment, the passband, transition band

and stopband are given as [0, 100 Hz], (100 Hz, 120 Hz] and

(120 Hz, +∞), respectively. The results are shown in Table 3.

In Table 3, the PRs and SAs are shown for different bit

resolutions and sequence lengths for the MWA-based stochastic

filter and the HWA-based stochastic filter. The stochastic FIR

filters suffer from both quantization error and random

fluctuations, but they show gradually-improving performance

as the sequence length increases. For each bit resolution, the

minimum sequence length 𝑁𝑠 was found that matches the

performance of the stochastic FIR filters to that of the

conventional Nb-bit binary FIR filter. The performance

matching multiplier (PMM) is then calculated by 𝑃𝑀𝑀 =
𝑁𝑠/2𝑁𝑏. For example, for the 8-bit binary FIR filter, the HWA-

based stochastic FIR filter using sequences with at least 8192

bits has smaller or similar passband ripples and stopband

attenuations. The performance matching multiplier is

thus 𝑃𝑀𝑀 = 8192/28 = 32. Therefore, the HWA-based

stochastic implementation using 8192-bit sequences is

considered as the best case to compare with the 8-bit binary

conventional implementation. The same strategy was applied to

determine the proper sequence lengths for various resolutions

for the MWA-based stochastic filter.

Table 4. Root mean square error (RMSE) comparison of the FIR filters using

the conventional binary (CB) approach, the stochastic MWA approach and the

stochastic HWA approach.

Resolution
(bits)

RMSE (%) Stochastic

Sequence

Length (bits)
CB MWA HWA

3 6.533 6.219 6.028 64

4 3.158 3.030 3.216 256

5 1.626 1.598 1.582 512

6 0.795 0.772 0.811 1,024

7 0.392 0.381 0.377 2,048

8 0.192 0.184 0.177 8,192

9 0.092 0.102 0.093 16,384

10 0.051 0.051 0.049 65,536

11 0.025 0.027 0.023 524,288

12 0.012 0.014 0.012 1,048,576

13 0.006 0.005 0.006 4,194,304

14 0.006 0.006 0.005 16,777,216

15 0.005 0.004 0.006 134,217,728

16 0.005 0.005 0.006 536,870,912

Table 3. Performance of the FIR filters using the conventional binary approach, the stochastic MWA approach and the stochastic HWA approach. 𝑁𝑏:
bit resolution, PR: passband ripple and SA: stopband attenuation.

Resolution
(Bits)

Conventional Binary
Implementation

Stochastic MWA Implementation Stochastic HWA Implementation

PR (dB) SA (dB) 𝑁𝑠 (bits) PR (dB) SA (dB) PMM 𝑁𝑠 (bits) PR (dB) SA (dB) PMM

3 3.0776 -3.9121 64 2.5327 -7.0345 8 64 2.5826 -7.1452 8

4 4.7882 -9.9327 256 1.3941 -11.3365 16 256 1.4147 -11.4942 16

5 2.8602 -13.1133 512 1.3016 -14.5083 16 512 1.3247 -14.7042 16

6 1.4623 -17.7985 1,024 0.7843 -17.6721 16 1,024 0.8017 -17.9031 16

7 0.7215 -24.0151 2,048 0.5391 -20.3922 16 2,048 0.5522 -20.6530 16

8 0.3913 -27.6340 8,192 0.2017 -27.2137 32 8,192 0.2098 -27.5353 32

9 0.1795 -31.1319 16,384 0.2835 -31.6085 32 16,384 0.2826 -31.9565 32

10 0.1026 -36.3678 65,536 0.0733 -35.6365 64 65,536 0.0715 -36.0254 64

11 0.0517 -45.5820 524,288 0.0488 -44.1428 256 524,288 0.0507 -44.6030 256

12 0.0324 -49.9427 1,048,576 0.0419 -47.8491 256 1,048,576 0.0373 -48.3225 256

13 0.0392 -51.4476 4,194,304 0.0342 -51.0634 512 4,194,304 0.0348 -51.5738 512

14 0.0350 -54.5942 16,777,216 0.0370 -54.9710 1,024 16,777,216 0.0369 -55.5106 1,024

15 0.0360 -55.9094 134,217,728 0.0327 -54.3603 4,096 134,217,728 0.0351 -54.8941 4,096

16 0.0364 -54.9557 536,870,912 0.0404 -54.7923 8,192 536,870,912 0.0364 -55.3241 8,192

 7

To further show the performance of the proposed designs,

results on the root mean square error (RMSE) are provided in

addition to PR and SA (see Table 4). The RMSE is given by

𝑁𝑀𝑆𝐸 = √
1

𝑁𝑡𝑟𝑖𝑎𝑙
∑ (𝑌𝑖 − 𝑌𝑖

′)2𝑁𝑡𝑟𝑖𝑎𝑙−1

𝑖=0 , (17)

where 𝑌𝑖 and 𝑌𝑖
′ are the expected correct output and the actual

output of the FIR filter, respectively, and 𝑁𝑡𝑟𝑖𝑎𝑙 is the number

of trials or simulations. RMSE indicates the improvement in

accuracy from using higher resolutions and longer sequences.

The minimum resolution to achieve the filter specifications

in Table 2 is 13 bits for the binary design. The attenuation in the

stopband is -51.4476 dB and the passband ripple is 0.0392 dB.

The magnitude responses of the stochastic and binary filters are

plotted in Fig. 10 for 13-bit resolution. The HWA-based

stochastic design with the minimum sequence length suffers

from a maximum passband ripple of 0.2098 dB, as shown in

Fig. 10 (b). The stopband attenuation for the HWA-based FIR

filter is only -30.5392 dB (Fig. 10 (b)). To match the

performance of the binary filter, the PMM has to be increased

to 512 (Fig. 10 (c)). The PR and SA are 0.0348 dB and -51.5738

dB, respectively, for the HWA-based stochastic filter in this

case. We can draw the same conclusion for the MWA-based

FIR filter in Table 3.

These results are consistent with the theory in [11] that a

rather long stochastic bit stream is required to achieve the same

root mean square error (RMSE). The necessary stochastic bit

stream length is found to be L=22n+1 (n is the binary bit

resolution) due to the intrinsic fluctuation errors and the signal

to noise ratio (SNR) decrease caused by multiple stages [11].

Such a long stochastic sequence means a relatively large

computing time. Note that using variance reduction techniques

such as non-Bernoulli sequences can increase accuracy and thus

decrease PMM [12]. However, this comes at the price of

requiring more hardware. For instance, non-Bernoulli sequence

generation requires a process where a certain number of 1’s and

0’s are generated and then scrambled by a pseudo-random

number generator to achieve randomness. The area required by

the stochastic number generators is often more problematic

compared to the hardware required by the core

(a)

(b)

(c)

Fig. 10. Magnitude responses of 13-bit FIR filters: (a) Conventional binary

design, (b) Stochastic HWA design without and with performance matching
(PMM = 512) , (c) Stochastic MWA design without and with performance

matching (PMM = 512).

Table 5. Comparison of hardware cost, power consumption and minimum clock period for conventional binary (CB), CWA-based, MWA-based and

HWA-based stochastic FIR filters including all the auxiliary circuits such as SNGs and counters.

Resolution
(Bits)

Area (𝛍𝐦𝟐) Power (mW) Min Clock Period (ps)

CB CWA MWA HWA CB CWA MWA HWA CB CWA MWA HWA

3 12,757 14,944 12,972 12,855 24.24 20.35 19.89 19.82 390 370 310 340

4 21,262 17,415 15,815 15,525 35.50 29.79 29.35 29.05 410 370 310 350

5 31,893 21,023 18,948 18,752 47.86 40.17 38.21 38.02 420 400 320 360

6 44,650 26,841 22,331 21,998 61.22 51.39 47.56 47.96 440 400 320 360

7 59,533 27,989 24,801 24,710 75.49 63.36 59.31 59.06 470 410 340 390

8 76,543 27,690 27,782 27,410 90.59 76.04 71.68 71.55 490 410 360 400

9 95,679 33,545 30,796 29,986 106.49 89.38 84.82 84.66 490 420 380 410

10 116,943 36,248 33,655 33,122 123.12 103.3 98.05 97.23 500 430 380 410

11 140,330 38,343 36,690 36,510 140.45 117.9 109.2 109.0 510 470 390 420

12 165,843 44,999 43,761 43,536 138.45 133.1 127.5 125.2 540 470 400 440

13 193,482 46,574 45,921 44,910 158.45 148.7 141.5 140.7 550 470 400 440

14 223,269 50,162 48,774 48,067 177.10 164.8 159.8 159.2 570 490 410 450

15 255,141 53,746 51,991 50,829 196.36 181.5 176.1 174.8 590 490 420 460

16 289,160 57,322 55,039 54,898 226.64 198.6 192.8 189.6 640 500 440 460

 8

circuit in stochastic computing. Therefore, any variation

reduction technique should be carefully evaluated to determine

if the advantage would justify the increased overhead.

Note that a shorter sequence length can be used for the HWA-

based stochastic filter to obtain a degraded but possibly still

acceptable performance. For example, if the PMM is 32 instead

of 512, the SA becomes -42.3512 dB and the PR is 0.0593 dB

(see Fig. 11 (b)). However, the time and energy per computed

output is reduced to only 1/16 of the previous result. Similarly,

the MWA-based stochastic FIR filter also benefits from the

property of graceful degradation in performance (see Fig. 11

(c)). In contrast, an 11-bit conventional binary implementation

of the filter shows similarly degraded performances with an SA

of -45.5820 dB and a PR of 0.0517 dB (see Fig. 11 (a)),

however with very little saving in energy consumption. This is

discussed in more detail next.

V. SIMULATION RESULTS

For hardware performance comparison, the Synopsys Design

Compiler was used to synthesize a high-level design in VHDL

into a standard cell ASIC design. Metrics such as silicon area,

power consumption and delay were obtained.

The FIR filters specified in Table 2 were simulated for

various resolutions from 3 bits to 16 bits. In Table 5, the circuit

performance is compared with respect to silicon area, power

consumption and delay. Although the core of the stochastic

circuit is implemented using XNOR gates and multiplexers as

adders and multipliers, the interfacing circuits require a

relatively large number of SNGs and counters, especially for

FIR filters with a large number of taps. The hardware cost of

binary circuits grows faster than that of the stochastic circuits,

so for a larger resolution, the stochastic circuits become

increasingly advantageous over a binary design. The auxiliary

circuits such as the SNGs and counters, however, make this

advantage of stochastic circuits less significant. Although

stochastic logic gates such as multiplexers and XNOR gates are

inexpensive, the auxiliary circuits used for conversions can be

costly in terms of silicon area and power. In fact, in a 12-bit

HWA-based stochastic FIR filter, we found that 80.3% of the

silicon area comes from the stochastic number generators and

counters.

(a)

(b)

(c)

Table 6. Comparison of hardware cost, power consumption and minimum clock period for conventional binary (CB), CWA-based, MWA-based and

HWA-based stochastic FIR filters without any auxiliary circuits such as SNGs and counters.

Resolution
(Bits)

Area (𝛍𝐦𝟐) Power (mW) Min Clock Period (ps)

CB CWA MWA HWA CB CWA MWA HWA CB CWA MWA HWA

3 12,757 8,719 8,747 2,565 24.24 15.7 15.5 4.0 390 220 210 170

4 21,262 8,719 8,747 3,096 35.5 15.7 15.5 5.8 410 220 210 180

5 31,893 8,719 8,747 3,749 47.86 15.7 15.5 6.6 420 220 210 180

6 44,650 8,719 8,747 4,399 61.22 15.7 15.5 7.5 440 220 210 180

7 59,533 8,719 8,747 4,931 75.49 15.7 15.5 9.8 470 220 210 200

8 76,543 8,719 8,747 5,461 90.59 15.7 15.5 11.3 490 220 210 200

9 95,679 8,719 8,747 5,980 106.49 15.7 15.5 12.9 490 220 210 210

10 116,943 8,719 8,747 6,620 123.12 15.7 15.5 14.4 500 220 210 210

11 140,330 8,719 8,747 7,287 140.45 15.7 15.5 15.7 510 220 210 210

12 165,843 8,719 8,747 8,669 138.45 15.7 15.5 17.0 540 220 210 220

13 193,482 8,719 8,747 8,947 158.45 15.7 15.5 18.1 550 220 210 220

14 223,269 8,719 8,747 9,602 177.1 15.7 15.5 19.8 570 220 210 230

15 255,141 8,719 8,747 10,155 196.36 15.7 15.5 20.8 590 220 210 230

16 289,160 8,719 8,747 10,964 226.64 15.7 15.5 21.3 640 220 210 230

 9

Fig. 11. Magnitude responses of lower-quality FIR filters: (a) 11-bit

conventional binary design, (b) 13-bit stochastic HWA design with PMM = 32,
(c) 13-bit stochastic MWA design with PMM = 32.

Note that both the binary and stochastic circuits have been

optimized for maximum throughput by adding pipeline

registers as determined by the Synopsys synthesis tool. The area

could be over-estimated for this reason. As shown in Table 3,

the sequence length explains the long latency required in the

operation of a stochastic circuit. Adopting a faster clock is a

potential way to reduce latency. With the help of timing

analysis, the clock can be pushed to the limit according to the

slack time. The results are shown in Table 5. The required

stochastic sequence length is given by 2𝑁𝑏 ∙ 𝑃𝑀𝑀, where Nb

(Nb = 3, 4, …, 16) is the binary resolution and PMM is the

performance matching multiplier. The reported power

consumptions are estimated at the fastest clocks for each of the

resolutions.

Techniques have been proposed that avoid the auxiliary

circuits such as SNGs. For example, the authors in [9] proposed

to generate random bits from analog signals using sigma-delta

modulation. We therefore decided to present the circuit

performance when auxiliary circuits are excluded. Only the

core of the stochastic circuits is considered without the auxiliary

circuits such as SNGs and counters. Area, power and minimum

clock period results are reported in Table 6. The core of the

CWA-based and MWA-based circuits for the 267-tap FIR filter

does not change for various bit resolutions. The HWA-based

implementation becomes more complex as the bit resolution

increases. This is because the HWA-based structure depends on

the coefficients of the filter. In Table 6, it can be seen that the

stochastic circuits use less hardware area and consume less

power compared to the conventional binary implementation as

expected. The advantage of stochastic circuits becomes more

significant as the bit resolution increases.

It can be seen that the stochastic circuits are more compact

and they consume less energy per clock cycle than conventional

implementations. However, they suffer from the long latency

caused by the required stochastic sequences, which makes the

total energy per operation (EPO) less competitive. EPO is

obtained as the product of power and the time required for

performing one operation. Throughput per area (TPA) is further

considered as the number of operations per circuit area in a unit

time. When computing the TPA and the EPO, the stochastic

FIR filter must work as effectively as the binary conventional

FIR filter. The effectiveness is measured using the performance

metrics passband ripple (PR) and stopband attenuation (SA) in

Table 3, so the sequence lengths in Table 3 must be used, which

makes the results even less competitive at high resolutions. In

fact, the stochastic approach is no longer competitive in terms

of TPA and EPO when long sequences have to be used in a

stochastic implementation.

When the auxiliary circuits, such as stochastic number

generators and counters, are shared in a large circuit, their cost

may be acceptably small compared to the core stochastic circuit.

As the two proposed stochastic designs have similar

performance, we use the stochastic HWA-based circuit to

compare with the conventional binary circuit. Figs. 12 and 13

show plots of EPO and TPA, respectively, for the binary and

stochastic HWA-based circuits (with and without the auxiliary

circuits). For stochastic implementations, the sequence length

is the factor that dominates the overall circuit performance in

terms of TPA and EPO. As the required sequence lengths are

the same for both the HWA-based and MWA-based

implementations, the circuit performances of the two designs

are also similar. Therefore we only show the TPA and EPO for

the stochastic HWA-based circuit. The y-axes in both plots are

the base-10 logarithms of the original metrics. The x-axes are

the bit resolutions from 3 bits to 16 bits. The two figures show

that the stochastic approach is not competitive in terms of the

EPO and TPA. The higher the resolution, the less competitive

the stochastic implementation becomes. This is caused by the

required sequence length, which grows exponentially with the

bit resolution. When the auxiliary circuits are not considered,

the stochastic circuit shows a better performance. In particular,

it performs better in terms of the TPA than the binary design for

resolutions below 5 bits.

Fig. 12. Energy per Operation comparison: Stochastic HWA Design

(with/without auxiliary circuits) and the Binary Design.

Fig. 13. Throughput per Area comparison: Stochastic HWA Design

(with/without auxiliary circuits) and the Binary Design.

Although the stochastic designs suffer from long latencies,

their performance degrades gracefully as the energy is reduced.

Take the 13-bit designs as an example. As shown in Table 7, a

lower-quality HWA-based stochastic filter is implemented

using 262,144 bits (compared to 4,194,304 bits required by an

HWA-based filter that matches the performance of a 13-bit

conventional binary filter). An 11-bit conventional binary filter

shows similarly degraded performance. The stopband

attenuation of both the lower-quality filters is 6 dB higher than

that of the good-quality filters. As the HWA-based stochastic

filter only requires 1/16 of the original sequence length, the

EPO is just 6.25% of that for the good-quality HWA-based

filter. Similarly, the EPO of the lower quality MWA-based

stochastic filter is only 6.32% of that for the good-quality

 10

MWA-based filter. However, the 11-bit binary filter consumes

82.19 % of the energy per operation compared to the 13-bit

binary filter. The EPOs of these lower-quality filters are shown

in Table 7.

Table 7. Energy savings with lower-quality implementations for conventional

binary (CB), MWA-based and HWA-based FIR filters

Implementations CB MWA HWA

EPO of Higher

Quality Filter (pJ)
87.15 22,397,583,360 253,700,027

EPO of Lower
Quality Filter (pJ)

71.63 1,415,848,960 15,856,251

Energy Saving (%) 17.81 93.68 93.75

VI. ERROR ANALYSIS

A. Sources of Errors and Inaccuracies

In conventional FIR filters, errors are mainly due to the finite

word length effect. Because of the limited size of registers, a

real number has to be rounded to the nearest number that the

computer can store. More specifically, the input quantization,

coefficient quantization and truncated products in

multiplication are the major sources of such inaccuracies. In

stochastic circuits, errors are also caused by the random

fluctuation of the stochastic bits. This type of error or noise is

propagated through the computation process to the circuit

output.

B. Error Analysis for Conventional Binary Filters

1) Quantization errors due to the finite word length effect

When a signal is quantized at the inputs of an FIR filter, both

the rounding and floor functions are applied. Because the floor

function can introduce a biased error distribution into the digital

system, we only consider rounding in our experiments. The

quantization error caused by the finite word length effects is

then considered. For any digital system with Nb-bit resolution,

an 𝑁𝑏
′ -bit normalized binary number x in [0, 1] has to be

rounded off to become a normalized binary number 𝑥′ with Nb

bits. By normalized we mean that the weights of bits (from the

most significant bit to the least significant bit) in an Nb-bit

binary number form a geometric series {2−1, 2−2, … , 2−𝑁𝑏 }.

The weight 𝑎𝑖 of the ith binary bit is either 0 or 1. The values of

x and 𝑥′are therefore between 0 and 1:

𝑥 = ∑ 𝑎𝑖 ∙ 2−𝑖𝑁𝑏
′

𝑖=1 = ∑ 𝑎𝑖 ∙ 2−𝑖𝑁𝑏
𝑖=1 + ∑ 𝑎𝑖 ∙ 2−𝑖𝑁𝑏

′

𝑖=𝑁𝑏+ 1 ;

(18)
𝑥′ = {

∑ 𝑎𝑖 ∙ 2−𝑖𝑁𝑏
𝑖=1 , if 𝑎𝑁𝑏+ 1 = 0,

2−𝑁𝑏 + ∑ 𝑎𝑖 ∙ 2−𝑖𝑁𝑏
𝑖=1 , if 𝑎𝑁𝑏+ 1 = 1.

The quantization error 𝑒𝑞 is calculated as

𝑒𝑞 = 𝑥 − 𝑥′ =

{
∑ 𝑎𝑖 ∙ 2−𝑖𝑁𝑏

′

𝑖=𝑁𝑏+ 2 , if 𝑎𝑁𝑏+ 1 = 0,

−2−(𝑁𝑏+1) + ∑ 𝑎𝑖 ∙ 2−𝑖𝑁𝑏
′

𝑖=𝑁𝑏+ 2 , if 𝑎𝑁𝑏+ 1 = 1.

(19)

Let ∆ be the minimum distance between two numbers

represented by Nb bits, i.e.,

∆ = 2−𝑁𝑏 . (20)

Then the quantization error 𝑒𝑞 is bounded by

−
∆

2
≤ 𝑒𝑞 <

∆

2
. (21)

The quantization error 𝑒𝑞 is usually defined as a white noise

which is independent of the input signal. Therefore, we

establish a statistical model for the quantization error as

described in Fig. 14. The quantization error 𝑒𝑞 is an additive

variable to the linear system. Among all possible values, 𝑒𝑞 is

considered evenly distributed. The probability density function

(PDF) of the quantization error 𝑒𝑞 is described as [14].

𝑓(𝑒𝑞) = {
1

∆
, −

∆

2
≤ 𝑒𝑞 <

∆

2
;

0, 𝑜𝑡ℎ𝑒𝑟𝑠.
 (22)

Based on the PDF, the mean and the variance of 𝑒𝑞 are given

by

𝐸(𝑒𝑞) = ∫ 𝑒𝑞 ∙ 𝑓(𝑒𝑞)𝑑𝑒𝑞

∆

2

−
∆

2

= 0. (23)

𝜎𝑞
2 = 𝐸[(𝑒𝑞 − 𝐸(𝑒𝑞))2] = ∫ (𝑒𝑞 − 𝐸(𝑒𝑞))2 ∙

∆

2

−
∆

2

𝑓(𝑒𝑞)𝑑𝑒𝑞 = ∫
1

∆
𝑒𝑞

2𝑑𝑒𝑞

∆

2

−
∆

2

=
∆2

12
=

1

12∙22𝑁𝑏
.

(24)

Fig. 14. A statistical model for the quantization error 𝑒𝑞: Xa is the analog input

and Xd is the digital sample from Xa; Xq is the quantized sample with

quantization error 𝑒𝑞 [14].

2) Inaccuracies in the computation of conventional FIR

filters

A statistical model is developed to evaluate error

accumulation and propagation in the computation. Because an

FIR filter is a linear system, errors added to the FIR filters are

propagated to the next arithmetic operation with similar

characteristics. To start the analysis, the original/theoretical FIR

filter in (6) is simplified to

𝑌 = ∑ 𝐻𝑖 𝑋𝑖

𝑁𝑓−1

𝑖=0
, (25)

where Hi and Xi are numbers with infinite precision. By

quantization, the actual result Y’ is biased from the expected

result Y, i.e.,

𝑌′ = ∑ (𝐻𝑖 + 𝑒𝐻𝑖)(𝑋𝑖 + 𝑒𝑋𝑖)
𝑁𝑓−1

𝑖=0

= ∑ (𝐻𝑖𝑋𝑖 + 𝑋𝑖𝑒𝐻𝑖 + 𝐻𝑖𝑒𝑋𝑖 + 𝑒𝐻𝑖𝑒𝑋𝑖)
𝑁𝑓−1

𝑖=0

= 𝑌 + ∑ (𝑋𝑖𝑒𝐻𝑖 + 𝐻𝑖𝑒𝑋𝑖 + 𝑒𝐻𝑖𝑒𝑋𝑖)
𝑁𝑓−1

𝑖=0
,

(26)

where 𝑒𝐻𝑖 and 𝑒𝑋𝑖 are quantization errors of the coefficient Hi

and the input Xi. Both 𝑒𝐻𝑖 and 𝑒𝑋𝑖 can be modeled by 𝑒𝑞 in (19).

To calculate the mean 𝐸(𝑌′), i.e.,

𝐸(𝑌′) = 𝐸(𝑌) + 𝐸 (∑ (𝑋𝑖𝑒𝐻𝑖 + 𝐻𝑖𝑒𝑋𝑖 + 𝑒𝐻𝑖𝑒𝑋𝑖)
𝑁𝑓−1

𝑖=0), (27)

we first determine the mean of the cross product term 𝑒𝐻𝑖𝑒𝑋𝑖.

Due to [15], if 𝑒𝐻𝑖 and 𝑒𝑋𝑖 are independent real-valued

continuous random variables with finite expected values, then
𝐸(𝑒𝐻𝑖𝑒𝑋𝑖) = 𝐸(𝑒𝐻𝑖)𝐸(𝑒𝑋𝑖) = 0. (28)

Taking into consideration (23), (27) and (28), we obtain

𝐸(𝑌′) − 𝐸(𝑌) = ∑ (𝑋𝑖𝐸(𝑒𝐻𝑖) + 𝐻𝑖𝐸(𝑒𝑋𝑖) +
𝑁𝑓−1

𝑖=0

𝐸(𝑒𝐻𝑖𝑒𝑋𝑖)) = 0.
(29)

By definition and (29), the variance of the output Y’ is

𝑉𝑎𝑟(𝑌′) = 𝐸 [(𝑌′ − 𝐸(𝑌′))
2

] = 𝐸[(𝑌′ − 𝑌)2]. (30)

On the other hand, the variance of Y’ is also given by

𝑉𝑎𝑟(𝑌′) = ∑ (𝑋𝑖
2𝑉𝑎𝑟(𝑒𝐻𝑖) + 𝐻𝑖

2𝑉𝑎𝑟(𝑒𝑋𝑖) +
𝑁𝑓−1

𝑖=0

𝑉𝑎𝑟(𝑒𝐻𝑖𝑒𝑋𝑖)) = ∑ (𝑋𝑖
2𝜎𝑞

2 + 𝐻𝑖
2𝜎𝑞

2 + 𝑉𝑎𝑟(𝑒𝐻𝑖𝑒𝑋𝑖))
𝑁𝑓−1

𝑖=0 .
(31)

Because 𝑉𝑎𝑟(𝑒𝐻𝑖𝑒𝑋𝑖) is of a higher order than the other terms

in (31), we have

 11

max{𝑉𝑎𝑟(𝑒𝐻𝑖𝑒𝑋𝑖)} =
∆4

16
≪ ∑ 𝜎𝑞

2(𝑋𝑖
2 + 𝐻𝑖

2)
𝑁𝑓−1

𝑖=0
=

∑
∆2

12
(𝑋𝑖

2 + 𝐻𝑖
2)

𝑁𝑓−1

𝑖=0
.

(32)

Therefore, 𝑉𝑎𝑟(𝑒𝐻𝑖𝑒𝑋𝑖) in (31) can be ignored and by (24) we

obtain

𝑉𝑎𝑟(𝑌′) ≈ ∑ 𝜎𝑞
2(𝑋𝑖

2 + 𝐻𝑖
2)

𝑁𝑓−1

𝑖=0
=

∆2

12
∑ (𝑋𝑖

2 + 𝐻𝑖
2)

𝑁𝑓−1

𝑖=0
. (33)

From (33), it can be seen that the quantization error is amplified

by a multiplicative factor. Then, 𝑒𝑐 is defined as the overall

error for the conventional binary filter, i.e.,

𝑒𝑐 = |𝑌′ − 𝑌| (34)

By combining (30), (33) and (34), we obtain the mean of the

squared error as

𝐸(𝑒𝑐
2) = 𝐸((𝑌′ − 𝑌)2) = 𝑉𝑎𝑟(𝑌′) =

∆2

12
∑ (𝑋𝑖

2 +
𝑁𝑓−1

𝑖=0

𝐻𝑖
2) =

1

12∙22𝑁𝑏
∑ (𝑋𝑖

2 + 𝐻𝑖
2)

𝑁𝑓−1

𝑖=0

(35)

By (35), 𝑒𝑐 can be estimated as

𝑒𝑐 = |𝑌′ − 𝑌| ≈ √
∆2

12
∑ (𝑋𝑖

2 + 𝐻𝑖
2)

𝑁𝑓−1

𝑖=0 =

∆

2√3
√∑ (𝑋𝑖

2 + 𝐻𝑖
2)

𝑁𝑓−1

𝑖=0 =
√3

3∙2𝑁𝑏+1
√∑ (𝑋𝑖

2 + 𝐻𝑖
2)

𝑁𝑓−1

𝑖=0 .

(36)

Hence, the computation error for the conventional binary

implementation is related to the bit resolution 𝑁𝑏 as well as the

coefficients and inputs.

C. Error Analysis for Stochastic Filters

1) Quantization errors due to the finite sequence length effect

When a signal is stochastically encoded, the precision is

limited by the sequence length 𝑁𝑠. For any Ns-bit sequence used

in a stochastic system, the minimum distance between two

numbers is

∆𝑠 =
1

𝑁𝑠
. (37)

Then the quantization error is bounded by

−
∆𝑠

2
< 𝑒𝑞𝑠 ≤

∆𝑠

2
. (38)

Similarly to the conventional binary quantization error given in

(19), the mean and variance of the stochastic quantization error

are respectively

𝐸(𝑒𝑞𝑠) = 0, (39)

𝜎𝑞𝑠
2 =

∆𝑠
2

12
=

1

12∙𝑁𝑠
2. (40)

2) Quantization effect in stochastic computing

The propagation effect of quantization errors in stochastic

computing is similar to that in conventional FIR filters. The

effect of quantization errors in stochastic computing can be

analyzed by evaluating the output 𝑃𝑌′ . If 𝑃𝑌 is the correct

output without errors, we have

 𝑃𝑌 = ∑ 𝑃𝐻𝑖
𝑃𝑋𝑖

.
𝑁𝑓−1

𝑖=0
 (41)

We further include the quantization effect by adding errors 𝑃𝑒𝐻𝑖
,

𝑃𝑒𝑋𝑖
 and 𝑃𝑒𝑌

 to input 𝑃𝑋𝑖
, the coefficient 𝑃𝐻𝑖

 and the output 𝑃𝑌,

respectively, where 𝑖 = 0, 1, … , 𝑁𝑓 − 1. Hence the output 𝑃𝑌′

can be calculated by

𝑃𝑌′ = ∑ (𝑃𝐻𝑖
+ 𝑃𝑒𝐻𝑖

)(𝑃𝑋𝑖 + 𝑃𝑒𝑋𝑖
)

𝑁𝑓−1

𝑖=0

= ∑ (𝑃𝐻𝑖
𝑃𝑋𝑖 + 𝑃𝑋𝑖𝑃𝑒𝐻𝑖

+ 𝑃𝐻𝑖𝑃𝑒𝑋𝑖
+ 𝑃𝑒𝐻𝑖

𝑃𝑒𝑋𝑖
)

𝑁𝑓−1

𝑖=0

= 𝑃𝑌 + ∑ (𝑃𝑋𝑖𝑃𝑒𝐻𝑖
+ 𝑃𝐻𝑖𝑃𝑒𝑋𝑖

+ 𝑃𝑒𝐻𝑖
𝑃𝑒𝑋𝑖

)
𝑁𝑓−1

𝑖=0 .

(42)

𝑃𝑒𝐻𝑖
and 𝑃𝑒𝑋𝑖

are independent quantization errors that can be

modeled by 𝑒𝑞𝑠 with the properties in (38), (39) and (40). The

mean of the stochastic output 𝑃𝑌′ is thus given by

𝐸(𝑃𝑌′) = 𝐸(𝑃𝑌) +

𝐸 (∑ (𝑃𝑋𝑖
𝑃𝑒𝐻𝑖

+ 𝑃𝐻𝑖
𝑃𝑒𝑋𝑖

+ 𝑃𝑒𝐻𝑖
𝑃𝑒𝑋𝑖

)
𝑁𝑓−1

𝑖=0
) = 𝐸(𝑃𝑌).

(43)

The variance of the output 𝑃𝑌′ can be obtained from (42) as

𝑉𝑎𝑟(𝑃𝑌′) = ∑ (𝑃𝑋𝑖
2 𝑉𝑎𝑟(𝑃𝑒𝐻𝑖

) + 𝑃𝐻𝑖
2 𝑉𝑎𝑟(𝑃𝑒𝑋𝑖

) +
𝑁𝑓−1

𝑖=0

𝑉𝑎𝑟(𝑃𝑒𝐻𝑖
𝑃𝑒𝑋𝑖

)) = ∑ (𝑃𝑋𝑖
2 + 𝑃𝐻𝑖

2)𝜎𝑞𝑠
2 +

𝑁𝑓−1

𝑖=0

𝑉𝑎𝑟(𝑃𝑒𝐻𝑖
𝑃𝑒𝑋𝑖

)) .

(44)

𝑉𝑎𝑟 (𝑃𝑒𝐻𝑖
𝑃𝑒𝑋𝑖

) in (44) can be ignored due to the fact that

max {𝑉𝑎𝑟 (𝑃𝑒𝐻𝑖
𝑃𝑒𝑋𝑖

)} =
∆𝑠

4

16
≪ ∑ 𝜎𝑞𝑠

2 (𝑃𝑋𝑖
2 +

𝑁𝑓−1

𝑖=0

𝑃𝐻𝑖
2) = ∑

∆𝑠
2

12
(𝑃𝑋𝑖

2 + 𝑃𝐻𝑖
2)

𝑁𝑓−1

𝑖=0
.

(45)

Therefore, (46) becomes

𝑉𝑎𝑟(𝑃𝑌′) ≈ 𝜎𝑞𝑠
2 ∑ (𝑃𝑋𝑖

2 + 𝑃𝐻𝑖
2)

𝑁𝑓−1

𝑖=0
=

∆𝑠

2

12
∑ (𝑃𝑋𝑖

2 + 𝑃𝐻𝑖
2)

𝑁𝑓−1

𝑖=0
. .

(46)

By definition and (43), we have

𝑉𝑎𝑟(𝑃𝑌′) = 𝐸 [(𝑃𝑌′ − 𝐸(𝑃𝑌′))
2
] = 𝐸[(𝑃𝑌′ − 𝑃𝑌)2]. (47)

By combining (46) and (47), we get

𝐸[(𝑃𝑌′ − 𝑃𝑌)2] =
∆𝑠

2

12
∑ (𝑃𝑋𝑖

2 + 𝑃𝐻𝑖
2)

𝑁𝑓−1

𝑖=0
 . (48)

The overall quantization error 𝑒𝑜𝑞 caused by the quantization

effect can be defined as the absolute difference between the

calculated result 𝑃𝑌′ and the accurate result 𝑃𝑌 , i.e.,

𝑒𝑜𝑞 = |𝑃𝑌′ − 𝑃𝑌|. (49)

From (48) and (49), the mean of the squared error 𝑒𝑜𝑞
2 can be

evaluated as

𝐸[𝑒𝑜𝑞
2] = 𝐸[(𝑃𝑌′ − 𝑃𝑌)2] =

∆𝑠
2

12
∑ (𝑃𝑋𝑖

2 + 𝑃𝐻𝑖
2)

𝑁𝑓−1

𝑖=0
. (50)

Because of (37) and (50), 𝑒𝑜𝑞 can be approximated as

𝑒𝑜𝑞 ≈ √∆𝑠
2

12
∑ (𝑃𝑋𝑖

2 + 𝑃𝐻𝑖
2)

𝑁𝑓−1

𝑖=0 =
√3

6𝑁𝑠

√∑ (𝑃𝑋𝑖
2 + 𝑃𝐻𝑖

2)
𝑁𝑓−1

𝑖=0
. (51)

3) Random fluctuations in stochastic computing

In addition to the quantization error caused by the limited

sequence length, stochastic computing also suffers from a

fluctuation error as the pseudo random number generator

introduces uncertainty into the stochastic representations. The

fluctuation error is denoted by 𝑒𝑓𝑠 . 𝑃𝑌′′ is defined as the final

result obtained by stochastic computing [11, 16]. Due to

random fluctuations, 𝑃𝑌′′ is different from 𝑃𝑌. If 𝑃𝑌 is encoded

by the stochastic bit stream 𝑦(𝑖), where 𝑖 = 1, 2, … , 𝑁𝑠 and 𝑁𝑠

is the sequence length, then the final output 𝑃𝑌′′ is obtained by

𝑃𝑌′′ =
1

𝑁𝑠

∑ 𝑦(𝑖)
𝑁𝑠

𝑖=1 , (52)

If no stochastic fluctuations existed, there is no difference

between 𝑃𝑌 and 𝑃𝑌′′. However, the stochastic bit stream 𝑦(𝑖) is

usually a Bernoulli sequence. The mean of the output 𝑃𝑌′′ is

𝐸(𝑃𝑌′′) = 𝑃𝑌. (53)

The variance is given by

𝑉𝑎𝑟[𝑃𝑌′′] = 𝑉𝑎𝑟 [
1

𝑁𝑠
∑ 𝑦(𝑖)𝑁𝑠

𝑖=1]

= 𝐸 [(𝑃𝑌′′ − 𝐸(𝑃𝑌′′))
2

] = 𝐸[(𝑃𝑌′′ − 𝑃𝑌)2].
(54)

As 𝑦(𝑖) (i = 1, 2, …, 𝑁𝑠) is a Bernoulli sequence, we have

𝑉𝑎𝑟 [
1

𝑁𝑠
∑ 𝑦(𝑖)𝑁𝑠

𝑖=1] =
𝑃𝑌(1−𝑃𝑌)

𝑁𝑠
. (55)

 12

Let 𝑒𝑓𝑠 be the fluctuation error defined as

𝑒𝑓𝑠 = |𝑃𝑌′′ − 𝑃𝑌|. (56)

The error is measured using the variance in (54) and (55), i.e.,

𝐸[𝑒𝑓𝑠
2] = 𝐸[(𝑃𝑌′′ − 𝑃𝑌)2] =

𝑃𝑌(1−𝑃𝑌)

𝑁𝑠
. (57)

Therefore the fluctuation error can be approximated as

𝑒𝑓𝑠 = √
𝑃𝑌 (1−𝑃𝑌)

𝑁𝑠
. (58)

Equation (58) implies that the fluctuation can be controlled by

simply using longer sequences.

4) Inaccuracies in the computation of stochastic FIR filters

The stochastic computation can suffer from both

quantization errors and fluctuation errors. The overall error 𝑒𝑜𝑠

in a stochastic filter is thus the sum of the two errors:

𝑒𝑜𝑠 = 𝑒𝑜𝑞 + 𝑒𝑓𝑠. (59)

Substituting the quantization error 𝑒𝑜𝑞 in (51) and the

fluctuation error 𝑒𝑓𝑠 in (58), we have

𝑒𝑜𝑠 = √
𝑃𝑌 (1−𝑃𝑌)

𝑁𝑠
+

√3

6𝑁𝑠

√∑ (𝑃𝑋𝑖
2 + 𝑃𝐻𝑖

2)
𝑁𝑓−1

𝑖=0
, (60)

where 𝑃𝑋𝑖
, 𝑃𝐻𝑖

 and 𝑃𝑌 in (60) are coefficients, inputs and

outputs, respectively, for the stochastic filter.

D. Stochastic Sequence Length Estimate by Error Analysis

The stochastic sequence length is an important parameter as

it determines both the computational accuracy and the circuit

performance. To determine the sequence length for stochastic

FIR filters, we use (36) to evaluate the overall error of the

conventional binary circuit. For the stochastic circuit, we use

the upper bound of the overall stochastic error 𝑒𝑜𝑠 in (60) as an

approximation of the stochastic error. To understand the

relationship between bit resolution Nb and sequence length Ns,

let 𝑒𝑜𝑠 = 𝑒𝑐, i.e.,

𝑒𝑜𝑠 ≈ √
𝑃𝑌 (1−𝑃𝑌)

𝑁𝑠
+

√3

6𝑁𝑠

√∑ (𝑃𝑋𝑖
2 + 𝑃𝐻𝑖

2)
𝑁𝑓−1

𝑖=0
=

√3

6∙2𝑁𝑏
√∑ (𝑋𝑖

2 + 𝐻𝑖
2)

𝑁𝑓−1

𝑖=0
≈ 𝑒𝑐 .

(61)

Hence the stochastic sequence length 𝑁𝑠 is approximately

𝑁𝑠 ≈
12𝑃𝑌 (1−𝑃𝑌)

∑ (𝑋𝑖
2+𝐻𝑖

2)
𝑁𝑓−1

𝑖=0

∙ 22𝑁𝑏 . (62)

To describe how 𝑁𝑠 changes as 𝑁𝑏 increases, we use the big O

notation to estimate the relationship between the necessary

stochastic sequence lengths for a stochastic FIR filter to match

the performance of the conventional binary FIR filter.

Therefore, (62) can be written as

𝑁𝑠 ≈ 𝑂(22𝑁𝑏). (63)

(63) shows that the sequence length Ns grows exponentially

as the binary resolution Nb increases. This is consistent with the

stochastic sequences required in our experiments (see Table 3).

Clearly, this fact has an adverse effect to any stochastic

implementation. However, if a degraded performance in

accuracy is acceptable, an exponential reduction would result in

the required sequence length. This reduction in sequence length

subsequently means a substantial reduction in energy

consumption, thus achieving a significant improvement in

performance metrics such as the EPO. For example, if the

performance of a stochastic filter equivalent to that of an 8-bit

binary filter is acceptable for an ideal 12-bit filter, the required

sequence length, as per (63), would be only 1/256 of the length

required for matching the performance of the 12-bit filter. This

would reduce the EPO of the stochastic circuit by a factor of

255/256. However, the conventional binary implementation

would only result in a much smaller energy reduction, as shown

in Table 7 (albeit for a different example).

VII. FAULT TOLERANCE ANALYSIS AND SIMULATION

Although errors are inevitable in the quantization process or

caused by the inherent random fluctuation, stochastic

computing has been known to be intrinsically fault-tolerant. In

this section, we consider the fault tolerance of both the

conventional binary and stochastic designs by taking into

account soft errors.

A. Fault-tolerance Analysis

We first discuss the different behaviors of the conventional

binary and stochastic circuits using the bit-flip error model [4,

17].

Consider a normalized Nb-bit binary number with value B:

 𝐵 = x1 ∙ 2−1 + x2 ∙ 2−2 + ⋯ + x𝑁𝑏
∙ 2−𝑁𝑏, (64)

where x𝑖 is the bit with weight 2-i (i = 1, …, 𝑁𝑏). Let Ri be a

random variable to indicate if an error occurs or not, i.e., if Ri is

1, an error occurs, so bit i flips. Further let 𝜀 be the error

probability, i.e.,

𝑃(𝑅𝑖 = 1) = 𝜀. (65)

Affected by possible bit flips, the normalized binary number

becomes

𝐵′ = ∑ x′𝑖 ∙ 2−𝑖𝑁𝑏
𝑖=1 = ∑ [𝑅𝑖(1 − x𝑖) + x𝑖(1 − 𝑅𝑖)]

𝑁𝑏
𝑖=1 ∙

2−𝑖.
(66)

The error for the conventional binary approach is defined as

𝑒𝑐
(𝑖)

= 𝐵′ − 𝐵, (67)

where a superscript (i) is used to indicate that 𝑒𝑐
(𝑖)

 is to denote

the error caused by error injection. It has been shown in [4] that

the error 𝑒𝑐
(𝑖)

 has the following mean value and variance:

𝐸[𝑒𝑐
(𝑖)

] ≈ (1 − 2𝐵)𝜀; (68)

𝑉𝑎𝑟[𝑒𝑐
(𝑖)

] ≈
1

3
(1 − 𝜀)𝜀. (69)

Since the stochastic implementation does not necessarily use

the minimum length for an Nb-bit binary number, the mean

value and variance for the stochastic method are re-computed

for comparison. The stochastic number S is the encoded value

of the Nb-bit binary number B. As a performance matching

multiplier (PMM) is used, the actual sequence length is 𝑁𝑠 =
𝑃𝑀𝑀 ∙ 2𝑁𝑏. For implementation convenience usually 𝑃𝑀𝑀 is

also a number in the form of 2𝑁𝑏′ (𝑁𝑏′= 0, 1, 2, …). Hence the

Ns-bit stochastic sequence can be generated using a (Nb+Nb’)-

bit linear feedback shift register (LFSR). A stochastic bit stream

𝑦1𝑦2 … 𝑦𝑁𝑠
is produced to encode a normalized Nb-bit binary

number in [0, 1]. Therefore the stochastic number S can be

calculated by

𝑆 =
1

𝑁𝑠
 ∑ 𝑦𝑖

𝑁
𝑖=1 =

1

𝑃𝑀𝑀∙2𝑁𝑏
 ∑ 𝑦𝑖

𝑁𝑠
𝑖=1 , (70)

where 𝑁𝑠 is the stochastic sequence length.

For a stochastic circuit, Si (𝑖 = 1, 2, … , 𝑁𝑠) is defined as a

random variable to indicate if an error occurs or not in a

stochastic bit stream, i.e., if Si is 1, an error occurs, so bit i flips.

The error injection rate is also considered to be 𝜀, i.e.,

𝑃(𝑆𝑖 = 1) = 𝜀. (71)

 13

𝑆1, 𝑆2, … , 𝑆𝑁𝑠
are statistically independent, so

𝐸[𝑆𝑖] = 𝜀; (72)

𝑉𝑎𝑟[𝑆𝑖] = (1 − 𝜀)𝜀. (73)

A bit affected by a possible error is denoted by y′𝑖 , thus

𝑦′𝑖 = 𝑆𝑖(1 − 𝑥𝑖) + 𝑥𝑖(1 − 𝑆𝑖). (74)

The stochastic number then becomes

𝑆′ =
1

𝑁𝑠
 ∑ y′

𝑖
𝑁
𝑖=1 =

1

𝑁𝑠
 ∑ [𝑆𝑖(1 − y𝑖) + y𝑖(1 − 𝑆𝑖)]

𝑁𝑠
𝑖=1 . (75)

Hence, the stochastic error 𝑒𝑠
(𝑖)

 is determined by

 𝑒𝑠
(𝑖)

= 𝑆′ − 𝑆 =
1

𝑁𝑠
 ∑ 𝑆𝑖(1 − 2y𝑖)

𝑁𝑠
𝑖=1 . (76)

By (70), (72) and (76), the mean of error 𝑒𝑠
(𝑖)

 is given by

𝐸[𝑒𝑠
(𝑖)

] =
1

𝑁𝑠
∑ (1 − 2y𝑖)𝑁𝑠

𝑖=1 𝐸[𝑆𝑖] =
1

𝑃𝑀𝑀∙2𝑁𝑏
∑ (1 − 2y𝑖)

𝑁𝑠
𝑖=1 𝜀 = (1 − 2𝑆)𝜀.

(77)

With (73) and (76), the variance of error 𝑒𝑠
(𝑖)

 is obtained as

𝑉𝑎𝑟[𝑒𝑠
(𝑖)

] =
1

𝑁𝑠
2 ∑ (1 − 2y𝑖)

2𝑁𝑠
𝑖=1 𝑉𝑎𝑟[𝑆𝑖] =

1

𝑁𝑠
2 ∑ (1 − 2y𝑖)

2𝑁𝑠
𝑖=1 (1 − 𝜀)𝜀 =

1

𝑃𝑀𝑀∙2𝑁𝑏
(1 − 𝜀)𝜀.

(78)

To investigate how injected errors affect the function to

implement FIR filters, we assume that the injected errors

𝑒𝑐
(𝑖)

 and 𝑒𝑠
(𝑖)

 follow additive Gaussian distributions.

For the conventional binary FIR filter defined in (25) without

injected errors, the erroneous output 𝑌(𝑖) is given by

𝑌(𝑖) = ∑ (𝐻𝑖 + 𝑒𝐻𝑖
(𝑖)

)(𝑋𝑖 + 𝑒𝑋𝑖
(𝑖)

)
𝑁𝑓−1

𝑖=0
, (79)

where 𝑒𝐻𝑖
(𝑖)

 and 𝑒𝑋𝑖
(𝑖)

 are independent errors modeled by 𝑒𝑜𝑐
(𝑖)

 with

the mean and variance given in (68) and (69), respectively. The

overall error due to error injection for the conventional binary

FIR filters 𝑒𝑜𝑐
(𝑖)

 is then

𝑒𝑜𝑐
(𝑖)

= 𝑌(𝑖) − 𝑌. (80)

When the error injection rate 𝜀 is small, the mean and variance

of the overall error 𝑒𝑜𝑐
(𝑖)

 are given by (approximately)

𝐸[𝑒𝑜𝑐
(𝑖)

] ≈ ∑ [(𝐻𝑖 + 𝑋𝑖 − 4𝐻𝑖𝑋𝑖)𝜀 + (1 −
𝑁𝑓−1

𝑖=0

2𝐻𝑖)(1 − 2𝑋𝑖)𝜀2] ;
(81)

𝑉𝑎𝑟[𝑒𝑜𝑐
(𝑖)

] ≈
𝜀

9
∑ {3(𝐻𝑖

2 + 𝑋𝑖
2) + [1 − 3(𝐻𝑖

2 + 𝑋𝑖
2)]𝜀}

𝑁𝑓−1

𝑖=0
. (82)

How (81) and (82) are derived is shown in detail in the appendix.

Similarly, the overall error due to error injection for the

stochastic FIR filters 𝑒𝑜𝑠
(𝑖)

 is given by

𝑒𝑜𝑠
(𝑖)

= 𝑃𝑌(𝑖) − 𝑃𝑌 . (83)

Its mean and variance are given by

𝐸[𝑒𝑜𝑠
(𝑖)

] = ∑ [(𝑃𝐻𝑖
+ 𝑃𝑋𝑖

− 4𝑃𝐻𝑖
𝑃𝑋𝑖

)𝜀 + (1 −
𝑁𝑓−1

𝑖=0

2𝑃𝐻 𝑖
)(1 − 2𝑃𝑋𝑖

)𝜀2] ;
(84)

𝑉𝑎𝑟[𝑒𝑜𝑠
(𝑖)

] ≈
𝜀

𝑁𝑠
2 ∑ {𝑁𝑠(𝐻𝑖

2 + 𝑋𝑖
2) + [1 − 𝑁𝑠(𝑃𝑋𝑖

2 +
𝑁𝑓−1

𝑖=0

𝑃𝐻𝑖
2)]𝜀}.

(85)

𝐸[𝑒𝑜𝑐
(𝑖)

] and 𝐸[𝑒𝑜𝑠
(𝑖)

] in (81) and (84) show that the mean output

error depends on both the inputs and the coefficients. The mean

of the stochastic error 𝐸[𝑒𝑜𝑠
(𝑖)

] is identical to the mean of the

conventional binary error 𝐸[𝑒𝑜𝑐
(𝑖)

] for the same filter function

(thus with the same inputs and coefficients).

To compare the variances of the binary error and the

stochastic error, all the inputs and coefficients in (82) and (85)

are assumed to be 0.5. We then obtain

𝑉𝑎𝑟[𝑒𝑜𝑐
(𝑖)

] ≈
5𝑁𝑓

18
𝜀 −

𝑁𝑓

6
𝜀2, (86)

𝑉𝑎𝑟[𝑒𝑜𝑠
(𝑖)

] ≈ (
𝑁𝑓

𝑁𝑠
2 +

𝑁𝑓

2𝑁𝑠
) 𝜀 −

𝑁𝑓

2𝑁𝑠
𝜀2. (87)

For any 𝑁𝑠 > 3, the variances in (86) and (87) satisfy

 𝑉𝑎𝑟[𝑒𝑜𝑐
(𝑖)

] > 𝑉𝑎𝑟[𝑒𝑜𝑠
(𝑖)

]. (88)

Due to the factor of 𝑁𝑠 , the stochastic method results in a

smaller variance. The variation of the error for the stochastic

implementation 𝑒𝑜𝑠
(𝑖)

 is inversely proportional to the sequence

length squared, 𝑁𝑠
2. When using 𝑁𝑠 = 𝑃𝑀𝑀 ∙ 2𝑁𝑏 (𝑃𝑀𝑀 =

20, 21, 22, …) bits in the stochastic encoding of an 𝑁𝑏-bit binary

number, the variance of the stochastic error can be reduced by

increasing the 𝑃𝑀𝑀 . In the conventional binary approach,

however, it is more difficult to obtain a smaller variance as it

lacks the tuning parameter 𝑃𝑀𝑀 in the stochastic approach.

B. Fault-tolerance Simulation

Simulations are further performed to evaluate the reliability

of the binary and stochastic circuits. To measure the reliability

of a design, the average absolute error (AAE) is defined as

𝐴𝐴𝐸 =
1

𝑀
∙

1

22𝑁𝑏+4 ∑ |𝑋𝑖 − 𝑋𝑖
′|𝑀−1

𝑖=0 , (89)

where 𝑋𝑖 and 𝑋𝑖
′ are the expected correct output and the actual

output, respectively, M is the number of simulations, and the

factor
1

22𝑁𝑏+4 is taken as a constant coefficient so that the AAEs

are between 0 and 1 (𝑁𝑏 = 13 here). The AAE indicates how

seriously the injected error affects the correct output.

In the fault tolerance analysis, the effect of faults is also taken

into account in auxiliary circuits such as the SNGs and counters.

Digital logic is modeled in Matlab such that bit flips can occur

at either the input or output. A bit flips with a certain probability

as indicated by the error injection rate. The consequence of the

bit flips can be seen at the final output. How the faults affect

the filter behavior is reflected by the value of AAE. We

investigate the AAE for the conventional binary 13-bit low-pass

FIR filter with 267 taps, as well as the stochastic MWA design

and HWA design using a sequence length of 4,194,304 bits

(from Table 3) under various injected error rates. In addition,

redundant copies of the binary circuit can be used to achieve a

better fault tolerance, for example, in the form of triple modular

redundancy (TMR). We further consider the TMR

implementations of the binary circuit with unreliable and fault-

free voters [18]. The stochastic computational models in [12,

13] are used to facilitate our fault-tolerance analysis. XOR gates

are used to inject errors into the circuit. The majority voters in

the TMR circuits are considered bitwise rather than word-wise.

Table 8 shows the comparison of AAEs obtained from 200

simulations with a sequence length of 100,000 bits. The results

with error injection are compared with those without error

injection, thus the AAEs for the stochastic circuits are 0 when

the injected error rate is 0. It can be seen that the AAE increases

as the injected error rate increases. The conventional binary

circuit is not as fault-tolerant as the stochastic circuits, which is

consistent with the analysis. When one bit in a binary circuit

flips, it can cause a serious error if the erroneous bit is among

the MSBs. However, all bits in a stochastic sequence have the

 14

same weight, so the effect of a single bit flip is insignificant in

a relatively long stochastic sequence. The binary TMR circuit

with unreliable voters has an improved reliability, but it is still

not as reliable as the stochastic approaches. However, the

binary TMR circuit with reliable voters becomes more fault-

tolerant than the stochastic circuits.

VIII. CONCLUSIONS

In this paper, a stochastic hardwired weighted average (HWA)

design and a multi-level weighted average (MWA) design are

proposed for implementing FIR filters. The HWA design takes

advantage of simply repeating the input wires of a multiplexer

to implement the weights of different data inputs, while the

MWA design uses multiplexers to generate the required filter

coefficients or weights. The proposed stochastic

designs show an improved performance, a smaller circuit area

and lower power consumption, compared with the conventional

stochastic design. The MWA design with multiple stages is not

as competitive as the HWA design, but it can be more easily

reconfigured by re-programming the weight generators. This

task is not easy for the HWA design that uses repeated inputs to

implement the filter coefficients.

Table 8. Average absolute error of the stochastic and binary circuits with

and without redundancy at various injected error rates. The results are obtained

from 200 simulations using sequences of 100,000 bits.

Error
Rate

(%)

Average Absolute Error (%)

MWA HWA Binary

Binary TMR

Error-free

Voter

Unreliable

Voter

0 0 0 0 0 0

0.1 0.063 0.065 1.507 0.004 0.126

0.2 0.121 0.136 2.325 0.009 0.225

0.5 0.339 0.326 3.290 0.035 0.581

1 0.592 0.574 5.209 0.111 1.203

2 1.476 1.226 6.368 0.198 2.382

5 3.009 2.948 10.942 0.337 5.794

10 5.472 5.696 21.477 1.123 12.050

Compared to binary FIR filter circuits, the proposed

stochastic designs have a significant advantage in circuit area,

especially at higher resolutions. With respect to the

performance metrics of throughput per area and energy per

operation, however, the stochastic design does not show any

advantages over its binary counterpart. This is primarily due to

the significant latency in stochastic computing because long

stochastic sequences must be used to achieve the same filtering

performance as a binary circuit. With a shorter stochastic

sequence, however, the stochastic circuit shows a graceful

degradation in performance compared to the binary design. The

features of a stochastic circuit are investigated in detail by both

analysis and simulation.

A binary TMR circuit using error-free voters is shown to be

more reliable than the stochastic design. Due to its intrinsic fault

tolerance, however, the proposed stochastic design shows

significant advantages in reliability over the conventional

binary design and its TMR implementation when the voters are

subject to errors. These results suggested that other sum-of-

product based circuits could also benefit from stochastic

implementation.

ACKNOWLEDGEMENT

This work was partly supported by the University of Alberta

and the Natural Sciences and Engineering Research Council

(NSERC) of Canada.

APPENDIX

In this appendix, we prove that (81) and (82) give the mean

and variance of the overall error in the conventional binary filter

circuit. To investigate how the injected errors affect the output

of the FIR filters, we assume that the correct output of the

conventional binary FIR filter Y is given by (25), where Hi and

Xi are the inputs and filter coefficients without injected error.

With error injection, the output 𝑌(𝑖) given in (79) is evaluated

by

𝑌(𝑖) = ∑ (𝐻𝑖 + 𝑒𝐻𝑖
(𝑖)

)(𝑋𝑖 + 𝑒𝑋𝑖
(𝑖)

)
𝑁𝑓−1

𝑖=0

= ∑ (𝐻𝑖𝑋𝑖 + 𝑋𝑖𝑒𝐻𝑖
(𝑖)

+ 𝐻𝑖𝑒𝑋𝑖
(𝑖)

+ 𝑒𝐻𝑖
(𝑖)

𝑒𝑋𝑖
(𝑖)

)
𝑁𝑓−1

𝑖=0

= 𝑌 + ∑ (𝑋𝑖𝑒𝐻𝑖
(𝑖)

+ 𝐻𝑖𝑒𝑋𝑖
(𝑖)

+ 𝑒𝐻𝑖
(𝑖)

𝑒𝑋𝑖
(𝑖)

)
𝑁𝑓−1

𝑖=0
,

(90)

where 𝑒𝐻𝑖
(𝑖)

 and 𝑒𝑋𝑖
(𝑖)

 are statistically independent errors of

Gaussian distribution for the coefficient Hi and the input Xi with

mean and variance given by (68) and (69), respectively. Then

we have

𝐸(𝑒𝐻𝑖
(𝑖)

) ≈ (1 − 2𝐻𝑖)𝜀; (91)

𝐸(𝑒𝑋𝑖
(𝑖)

) ≈ (1 − 2𝑋𝑖)𝜀; (92)

𝑉𝑎𝑟[𝑒𝑋𝑖
(𝑖)

] = 𝑉𝑎𝑟[𝑒𝐻𝑖
(𝑖)

] ≈
1

3
(1 − 𝜀)𝜀. (93)

The overall error due to error injection for the conventional

binary FIR filter 𝑒𝑜𝑐
(𝑖)

 is given by (80). The mean of the overall

error 𝑒𝑜𝑐
(𝑖)

 is given by

E(𝑒𝑜𝑐
(𝑖)

) = 𝐸(𝑌′ − 𝑌) = 𝐸 (∑ (𝑋𝑖𝑒𝐻𝑖
(𝑖)

+ 𝐻𝑖𝑒𝑋𝑖
(𝑖)

+
𝑁𝑓−1

𝑖=0

𝑒𝐻𝑖
(𝑖)

𝑒𝑋𝑖
(𝑖)

)) = ∑ [𝑋𝑖𝐸(𝑒𝐻𝑖
(𝑖)

) + 𝐻𝑖𝐸(𝑒𝑋𝑖
(𝑖)

) +
𝑁𝑓−1

𝑖=0

𝐸(𝑒𝐻𝑖
(𝑖)

𝑒𝑋𝑖
(𝑖)

)].

(94)

Since 𝑒𝐻𝑖
(𝑖)

 and 𝑒𝑋𝑖
(𝑖)

 are statistically independent, the mean of

their product is [15]

𝐸(𝑒𝐻𝑖
(𝑖)

𝑒𝑋𝑖
(𝑖)

) = 𝐸(𝑒𝐻𝑖
(𝑖)

)𝐸(𝑒𝑋𝑖
(𝑖)

) ≈ (1 − 2𝐻𝑖)(1 − 2𝑋𝑖)𝜀2. (95)

By (91), (92) and (95), it is easy to show that the mean of the

overall error of the conventional binary circuit due to error

injection is given by (81).

The variance of the overall error 𝑒𝑜𝑐
(𝑖)

 is given by

𝑉𝑎𝑟 [𝑒𝑜𝑐
(𝑖)

] = 𝑉𝑎𝑟 (∑ (𝑋𝑖𝑒𝐻𝑖
(𝑖)

+ 𝐻𝑖𝑒𝑋𝑖
(𝑖)

+ 𝑒𝐻𝑖
(𝑖)

𝑒𝑋𝑖
(𝑖)

)
𝑁𝑓−1

𝑖=0) =

∑ [𝑋𝑖
2𝑉𝑎𝑟(𝑒𝐻𝑖

(𝑖)
) + 𝐻𝑖

2𝑉𝑎𝑟(𝑒𝑋𝑖
(𝑖)

) + 𝑉𝑎𝑟(𝑒𝐻𝑖
(𝑖)

𝑒𝑋𝑖
(𝑖)

)
𝑁𝑓−1

𝑖=0].
(96)

The variance of the product of the two independent

variables 𝑒𝐻𝑖
(𝑖)

 and 𝑒𝑋𝑖
(𝑖)

 can be calculated by

𝑉𝑎𝑟 (𝑒𝐻𝑖
(𝑖)

𝑒𝑋𝑖
(𝑖)

) = 𝑉𝑎𝑟 (𝑒𝐻𝑖
(𝑖)

) 𝑉𝑎𝑟 (𝑒𝑋𝑖
(𝑖)

) − 𝑉𝑎𝑟 (𝑒𝐻𝑖
(𝑖)

) 𝐸2 (𝑒𝑋𝑖
(𝑖)

)

− 𝑉𝑎𝑟 (𝑒𝑋𝑖
(𝑖)

) 𝐸2 (𝑒𝐻𝑖
(𝑖)

).
(97)

By (91), (92) and (93), equation (97) can be further written as

𝑉𝑎𝑟(𝑒𝐻𝑖
(𝑖)

𝑒𝑋𝑖
(𝑖)

) =
1

9
 𝜀2(1 − 𝜀)2 −

1

3
 𝜀3(1 − 𝜀)[(1 −

2𝐻𝑖)2 + (1 − 2𝑋𝑖)
2].

(98)

Due to (93) and (98), equation (96) becomes

 15

𝑉𝑎𝑟 [𝑒𝑜𝑐
(𝑖)

] = ∑ {
1

3
(𝐻𝑖

2 + 𝑋𝑖
2)𝜀(1 − 𝜀) +

1

9
 𝜀2(1 − 𝜀)2 −

𝑁𝑓−1

𝑖=0
1

3
𝜀3(1 − 𝜀)[(1 − 2𝐻𝑖)2 + (1 − 2𝑋𝑖)2]}.

(99)

When the injected error rate 𝜀 is small, 𝜀𝑘 for 𝑘 ≥ 3 in (99) can

be ignored. This immediately leads to the variance given in (82).

REFERENCES

[1] B. R. Gaines, "Stochastic computing systems." In Advances in

Information Systems Science, pp. 72-73, Springer US, 1969.
[2] A. Alaghi and J.P. Hayes, "Survey of stochastic computing." ACM Trans.

on Embedded Computing Systems (TECS) 12, no. 2s (2013): 92.

[3] P. Li and D. J. Lilja, "Using stochastic computing to implement digital
image processing algorithms." IEEE ICCD, pp. 154-161, 2011.

[4] P. Li, D. J. Lilja, W. Qian, K. Bazargan, and M. Riedel, “Computation on

stochastic bit streams digital image processing case studies,” IEEE Trans.
on VLSI Systems, vol. 22, no. 3, pp. 449–462, March 2014.

[5] A. Alaghi, C. Li, and J. P. Hayes, "Stochastic circuits for real-time image-

processing applications." DAC, pp. 1-6, 2013.
[6] W. Qian and M. D. Riedel, "The synthesis of robust polynomial arithmetic

with stochastic logic." DAC 2008. pp. 648-653, 2008.

[7] Y. Chang and K. K. Parhi, "Architectures for digital filters using
stochastic computing." 2013 IEEE International Conference on,

Acoustics, Speech and Signal Processing (ICASSP), pp. 2697-2701.

[8] J. Chen and J. Hu, "A novel FIR filter based on stochastic logic," Circuits
and Systems (ISCAS), 2013 IEEE International Symposium on , vol., no.,

pp.2050,2053, 19-23 May 2013.

[9] Saraf, Naman, Kia Bazargan, David J. Lilja, and Marc D. Riedel. "IIR
filters using stochastic arithmetic." In Design, Automation and Test in

Europe Conference and Exhibition (DATE), pp. 1-6. IEEE, 2014.

[10] R. Wang, J. Han, B. Cockburn, and D. Elliott, “Design and Evaluation of
Stochastic FIR Filters,” in Proc. 2015 IEEE Pacific Rim Conference on

Communications, Computers and Signal Processing, Victoria, BC,

Canada, August 24 - 26, 2015.
[11] B. Moons and M. Verhelst, “Energy and Accuracy in Multi-Stage

Stochastic Computing.” The 12th IEEE International New Circuits and

Systems Conference, Trois-Rivières, Canada, 22-25 June 2014.
[12] J. Han, H. Chen, J. Liang, P. Zhu, Z. Yang, and F. Lombardi, "A stochastic

computational approach for accurate and efficient reliability evaluation."

IEEE Trans. on Computers, vol. 63, no. 6, pp. 1336 – 1350, June 2014.

[13] H. Chen and J. Han, “Stochastic computational models for accurate

reliability evaluation of logic circuits,” in GLSVLSI’10, Proceedings of
the 20th IEEE/ACM Great Lakes Symposium on VLSI, Providence, Rhode

Island, USA, pp. 61–66, 2010.

[14] B. Widrow and István Kollár, "Roundoff Noise in FIR Digital Filters and
in FFT Calculations." Quantization Noise: Roundoff Error in Digital

Computation, Signal Processing, Control, and Communications, pp. 373-

382, Cambridge, 2008
[15] Qian, Weikang, Xin Li, Marc D. Riedel, Kia Bazargan, and David J. Lilja.

"An architecture for fault-tolerant computation with stochastic

logic." IEEE Transactions on Computers, vol. 60, no. 1 (2011): 93-105.
[16] Ma, Chengguang, Shunan Zhong, and Hua Dang. "Understanding

variance propagation in stochastic computing systems." In 2012 IEEE

30th International Conference on Computer Design (ICCD), pp. 213-218.
[17] Li, P., Lilja, D. J., Qian, W., Riedel, M. D., and Bazargan, K. (2014).

Logical Computation on Stochastic Bit Streams with Linear Finite-State

Machines. IEEE Transactions on Computers, 63(6), 1474-1486.

[18] T. Ban and L. Naviner. "Progressive module redundancy for fault-tolerant

designs in nanoelectronics." Microelectronics Reliability 51, no. 9

(2011): 1489-1492.

