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Abstract— Stochastic computing utilizes compact arithmetic 

circuits that can potentially lower the implementation cost in 

silicon area. In addition, stochastic computing provides inherent 

fault tolerance at the cost of a less efficient signal encoding. Finite 

impulse response (FIR) filters are key elements in digital signal 

processing (DSP) due to their linear phase-frequency response. In 

this article, we consider the problem of implementing FIR filters 

using the stochastic approach. Novel stochastic FIR filter designs 

based on multiplexers are proposed and compared to conventional 

binary designs implemented using Synopsys tools with a 28-nm cell 

library. Silicon area, power and maximum clock frequency are 

obtained to evaluate the throughput per area (TPA) and the 

energy per operation (EPO). For equivalent filtering performance, 

the stochastic FIR filters underperform in terms of TPA and EPO 

compared to the conventional binary design, although the 

stochastic design shows more graceful degradation in performance 

with a significant reduction in energy consumption. A detailed 

analysis is performed to evaluate the accuracy of stochastic FIR 

filters and to determine the required stochastic sequence length. 

The fault-tolerance of the stochastic design is compared with that 

of the binary circuit enhanced with triple modular redundancy 

(TMR). The stochastic designs are more reliable than the 

conventional binary design and its TMR implementation with 

unreliable voters, but they are less reliable than the binary TMR 

implementation when the voters are fault-free.  

Keywords—stochastic computing, FIR filter, throughput per 

area, energy per operation, stochastic sequence length, fault 

tolerance 

NOTATION 
P(𝑆): probability encoded by a stochastic sequence S 

Nb: the bit resolution for the binary filter 

Ns: the number of bits in stochastic sequence S 

Nf: the number of taps in the FIR filter 

X: a binary number, signed or unsigned 

X[n]: the binary value of a time-series variable X at time n 

S(X): a stochastic binary sequence encoding the probability 
𝑋

𝐿
, where 

L is the sequence length. 

I. INTRODUCTION 

HE importance of finite impulse response (FIR) filters in 

digital signal processing and the potential benefits of 

stochastic computing motivated us to investigate the possibility 

of implementing stochastic FIR filters. Both manufacturing 

variations and transient errors pose additional challenges to 

reliable operation. Stochastic computing methods [1, 2] can be 

exploited to address the above issues and thus possibly allow 

operation with less reliable, leading edge processes in very low 

voltage and/or high noise operating conditions.  

In image processing, Li and Lilja showed that stochastic 

circuits can outperform conventional binary designs for key 

image processing algorithms with respect to important design 

metrics [3]. Specifically, sequential stochastic computational 

elements were built using finite state machines. Interesting 

results for a stochastic implementation of the kernel density 

estimation (KDE)-based image segmentation algorithm are 

reported in [4]. Alaghi et al. investigated an edge-detection 

algorithm for real-time image processing [5]. It was shown that 

the area-delay product of the stochastic edge detection circuit is 

only 8.7% of that of a conventional binary circuit. Qian and 

Riedel compared stochastic hardware implementations of 

polynomial arithmetic [6]. Chang and Parhi investigated novel 

designs for both FIR and infinite impulse response (IIR) filters 

based on stochastic logic [7]. Several low-pass and high-pass 

filters with different cut-off frequencies were considered. In 

those filters, the coefficients are encoded as stochastic selection 

signals of multiplexers and XOR gates are used to invert the 

inputs when the corresponding coefficients are negative 

numbers. Our new approach works with both unsigned and 

signed stochastic inputs directly without additional operations, 

while requiring additional multiplexers as weight generators. 

Another stochastic FIR filter was designed using a wire 

selecting method in [8]. The authors claimed that the proposed 

stochastic FIR filter is more cost-efficient than traditional filters 

in terms of hardware resource for less than 9-bit 

implementations. However, it is not clear whether or not the 

stochastic filter can effectively match the performance of the 

corresponding traditional filters. In [9], the authors proposed to 

modify conventional ADCs to generate analog to stochastic 

streams with minimal overhead to implement IIR filters. Input 

to output frequency response spectra were computed to 

demonstrate the idea. However, this method is limited to IIR 

filters where feedback networks are needed. 

In this paper, three different stochastic FIR filter designs are 

investigated. The conventional weighted average (CWA) 

design exploits basic stochastic arithmetic elements, such as the 

XNOR gate for multiplication and the multiplexer for addition. 

In the hardwired weighted average (HWA) design, the filter 

coefficients or weights are given by repeating inputs to the 

multiplexer. Finally, the multi-level weighted average (MWA) 

design leverages the fact that every input signal is selected with 

a certain weight determined by the selection inputs to a 

multiplexer. The MWA design explicitly uses additional 

multiplexers to generate filter coefficients as the weights to a 

weighted adder. In all three designs, the weight of an input 

signal is the probability of selecting that input signal. That 
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probability is then encoded in the frequency at which the 

corresponding combination of the selecting signals occurs in 

the bit streams. It is shown that both HWA- and MWA-based 

FIR filters have improved performance in terms of area, power 

and speed, compared to the CWA design.  

Different resolutions are considered to determine the 

threshold (or break-even point) that defines the competitive 

resolution range for stochastic circuits. 3-bit to 16-bit FIR filters 

using both the stochastic and binary approaches are 

implemented initially. Then the minimum required stochastic 

sequence length that enables the stochastic circuit to filter 

signals as accurately as the binary circuit is determined 

empirically. The general metrics of throughput per area (TPA) 

and energy per operation (EPO) are used to characterize and 

compare the performance of the stochastic and conventional 

circuits.  

This article is a significant extension of [10]. It contains the 

following main contributions. 

  Stochastic FIR filters based on the HWA and MWA 

designs are proposed by using multiplexers to implement 

weighted adders. Different strategies are considered for 

generating the filter coefficients.  

  A detailed analysis is performed to evaluate the accuracy 

of the binary and stochastic filters. The analytical results 

provide an estimation of the minimum stochastic sequence 

length that is required to ensure that the performance of the 

stochastic filter matches that of a conventional filter. 

  A detailed comparison is provided with respect to the fault 

tolerance of the HWA- and MWA-based stochastic filters. The 

conventional binary filter and its fault-tolerant triple modular 

redundancy (TMR) implementation are considered in the 

comparison.   

In the sequel, we first review stochastic computing and 

binary FIR filter designs in Section II. In Section III, the 

stochastic FIR filter designs are presented. In Section IV, the 

performance is compared by considering the magnitude 

responses of both filters. In Section V, the simulation results 

from a Synopsys synthesis tool are reported. In Section VI, the 

accuracy of the FIR filters using both binary and stochastic 

computing is assessed. The fault tolerance of stochastic and 

conventional binary circuits are determined and compared in 

Section VII. Section VIII concludes the paper. 

II. BACKGROUND  

A. Stochastic Computing 

Stochastic computing involves processing numbers that are 

encoded as real values, which are represented using stochastic 

bit-streams. If there are N1 1’s in a bit stream containing Ns bits, 

where N1 ≤ Ns, it represents either the (unsigned) unipolar 

number N1/ Ns or the (signed) bipolar number (2N1–Ns)/ Ns [1, 

2]. For example, “0001100101” denotes 2/5 in unipolar and -

1/5 in bipolar for Ns = 10 and N1 = 4. Stochastic computing 

elements can often be built using very small circuits with low 

power consumption [1]. To encode a binary number containing 

Nb bits, the minimum sequence length is  𝑁𝑠,𝑚𝑖𝑛 = 2𝑁𝑏 . 

However, the required sequence length 𝑁𝑠  is usually made 

larger for increased accuracy during stochastic processing. 

Therefore, a performance matching multiplier is introduced as 

𝑃𝑀𝑀 = 𝑁𝑠/2𝑁𝑏 . The stochastic sequences are usually 

generated using linear feedback shift registers (LFSRs) or other 

similar pseudo-random bit sequence generators.  Fig. 1 shows a 

general stochastic computing system [2]. 

A stochastic weighted adder can be implemented with a 

multiplexer. If data inputs X1 and X2 are both encoded as 

unipolar (or bipolar) stochastic sequences, then the output Y of 

a two-input multiplexer will also be unipolar (bipolar). 

However, the multiplexer selecting signal A must be encoded 

as a unipolar sequence. Consider a stochastic implementation 

of the weighted sum 

 𝑌 = 𝐴1𝑋1 + 𝐴2𝑋2,           (1) 

where 𝐴1 and 𝐴2 are positive weights whose sum is one (i.e., 

𝐴1 + 𝐴2 = 1  and 𝐴1, 𝐴2 > 0 ). Data inputs 𝑋1  and 𝑋2  are 

encoded as stochastic sequences S(X1) and S(𝑋2), and weights 

A1 and A2 are encoded as unipolar stochastic sequences S(𝐴1) 

and S(A2). For the multiplexer, the select input A is driven by 

unipolar sequence S(A1), and so this input is 1 with probability 

P(S(A1)), i.e., 

P(S(A1)) =  A1 = 1 – A2.         (2) 

The multiplexer output Y will be 1 with probability P(S(Y)), i.e., 

 P(S(Y)) = A1∙P(S(X1)) + A2∙P(S(X2)).             (3) 

First consider the case of unipolar data inputs. By definition 

the numbers encoded by sequences S(X1), S(X2) and S(Y) are 

exactly 𝑃(𝑆(𝑋1)) = 𝑋1,  𝑃(𝑆(𝑋2)) = 𝑋2 and 𝑃(𝑆(𝑌)) = 𝑌, 
respectively. Thus the computed output value Y will be the 

desired weighted sum 𝐴1𝑋1 + 𝐴2𝑋2. 

Now consider the case of bipolar data inputs.  By definition, 

the numbers encoded by S(X1), S(X2) and S(Y) are exactly 
𝑋1+1

2
, 

𝑋2+1

2
 and 

𝑌+1

2
, respectively. Thus the output sequence S(Y) will 

be 1 with probability P(S(Y)), i.e., 

𝑃(𝑆(𝑌)) =
𝐴1𝑋1+𝐴2𝑋2+𝐴1+𝐴2

2
=

𝐴1𝑋1+𝐴2𝑋2+1

2
.     (4) 

From the definition of the bipolar encoding, sequence S(Y) 

encodes the number 

 Y = 2 ∙ 𝑃(𝑆(𝑌)) − 1 = 𝐴1𝑋1 + 𝐴2𝑋2,          (5) 

which is again the desired weighted sum. 

The same argument can be generalized to weighted sums 

containing N ≥ 2 inputs implemented with N-input multiplexers, 

where the weights 𝐴1, 𝐴2, … , 𝐴𝑁 sum up to 1. 
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Fig. 1. A basic stochastic computing system. 

B. Encoding Numbers as Unipolar and Bipolar Stochastic 

Sequences 

Stochastic number generators (SNGs) are typically based on 

pseudo-random bit generators such as linear feedback shift 

registers (LFSRs). For example, to generate the stochastic 

sequence for a 4-bit unsigned binary number, the SNG in Fig. 

2(a) is implemented with a 4-bit LFSR [2]. The SNG in Fig. 2(a) 

converts a 4-bit unsigned binary number x to a stochastic 

number (sequence) of length 16. The all-zero state must be 

inserted into the maximum-length (15-state) nonzero state 

sequence by adding extra combinational logic to a traditional 4-

bit LFSR (see Fig. 3) [2]. The SNG takes advantage of weight 

generation. The bit streams named W3, W2, W1 and W0 

represent the weights 1/2, 1/4, 1/8 and 1/16, respectively. The 
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binary number x is converted bit-by-bit with different weights 

assigned to them. Therefore, we have  

𝑃(𝑆) =
1

2
∙ 𝑥[3] +

1

4
∙ 𝑥[2] +

1

8
∙ 𝑥[1] +

1

16
∙ 𝑥[0] =

(8∙𝑥[3]+ 4∙𝑥[2]+ 2∙𝑥[1]+ 1∙𝑥[0])

16
= 𝑥/16,  

(13) 

where S is the output sequence of the SNG and P(S) is the 

probability that S represents. Thus S is the stochastic 

representation of the binary number x. 
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(b) 
Fig. 2. (a) Unipolar stochastic number generator [2] and (b) Bipolar 

stochastic number generator. 
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Fig. 3. A 4-bit LFSR with the all-zero state. 

For signed numbers, we use bipolar stochastic 

representations [1]. An Ns-bit stochastic sequence with N1 1’s 

encodes the probability of (2×N1 – Ns)/Ns. To design an SNG 

for signed numbers, let us consider the mappings of a signed 

binary number to its stochastic representation. For example, for 

each 4-bit signed binary number in two’s complement, Table 1 

shows the relationship with the probability that every single bit 

in the stochastic sequence is ‘1’ and the probability that is 

encoded in the bipolar stochastic representation, assuming that 

the sequence length is 16 bits. This relationship reveals that the 

stochastic conversion of a signed binary number can be 

implemented by the SNG for unsigned numbers by simply 

inverting the sign bit and treating the remaining bits in the 

signed binary number as for an unsigned number. This SNG 

design is shown in Fig. 2(b). To invert the signal of the sign bit 

in the 4-bit signed number, a NOR gate is used to replace the 

AND gate connected to the sign bit.  Also, some inverters are 

combined into one at the output of L3. 

 

Table 1. The mapping scheme for unsigned binary numbers and their 

corresponding stochastic representations. 

Decimal 

Signed Binary 

Number in 2’s 

complement 

Probability of 

any bit being 

‘1’ in the 16-

bit sequence 

Probability in bipolar 

representation: 

(𝟐 × 𝑁1 − 𝑁𝑠)/𝑁𝑠 

7 0111 15/16 (2×15−16)/16 = 7/8 

6 0110 14/16 (2×14−16)/16 = 6/8 

5 0101 13/16 (2×13−16)/16 = 5/8 

4 0100 12/16 (2×12−16)/16 = 4/8 

3 0011 11/16 (2×11−16)/16 = 3/8 

2 0010 10/16 (2×10−16)/16 = 2/8 

1 0001 9/16 (2×9−16)/16 = 1/8 

0 0000 8/16 (2×8−16)/16 = 0/8 

−1 1111 7/16 (2×7−16)/16 = −1/8 

−2 1110 6/16 (2×6−16)/16 = −2/8 

−3 1101 5/16 (2×5−16)/16 = −3/8 

−4 1100 4/16 (2×4−16)/16 = −4/8 

−5 1011 3/16 (2×3−16)/16 = −5/8 

−6 1010 2/16 (2×2−16)/16 = −6/8 

−7 1001 1/16 (2×1−16)/16 = −7/8 

−8 1000 0/16 (2×0−16)/16 = −8/8 

C. FIR Filters 

An Nf –tap FIR filter implements a sum of products over a 

sliding window of the Nf most recent input samples, as specified 

in (6). The coefficients H[i] (i = 0, 1, …, 𝑁𝑓 − 1) give the finite 

impulse response of the filter. 

𝑌[𝑛] =  ∑ 𝐻[𝑖] 𝑋[𝑛 − 𝑖]
𝑁𝑓−1

𝑖=0
  (6) 

The hardware implementation of an FIR filter consists of adders 

and multipliers as well as delay units, which are typically 

implemented as D flip flops (DFFs) (Fig. 4). To meet the 

minimum resolution requirement in a stochastic design, the 

stochastic sequence must be of length ≥ 𝑃𝑀𝑀 ∙ 2𝑁𝑏, where Nb 

is the binary bit resolution and 𝑃𝑀𝑀 ≥ 1 . However, this 

requires huge storage and almost certainly excessive latency [7].  

One solution to the relatively long latency and large storage 

cost is to move the binary input signal samples through the 

DFFs before they are expanded into stochastic bit streams (Fig. 

5). At every stochastic clock cycle there will be one stochastic 

bit generated by each of the SNGs. These stochastic bits and the 

stochastic coefficients are then processed serially to form the 

final output. In Fig. 5, S(X[n-i]) and S(H[i]) are the stochastic 

bit streams encoding the values of X[n-i] and H[i], respectively, 

where i = 0, 1, 2, 3. An Ns-bit stochastic sequence S(Y[n]) is 

produced as the filter output over Ns stochastic clock cycles. 

Note that the sample clock cycle contains Ns stochastic clock 

cycles to allow one stochastic operation. The design in Fig. 5 

requires four expensive SNG modules (based on four Nb-bit 

LFSRs) but only three Nb-bit registers. Therefore, it has 

relatively low cost and thus is chosen for further investigation.   

× × × ×

+ + +D
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D
2

D
3

CLOCK

X[n] H[3] H[2] H[1] H[0]

Y[n]

 
Fig. 4. A 4-tap FIR filter design (i.e., Nf = 4 in (6)). 
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Fig. 5. A 4-tap Stochastic FIR filter design (i.e., Nf = 4 in (6)) [7]. 

III. PROPOSED STOCHASTIC FIR FILTERS  

A. Conventional Weighted Average (CWA) Design 

The conventional weighted average (CWA) design was built 

using conventional stochastic arithmetic elements as a basis for 

comparison with two novel stochastic designs introduced later. 

At the core of an Nf -tap FIR filter is an Nf -input weighted 

average function. For a 16-tap FIR filter, this function is 

implemented using stochastic logic, see Fig. 6. The multiplexer 

(MUX) is used as a simple adder. The XNOR gates implement 

bipolar multiplications provided that the two input sequences, 

i.e., the input sequence and the corresponding coefficient 

sequence, are statistically independent [2]. Two Ns-bit bipolar 

stochastic sequences S1 and S2 are said to be independent if 

𝑃(𝑆1 ⊕ 𝑆2 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) =  𝑃(𝑆1)  ∙  𝑃(𝑆2) (7) 

where P(S1) and P(S2) denote the probabilities encoded by S1 

and S2, respectively. 𝑆1 ⊕ 𝑆2 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  denotes the sequence produced 

by an XNOR gate with S1 and S2 as input sequences. Note that 

the selecting signals are unipolar sequences encoding the 

probability of 0.5. In Fig. 6, all the numbers to data inputs are 

converted by using bipolar SNGs (denoted by SNGb) and all the 

numbers to selecting inputs are converted using unipolar SNGs 

(denoted by SNGu). 
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Fig. 6. The 16-tap stochastic FIR filter using the conventional stochastic 

design.  

B. Hard-wired Weighted Average (HWA) Design 

In the CWA design, the SNGs cannot be shared, due to the 

requirement of signal independency. In the hard-wired 

weighted average (HWA) design, however, the absolute values 

of the coefficients can be implemented by assigning unbiased 

stochastic sequences to the selecting inputs of the multiplexer. 

In an unbiased stochastic sequence, the probabilities of each bit 

being ‘1’ and ‘0’ are the same, i.e., 0.5. The probability is then 

the same for selecting each of the inputs. However, a particular 

data input can be given more weight in the multiplexer output 

by connecting the input to multiple multiplexer inputs. Note 

that the signs of the coefficients can be implemented by XOR 

gates at the data inputs of the multiplexer. XOR gates invert the 

corresponding input when the coefficient is negative. When the 

coefficients are positive, the XOR gates become buffers. 

In Fig. 7, for example, Wires 8 to 15 are associated with the 

same input S(X[n-4]), where S(X[n-4]) is the stochastic bit 

stream encoding the value of X[n-4]. Thus the probability of 

selecting the input S(X[n-4]) is 8/16 or 1/2, which means the 

coefficient of X[n-4] is either 1/2 or -1/2. Similarly, all the other 

coefficients can be weighted by repeating inputs appropriately. 

The weighted average function in (8) requires a multiplexer 

with four selecting inputs. It can be implemented by a 16-input 

multiplexer with combined data inputs as in Fig. 7. 

𝑌 = 𝑠𝑖𝑔𝑛(𝐴[0]) ∙
1

16
 ∙ 𝑋[n] + 𝑠𝑖𝑔𝑛(𝐴[1]) ∙

1

16
 ∙ 𝑋[n − 1] +

𝑠𝑖𝑔𝑛(𝐴[2]) ∙
1

8
 ∙ 𝑋[n − 2] + 𝑠𝑖𝑔𝑛(𝐴[1]) ∙

1

4
 ∙ 𝑋[n − 3]  +

𝑠𝑖𝑔𝑛(𝐴[0]) ∙
1

2
 ∙ 𝑋[n − 4].  

(8) 

The HWA design potentially improves upon the CWA design 

in that the SNGs for the weights can be removed. 

In general, to implement the Nf -tap FIR filter in (6) using an 

Nb-bit resolution, the major steps are as follows:  

 1) Convert the floating point coefficients H[i] in (6) to fixed 

point Nb-bit binary numbers A[n−i], where i = 0, 1, …, 𝑁𝑓 − 1. 

2) Calculate the sum of all the absolute values of the 

coefficients 𝐴 = ∑ |𝐴[n − 𝑖]|
𝑁𝑓−1

𝑖=0
 where A[n− i] is an Nb-bit 

binary number, for i = 0, 1, …, 𝑁𝑓 − 1. 

3) The multiplexer has 2𝑁𝑚  data inputs and Nm selecting 

inputs, where Nm is determined by 𝑁𝑚 = ⌈𝑙𝑜𝑔2 𝐴⌉ and ⌈∙⌉ is the 

ceiling function. Each selecting input is an unbiased stochastic 

sequence encoding the probability of 0.5. 

4) The number of inputs to be combined is given by |𝐴[𝑖]| 
for input X[n−i] (i = 0, 1, ..., 𝑁𝑓 − 1). The sign of the coefficient 

A[i] (i = 0, 1, ..., 𝑁𝑓 − 1 ) is one of the inputs of the 

corresponding XOR gate.  

 5) Use a synthesis tool to optimize the design. 
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Fig. 7. The hard-wired weighted average design of a 5-tap FIR filter. 

C. Multi-level Weighted Average (MWA) Design 

In general, the function of a weighted adder is given by  

Y = α ∑ A[i] X[n − i]
𝑁𝑓−1

𝑖=0
,                         (9) 

where α = 1/ ∑ A[i]
𝑁𝑓−1

𝑖=0
. To implement a stochastic weighted 

average using multiplexers, the weights are generated from the 

absolute values of the coefficients A[i] (i = 0, 1, …, 𝑁𝑓 ). 

Therefore, (9) can be changed to  

Y = α ∑ |A[i]| ∙ sign(A[i]) X[n − i]
𝑁𝑓−1

𝑖=0
,           (10) 

where α = 1/ ∑ |A[i]|
𝑁𝑓−1

𝑖=0
. To implement the weighted adder 

for an Nf -tap FIR filter, ⌈log2 𝑁𝑓⌉ selection signals are required. 

As an example, consider the design of a 4-tap FIR filter. In this 

case, A[0], A[1], A[2] and A[3] are the conventional binary 

coefficients determined by the filter specification. The sign of a 

coefficient is implemented using an XOR gate at the data input 

of the weighted adder. If the coefficient is positive, the XOR 

gate becomes transparent without changing the input value. If 

the coefficient is negative, the XOR gate acts like an inverter to 

invert the corresponding input value. The two selection signals 

are determined by the weights or filter coefficients, and they are 

used to select one of the four multiplexer inputs (see Fig. 8 (b)). 

The probability that each combination appears (e.g. Sel[0] = 0, 

Sel [1] = 1) is the normalized coefficient for that input 

(e.g.|A[1]| ∙ α).  The stochastic representation of a number must 

lie within the interval of [0, 1], so the coefficients are already 

normalized by the factor α in (9) and (10). The relationship 

between the specified coefficients and the probabilities of 

selecting the corresponding inputs (see Fig. 8) is given by 
P{Sel[0] =  0} =  (|A[0]| + |A[1]|) ∙  α, 

 
(11) 

P{Sel[0] =  1} =  1 −  (|A[0]| + |A[1]|)  ∙  α, 
 

(12) 
P{Sel[1]  =  0 | Sel[0]  =  0}  =   |A[0]|/(|A[0]| + |A[1]|), 
 

(13) 
P{Sel[1]  =  1 | Sel[0]  =  0}  =   |A[1]|/(|A[0]| + |A[1]|), 
 

(14) 
P{Sel[1]  =  0 | Sel[0]  =  1}  =   |A[2]|/(|A[2]| + |A[3]|), 
 

(15) 
P{Sel[1]  =  1 | Sel[0]  =  1}  =   |A[3]|/(|A[2]| + |A[3]|). 
 

(16) 

Here, P{Sel[X] = Y} denotes the probability that the select 

signal Sel[X] (X = 0 or 1) is Y (Y = 0 or 1). P{ Sel[X1] = Y1 | 

Sel[X2] = Y2 } denotes the probability of the select signal bit 

Sel[X1] (X1 = 0 or 1) being Y1 (Y1 = 0 or 1) under the condition 

that the select signal bit Sel[X2] (X2 = 0 or 1) is Y2 (Y2 = 0 or 

1). Stochastic sequences can then be generated to represent the 

corresponding select signals. Equations (11) through (16) can 

be implemented using the Weight Generator (WG) in Fig. 8 (a). 

Then the weighted addition can be realized using the Weighted 

Adder (WA) in Fig. 8 (b) with the selecting signals provided by 

instances of the WG in Fig. 8 (a). 

MUX
(WG)S(P{Sel[1] = 1 | Sel[0] = 1})

Sel[1]

Sel[0]

S(P{Sel[1] = 1 | Sel[0] = 0})

MUX
(WA)

S(X[0])

S(X[1])

S(X[2])

S(X[3])

Y

Sel[1]

Sel[0]
    

(a)                                            (b) 
Fig. 8.  A 4-term sum of products implemented using (a) a stochastic Weight 

Generator (WG) and (b) a stochastic Weighted Adder (WA). 

The overall schematic of a 16-tap FIR filter using the 

proposed weighted average structure is shown in Fig. 9. Three 

multiplexers (WG1, WG2 and WG3) are needed as weight 

generators for the four selecting signals. For the selecting 

signals, Sel[0] comes directly from a SNG that encodes its 

corresponding binary value. The signal Sel[0] is a stochastic 

sequence encoding P{Sel[0] =  1} as shown in Equation (12). 

Sel[1] is the output of the 2:1 MUX whose selecting signal is 

Sel[0]. Signals Sel[2] and Sel[3] are generated similarly. 

Therefore we have four different sizes of multiplexers in the 

core of the stochastic FIR filter design. The 16:1 MUX (WA) 

implements the sum of products as a weighted average while 

the other three multiplexers implement weight generators. Note 

that the bipolar SNGs are used at the data inputs of the weighted 

adder, and unipolar SNGs are used elsewhere. 

WG1
(2-input 

MUX)P{Sel[1] = 1 | Sel[0] = 1}

Sel[1]

P{Sel[1] = 1 | Sel[0] = 0}

Sel[2]

Sel[3]

WG2
(4-input 

MUX)
P{Sel[2] = 1 | Sel[1] = 1,Sel[0] = 1}

WG3
(8-input 

MUX)

P{Sel[3] = 1 | Sel[2] = 1,Sel[1] = 1,Sel[0] = 1}

P{Sel[3] = 1 | Sel[2] = 0,Sel[1] = 0,Sel[0] = 0}

Sel[0]

P{Sel[2] = 1 | Sel[1] = 1,Sel[0] = 0}

P{Sel[2] = 1 | Sel[1] = 0,Sel[0] = 1}

P{Sel[2] = 1 | Sel[1] = 0,Sel[0] = 0}

P{Sel[3] = 1 | Sel[2] = 1,Sel[1] = 1,Sel[0] = 0}

WA
(16-input

 MUX)

S(X[15])

S(Y)
Counter

Y

X[n-15]
D15

SNGb

SNGu

SNGu

SNGu

SNGu

SNGu

SNGu

SNGu

SNGu

SNGu

SNGu

P{Sel[0] = 1}

XORSign(A[n-15])

S(X[2])

X[n-2]
D2

SNGb
XORSign(A[n-2])

S(X[1])

X[n-1]
D1

SNGb
XORSign(A[n-1])

S(X[0])

X[n]
SNGb

XORSign(A[n])
Input Sample 

Sample Clock

Fig. 9. The 16-tap FIR filter implemented with the multi-level weighted average 

(MWA) design. 
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IV. PERFORMANCE EVALUATION OF THE CONVENTIONAL 

BINARY AND THE PROPOSED STOCHASTIC FIR FILTERS 

A low-pass FIR filter design was considered to evaluate the 

proposed stochastic and binary filter designs. Detailed 

specifications of the low-pass filter are given in Table 2. 

Table 2. Low-pass FIR filter specifications 

Specifications Values 

Cut-off frequency fc 100 Hz 

The width of the transition band BW 30 Hz 

Minimum stop-band attenuation -50 dB 

Maximum peak-to-peak pass-band ripple 0.1 dB 

The filter was designed using a Hamming window, with the 

embedded Matlab function fir1(). The number of taps is 267, 

i.e., Nf = 267. The filter coefficients are obtained to meet the 

specifications in Table 2. The binary filter operates by 

converting the floating point numbers to fixed point numbers at 

different resolutions. The stochastic filters are built using the 

hard-wired weighted average (HWA) design and the multi-level 

weighted average (MWA) design. The sequence length Ns is 

given by 𝑁𝑆 = 2𝑁𝐿𝐹𝑆𝑅, where 𝑁𝐿𝐹𝑆𝑅 is the number of bits in an 

LFSR. Various sequence lengths were investigated for different 

resolutions to compare with the conventional binary design. In 

this experiment, 𝑁𝐿𝐹𝑆𝑅 was varied from 3 up to 30 (i.e, 𝑁𝐿𝐹𝑆𝑅  = 

3, 4, …, 30) to determine the sequence length. The resolution 

Nb ranges from 3 bits to 16 bits. The magnitude responses of the 

filters were then investigated. Passband ripples (PRs) and 

stopband attenuations (SAs) are used to evaluate the 

performance of the binary design for various resolutions and the 

stochastic designs for different sequence lengths. Here PR and 

SA are defined as the maximum passband overshoot 

amplification and the minimum stopband attenuation, 

respectively. In this experiment, the passband, transition band 

and stopband are given as [0, 100 Hz], (100 Hz, 120 Hz] and 

(120 Hz, +∞), respectively. The results are shown in Table 3.  

In Table 3, the PRs and SAs are shown for different bit 

resolutions and sequence lengths for the MWA-based stochastic 

filter and the HWA-based stochastic filter. The stochastic FIR 

filters suffer from both quantization error and random 

fluctuations, but they show gradually-improving performance 

as the sequence length increases. For each bit resolution, the 

minimum sequence length 𝑁𝑠  was found that matches the 

performance of the stochastic FIR filters to that of the 

conventional Nb-bit binary FIR filter. The performance 

matching multiplier (PMM) is then calculated by 𝑃𝑀𝑀 =
𝑁𝑠/2𝑁𝑏. For example, for the 8-bit binary FIR filter, the HWA-

based stochastic FIR filter using sequences with at least 8192 

bits has smaller or similar passband ripples and stopband 

attenuations. The performance matching multiplier is 

thus 𝑃𝑀𝑀 = 8192/28 = 32. Therefore, the HWA-based 

stochastic implementation using 8192-bit sequences is 

considered as the best case to compare with the 8-bit binary 

conventional implementation. The same strategy was applied to 

determine the proper sequence lengths for various resolutions 

for the MWA-based stochastic filter. 

Table 4. Root mean square error (RMSE) comparison of the FIR filters using 

the conventional binary (CB) approach, the stochastic MWA approach and the 

stochastic HWA approach. 

Resolution 
(bits) 

RMSE (%) Stochastic 

Sequence 

Length (bits) 
CB MWA HWA 

3 6.533 6.219 6.028 64 

4 3.158 3.030 3.216 256 

5 1.626 1.598 1.582 512 

6 0.795 0.772 0.811 1,024 

7 0.392 0.381 0.377 2,048 

8 0.192 0.184 0.177 8,192 

9 0.092 0.102 0.093 16,384 

10 0.051 0.051 0.049 65,536 

11 0.025 0.027 0.023 524,288 

12 0.012 0.014 0.012 1,048,576 

13 0.006 0.005 0.006 4,194,304 

14 0.006 0.006 0.005 16,777,216 

15 0.005 0.004 0.006 134,217,728 

16 0.005 0.005 0.006 536,870,912 

Table 3. Performance of the FIR filters using the conventional binary approach, the stochastic MWA approach and the stochastic HWA approach. 𝑁𝑏: 
bit resolution, PR: passband ripple and SA: stopband attenuation. 

Resolution 
(Bits) 

Conventional Binary 
Implementation 

Stochastic MWA Implementation Stochastic HWA Implementation 

PR (dB) SA (dB) 𝑁𝑠 (bits) PR (dB) SA (dB) PMM 𝑁𝑠 (bits) PR (dB) SA (dB) PMM 

3 3.0776 -3.9121 64 2.5327 -7.0345 8 64 2.5826 -7.1452 8 

4 4.7882 -9.9327 256 1.3941 -11.3365 16 256 1.4147 -11.4942 16 

5 2.8602 -13.1133 512 1.3016 -14.5083 16 512 1.3247 -14.7042 16 

6 1.4623 -17.7985 1,024 0.7843 -17.6721 16 1,024 0.8017 -17.9031 16 

7 0.7215 -24.0151 2,048 0.5391 -20.3922 16 2,048 0.5522 -20.6530 16 

8 0.3913 -27.6340 8,192 0.2017 -27.2137 32 8,192 0.2098 -27.5353 32 

9 0.1795 -31.1319 16,384 0.2835 -31.6085 32 16,384 0.2826 -31.9565 32 

10 0.1026 -36.3678 65,536 0.0733 -35.6365 64 65,536 0.0715 -36.0254 64 

11 0.0517 -45.5820 524,288 0.0488 -44.1428 256 524,288 0.0507 -44.6030 256 

12 0.0324 -49.9427 1,048,576 0.0419 -47.8491 256 1,048,576 0.0373 -48.3225 256 

13 0.0392 -51.4476 4,194,304 0.0342 -51.0634 512 4,194,304 0.0348 -51.5738 512 

14 0.0350 -54.5942 16,777,216 0.0370 -54.9710 1,024 16,777,216 0.0369 -55.5106 1,024 

15 0.0360 -55.9094 134,217,728 0.0327 -54.3603 4,096 134,217,728 0.0351 -54.8941 4,096 

16 0.0364 -54.9557 536,870,912 0.0404 -54.7923 8,192 536,870,912 0.0364 -55.3241 8,192 
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To further show the performance of the proposed designs, 

results on the root mean square error (RMSE) are provided in 

addition to PR and SA (see Table 4). The RMSE is given by 

𝑁𝑀𝑆𝐸 = √
1

𝑁𝑡𝑟𝑖𝑎𝑙
∑ (𝑌𝑖 − 𝑌𝑖

′)2𝑁𝑡𝑟𝑖𝑎𝑙−1

𝑖=0 , (17) 

where 𝑌𝑖 and 𝑌𝑖
′ are the expected correct output and the actual 

output of the FIR filter, respectively, and 𝑁𝑡𝑟𝑖𝑎𝑙  is the number 

of trials or simulations. RMSE indicates the improvement in 

accuracy from using higher resolutions and longer sequences. 

The minimum resolution to achieve the filter specifications 

in Table 2 is 13 bits for the binary design. The attenuation in the 

stopband is -51.4476 dB and the passband ripple is 0.0392 dB. 

The magnitude responses of the stochastic and binary filters are 

plotted in Fig. 10 for 13-bit resolution. The HWA-based 

stochastic design with the minimum sequence length suffers 

from a maximum passband ripple of 0.2098 dB, as shown in 

Fig. 10 (b). The stopband attenuation for the HWA-based FIR 

filter is only -30.5392 dB (Fig. 10 (b)). To match the 

performance of the binary filter, the PMM has to be increased 

to 512 (Fig. 10 (c)). The PR and SA are 0.0348 dB and -51.5738 

dB, respectively, for the HWA-based stochastic filter in this 

case. We can draw the same conclusion for the MWA-based 

FIR filter in Table 3.  

These results are consistent with the theory in [11] that a 

rather long stochastic bit stream is required to achieve the same 

root mean square error (RMSE). The necessary stochastic bit 

stream length is found to be L=22n+1 (n is the binary bit 

resolution) due to the intrinsic fluctuation errors and the signal 

to noise ratio (SNR) decrease caused by multiple stages [11]. 

Such a long stochastic sequence means a relatively large 

computing time. Note that using variance reduction techniques 

such as non-Bernoulli sequences can increase accuracy and thus 

decrease PMM [12]. However, this comes at the price of 

requiring more hardware. For instance, non-Bernoulli sequence 

generation requires a process where a certain number of 1’s and 

0’s are generated and then scrambled by a pseudo-random 

number generator to achieve randomness. The area required by 

the stochastic number generators is often more problematic 

compared to the hardware required by the core 

 
(a)      

  
(b) 

 

(c) 

Fig. 10. Magnitude responses of 13-bit FIR filters: (a) Conventional binary 

design, (b) Stochastic HWA design without and with performance matching 
(PMM = 512) , (c) Stochastic MWA design without and with performance 

matching (PMM = 512). 

Table 5. Comparison of hardware cost, power consumption and minimum clock period for conventional binary (CB), CWA-based, MWA-based and 

HWA-based stochastic FIR filters including all the auxiliary circuits such as SNGs and counters. 

Resolution 
(Bits) 

Area (𝛍𝐦𝟐) Power (mW) Min Clock Period (ps) 

CB CWA MWA HWA CB CWA MWA HWA CB CWA MWA HWA 

3 12,757 14,944 12,972 12,855 24.24 20.35 19.89 19.82 390 370 310 340 

4 21,262 17,415 15,815 15,525 35.50 29.79 29.35 29.05 410 370 310 350 

5 31,893 21,023 18,948 18,752 47.86 40.17 38.21 38.02 420 400 320 360 

6 44,650 26,841 22,331 21,998 61.22 51.39 47.56 47.96 440 400 320 360 

7 59,533 27,989 24,801 24,710 75.49 63.36 59.31 59.06 470 410 340 390 

8 76,543 27,690 27,782 27,410 90.59 76.04 71.68 71.55 490 410 360 400 

9 95,679 33,545 30,796 29,986 106.49 89.38 84.82 84.66 490 420 380 410 

10 116,943 36,248 33,655 33,122 123.12 103.3 98.05 97.23 500 430 380 410 

11 140,330 38,343 36,690 36,510 140.45 117.9 109.2 109.0 510 470 390 420 

12 165,843 44,999 43,761 43,536 138.45 133.1 127.5 125.2 540 470 400 440 

13 193,482 46,574 45,921 44,910 158.45 148.7 141.5 140.7 550 470 400 440 

14 223,269 50,162 48,774 48,067 177.10 164.8 159.8 159.2 570 490 410 450 

15 255,141 53,746 51,991 50,829 196.36 181.5 176.1 174.8 590 490 420 460 

16 289,160 57,322 55,039 54,898 226.64 198.6 192.8 189.6 640 500 440 460 
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circuit in stochastic computing. Therefore, any variation 

reduction technique should be carefully evaluated to determine 

if the advantage would justify the increased overhead.  

Note that a shorter sequence length can be used for the HWA-

based stochastic filter to obtain a degraded but possibly still 

acceptable performance. For example, if the PMM is 32 instead 

of 512, the SA becomes -42.3512 dB and the PR is 0.0593 dB 

(see Fig. 11 (b)). However, the time and energy per computed 

output is reduced to only 1/16 of the previous result. Similarly, 

the MWA-based stochastic FIR filter also benefits from the 

property of graceful degradation in performance (see Fig. 11 

(c)). In contrast, an 11-bit conventional binary implementation 

of the filter shows similarly degraded performances with an SA 

of -45.5820 dB and a PR of 0.0517 dB (see Fig. 11 (a)), 

however with very little saving in energy consumption. This is 

discussed in more detail next. 

V. SIMULATION RESULTS 

For hardware performance comparison, the Synopsys Design 

Compiler was used to synthesize a high-level design in VHDL 

into a standard cell ASIC design. Metrics such as silicon area, 

power consumption and delay were obtained.  

The FIR filters specified in Table 2 were simulated for 

various resolutions from 3 bits to 16 bits. In Table 5, the circuit 

performance is compared with respect to silicon area, power 

consumption and delay. Although the core of the stochastic 

circuit is implemented using XNOR gates and multiplexers as 

adders and multipliers, the interfacing circuits require a 

relatively large number of SNGs and counters, especially for 

FIR filters with a large number of taps. The hardware cost of 

binary circuits grows faster than that of the stochastic circuits, 

so for a larger resolution, the stochastic circuits become 

increasingly advantageous over a binary design. The auxiliary 

circuits such as the SNGs and counters, however, make this 

advantage of stochastic circuits less significant. Although 

stochastic logic gates such as multiplexers and XNOR gates are 

inexpensive, the auxiliary circuits used for conversions can be 

costly in terms of silicon area and power. In fact, in a 12-bit 

HWA-based stochastic FIR filter, we found that 80.3% of the 

silicon area comes from the stochastic number generators and 

counters. 

 

(a) 

 

(b) 

 

(c) 

Table 6. Comparison of hardware cost, power consumption and minimum clock period for conventional binary (CB), CWA-based, MWA-based and 

HWA-based stochastic FIR filters without any auxiliary circuits such as SNGs and counters. 

Resolution 
(Bits) 

Area (𝛍𝐦𝟐) Power (mW) Min Clock Period (ps) 

CB CWA MWA HWA CB CWA MWA HWA CB CWA MWA HWA 

3 12,757 8,719  8,747  2,565  24.24 15.7  15.5  4.0  390 220 210 170 

4 21,262 8,719  8,747  3,096  35.5 15.7  15.5  5.8  410 220 210 180 

5 31,893 8,719  8,747  3,749  47.86 15.7  15.5  6.6  420 220 210 180 

6 44,650 8,719  8,747  4,399  61.22 15.7  15.5  7.5  440 220 210 180 

7 59,533 8,719  8,747  4,931  75.49 15.7  15.5  9.8  470 220 210 200 

8 76,543 8,719  8,747  5,461  90.59 15.7  15.5  11.3  490 220 210 200 

9 95,679 8,719  8,747  5,980  106.49 15.7  15.5  12.9  490 220 210 210 

10 116,943 8,719  8,747  6,620  123.12 15.7  15.5  14.4  500 220 210 210 

11 140,330 8,719  8,747  7,287  140.45 15.7  15.5  15.7  510 220 210 210 

12 165,843 8,719  8,747  8,669  138.45 15.7  15.5  17.0  540 220 210 220 

13 193,482 8,719  8,747  8,947  158.45 15.7  15.5  18.1  550 220 210 220 

14 223,269 8,719  8,747  9,602  177.1 15.7  15.5  19.8  570 220 210 230 

15 255,141 8,719  8,747  10,155  196.36 15.7  15.5  20.8  590 220 210 230 

16 289,160 8,719  8,747  10,964  226.64 15.7  15.5  21.3  640 220 210 230 

 



 9 

Fig. 11. Magnitude responses of lower-quality FIR filters: (a) 11-bit 

conventional binary design, (b) 13-bit stochastic HWA design with PMM = 32, 
(c) 13-bit stochastic MWA design with PMM = 32. 

 

Note that both the binary and stochastic circuits have been 

optimized for maximum throughput by adding pipeline 

registers as determined by the Synopsys synthesis tool. The area 

could be over-estimated for this reason. As shown in Table 3, 

the sequence length explains the long latency required in the 

operation of a stochastic circuit. Adopting a faster clock is a 

potential way to reduce latency. With the help of timing 

analysis, the clock can be pushed to the limit according to the 

slack time. The results are shown in Table 5. The required 

stochastic sequence length is given by 2𝑁𝑏 ∙ 𝑃𝑀𝑀, where Nb 

(Nb = 3, 4, …, 16) is the binary resolution and PMM is the 

performance matching multiplier. The reported power 

consumptions are estimated at the fastest clocks for each of the 

resolutions. 

Techniques have been proposed that avoid the auxiliary 

circuits such as SNGs. For example, the authors in [9] proposed 

to generate random bits from analog signals using sigma-delta 

modulation. We therefore decided to present the circuit 

performance when auxiliary circuits are excluded. Only the 

core of the stochastic circuits is considered without the auxiliary 

circuits such as SNGs and counters. Area, power and minimum 

clock period results are reported in Table 6. The core of the 

CWA-based and MWA-based circuits for the 267-tap FIR filter 

does not change for various bit resolutions. The HWA-based 

implementation becomes more complex as the bit resolution 

increases. This is because the HWA-based structure depends on 

the coefficients of the filter. In Table 6, it can be seen that the 

stochastic circuits use less hardware area and consume less 

power compared to the conventional binary implementation as 

expected. The advantage of stochastic circuits becomes more 

significant as the bit resolution increases. 

It can be seen that the stochastic circuits are more compact 

and they consume less energy per clock cycle than conventional 

implementations. However, they suffer from the long latency 

caused by the required stochastic sequences, which makes the 

total energy per operation (EPO) less competitive. EPO is 

obtained as the product of power and the time required for 

performing one operation. Throughput per area (TPA) is further 

considered as the number of operations per circuit area in a unit 

time. When computing the TPA and the EPO, the stochastic 

FIR filter must work as effectively as the binary conventional 

FIR filter. The effectiveness is measured using the performance 

metrics passband ripple (PR) and stopband attenuation (SA) in 

Table 3, so the sequence lengths in Table 3 must be used, which 

makes the results even less competitive at high resolutions. In 

fact, the stochastic approach is no longer competitive in terms 

of TPA and EPO when long sequences have to be used in a 

stochastic implementation. 

When the auxiliary circuits, such as stochastic number 

generators and counters, are shared in a large circuit, their cost 

may be acceptably small compared to the core stochastic circuit. 

As the two proposed stochastic designs have similar 

performance, we use the stochastic HWA-based circuit to 

compare with the conventional binary circuit. Figs. 12 and 13 

show plots of EPO and TPA, respectively, for the binary and 

stochastic HWA-based circuits (with and without the auxiliary 

circuits). For stochastic implementations, the sequence length 

is the factor that dominates the overall circuit performance in 

terms of TPA and EPO. As the required sequence lengths are 

the same for both the HWA-based and MWA-based 

implementations, the circuit performances of the two designs 

are also similar. Therefore we only show the TPA and EPO for 

the stochastic HWA-based circuit. The y-axes in both plots are 

the base-10 logarithms of the original metrics. The x-axes are 

the bit resolutions from 3 bits to 16 bits. The two figures show 

that the stochastic approach is not competitive in terms of the 

EPO and TPA. The higher the resolution, the less competitive 

the stochastic implementation becomes. This is caused by the 

required sequence length, which grows exponentially with the 

bit resolution. When the auxiliary circuits are not considered, 

the stochastic circuit shows a better performance. In particular, 

it performs better in terms of the TPA than the binary design for 

resolutions below 5 bits. 

 
Fig. 12. Energy per Operation comparison: Stochastic HWA Design 

(with/without auxiliary circuits) and the Binary Design. 

 
Fig. 13. Throughput per Area comparison: Stochastic HWA Design 

(with/without auxiliary circuits) and the Binary Design. 

Although the stochastic designs suffer from long latencies, 

their performance degrades gracefully as the energy is reduced.  

Take the 13-bit designs as an example. As shown in Table 7, a 

lower-quality HWA-based stochastic filter is implemented 

using 262,144 bits (compared to 4,194,304 bits required by an 

HWA-based filter that matches the performance of a 13-bit 

conventional binary filter). An 11-bit conventional binary filter 

shows similarly degraded performance. The stopband 

attenuation of both the lower-quality filters is 6 dB higher than 

that of the good-quality filters. As the HWA-based stochastic 

filter only requires 1/16 of the original sequence length, the 

EPO is just 6.25% of that for the good-quality HWA-based 

filter. Similarly, the EPO of the lower quality MWA-based 

stochastic filter is only 6.32% of that for the good-quality 
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MWA-based filter. However, the 11-bit binary filter consumes 

82.19 % of the energy per operation compared to the 13-bit 

binary filter. The EPOs of these lower-quality filters are shown 

in Table 7. 

Table 7. Energy savings with lower-quality implementations for conventional 

binary (CB), MWA-based and HWA-based FIR filters 

Implementations CB MWA HWA 

EPO of Higher 

Quality Filter (pJ) 
87.15 22,397,583,360 253,700,027 

EPO of Lower 
Quality Filter (pJ) 

71.63 1,415,848,960 15,856,251 

Energy Saving (%) 17.81 93.68 93.75 

VI.  ERROR ANALYSIS  

A. Sources of Errors and Inaccuracies  

In conventional FIR filters, errors are mainly due to the finite 

word length effect. Because of the limited size of registers, a 

real number has to be rounded to the nearest number that the 

computer can store. More specifically, the input quantization, 

coefficient quantization and truncated products in 

multiplication are the major sources of such inaccuracies. In 

stochastic circuits, errors are also caused by the random 

fluctuation of the stochastic bits. This type of error or noise is 

propagated through the computation process to the circuit 

output.  

B. Error Analysis for Conventional Binary Filters 

1) Quantization errors due to the finite word length effect 

When a signal is quantized at the inputs of an FIR filter, both 

the rounding and floor functions are applied. Because the floor 

function can introduce a biased error distribution into the digital 

system, we only consider rounding in our experiments. The 

quantization error caused by the finite word length effects is 

then considered. For any digital system with Nb-bit resolution, 

an 𝑁𝑏
′ -bit normalized binary number x in [0, 1] has to be 

rounded off to become a normalized binary number 𝑥′ with Nb 

bits. By normalized we mean that the weights of bits (from the 

most significant bit to the least significant bit) in an Nb-bit 

binary number form a geometric series {2−1, 2−2, … , 2−𝑁𝑏  }. 

The weight 𝑎𝑖  of the ith binary bit is either 0 or 1. The values of 

x and 𝑥′are therefore between 0 and 1: 

𝑥 =  ∑ 𝑎𝑖 ∙ 2−𝑖𝑁𝑏
′

𝑖=1 =  ∑ 𝑎𝑖 ∙ 2−𝑖𝑁𝑏
𝑖=1 + ∑ 𝑎𝑖 ∙ 2−𝑖𝑁𝑏

′

𝑖=𝑁𝑏+ 1 ;  

(18) 
𝑥′ = {

∑ 𝑎𝑖 ∙ 2−𝑖𝑁𝑏
𝑖=1 , if 𝑎𝑁𝑏+ 1 = 0,

2−𝑁𝑏 + ∑ 𝑎𝑖 ∙ 2−𝑖𝑁𝑏
𝑖=1 , if 𝑎𝑁𝑏+ 1 = 1.

   

The quantization error 𝑒𝑞 is calculated as 

𝑒𝑞 = 𝑥 − 𝑥′ =

{
∑ 𝑎𝑖 ∙ 2−𝑖𝑁𝑏

′

𝑖=𝑁𝑏+ 2 , if 𝑎𝑁𝑏+ 1 = 0,

−2−(𝑁𝑏+1) + ∑ 𝑎𝑖 ∙ 2−𝑖𝑁𝑏
′

𝑖=𝑁𝑏+ 2 , if 𝑎𝑁𝑏+ 1 = 1.
   

(19) 

Let ∆  be the minimum distance between two numbers 

represented by Nb bits, i.e., 

∆ = 2−𝑁𝑏 . (20) 

Then the quantization error 𝑒𝑞 is bounded by  

− 
∆

2
≤ 𝑒𝑞 <  

∆

2
.  (21) 

The quantization error 𝑒𝑞  is usually defined as a white noise 

which is independent of the input signal. Therefore, we 

establish a statistical model for the quantization error as 

described in Fig. 14. The quantization error 𝑒𝑞  is an additive 

variable to the linear system. Among all possible values, 𝑒𝑞 is 

considered evenly distributed. The probability density function 

(PDF) of the quantization error 𝑒𝑞 is described as [14]. 

𝑓(𝑒𝑞) = {
1

∆
, − 

∆

2
≤ 𝑒𝑞 <  

∆

2
;

0,                𝑜𝑡ℎ𝑒𝑟𝑠.
   (22) 

Based on the PDF, the mean and the variance of 𝑒𝑞 are given 

by  

𝐸(𝑒𝑞) = ∫ 𝑒𝑞 ∙ 𝑓(𝑒𝑞)𝑑𝑒𝑞

∆

2

−
∆

2

=  0. (23) 

𝜎𝑞
2 =  𝐸[(𝑒𝑞 −  𝐸(𝑒𝑞) )2] = ∫ (𝑒𝑞 −  𝐸(𝑒𝑞) )2  ∙

∆

2

−
∆

2

𝑓(𝑒𝑞)𝑑𝑒𝑞 =  ∫
1

∆
𝑒𝑞

2𝑑𝑒𝑞

∆

2

−
∆

2

=  
∆2

12
=  

1

12∙22𝑁𝑏
. 

(24) 

 
Fig. 14. A statistical model for the quantization error 𝑒𝑞: Xa is the analog input 

and Xd is the digital sample from Xa; Xq is the quantized sample with 

quantization error 𝑒𝑞 [14]. 

 

2) Inaccuracies in the computation of conventional FIR 

filters 

A statistical model is developed to evaluate error 

accumulation and propagation in the computation.  Because an 

FIR filter is a linear system, errors added to the FIR filters are 

propagated to the next arithmetic operation with similar 

characteristics. To start the analysis, the original/theoretical FIR 

filter in (6) is simplified to  

𝑌 =  ∑ 𝐻𝑖 𝑋𝑖

𝑁𝑓−1

𝑖=0
, (25) 

where Hi and Xi are numbers with infinite precision. By 

quantization, the actual result Y’ is biased from the expected 

result Y, i.e., 

𝑌′ =  ∑ (𝐻𝑖 + 𝑒𝐻𝑖)(𝑋𝑖 + 𝑒𝑋𝑖)
𝑁𝑓−1

𝑖=0
  

=  ∑ (𝐻𝑖𝑋𝑖 + 𝑋𝑖𝑒𝐻𝑖 + 𝐻𝑖𝑒𝑋𝑖 + 𝑒𝐻𝑖𝑒𝑋𝑖) 
𝑁𝑓−1

𝑖=0
  

=  𝑌 + ∑ (𝑋𝑖𝑒𝐻𝑖 + 𝐻𝑖𝑒𝑋𝑖 + 𝑒𝐻𝑖𝑒𝑋𝑖)
𝑁𝑓−1

𝑖=0
, 

(26) 

where  𝑒𝐻𝑖 and 𝑒𝑋𝑖 are quantization errors of the coefficient Hi 

and the input Xi. Both  𝑒𝐻𝑖 and 𝑒𝑋𝑖 can be modeled by 𝑒𝑞 in (19).  

To calculate the mean 𝐸(𝑌′), i.e., 

𝐸(𝑌′) = 𝐸(𝑌) + 𝐸 ( ∑ (𝑋𝑖𝑒𝐻𝑖 + 𝐻𝑖𝑒𝑋𝑖 + 𝑒𝐻𝑖𝑒𝑋𝑖) 
𝑁𝑓−1

𝑖=0 ),  (27) 

we first determine the mean of the cross product term 𝑒𝐻𝑖𝑒𝑋𝑖. 

Due to  [15], if 𝑒𝐻𝑖  and 𝑒𝑋𝑖  are independent real-valued 

continuous random variables with finite expected values, then  
𝐸(𝑒𝐻𝑖𝑒𝑋𝑖) =  𝐸(𝑒𝐻𝑖)𝐸(𝑒𝑋𝑖) = 0. (28) 

Taking into consideration (23), (27) and (28), we obtain 

𝐸(𝑌′) − 𝐸(𝑌) = ∑ (𝑋𝑖𝐸(𝑒𝐻𝑖) + 𝐻𝑖𝐸(𝑒𝑋𝑖) +
𝑁𝑓−1

𝑖=0

𝐸(𝑒𝐻𝑖𝑒𝑋𝑖)) = 0.  
(29) 

By definition and (29), the variance of the output Y’ is 

𝑉𝑎𝑟(𝑌′) = 𝐸 [(𝑌′ − 𝐸(𝑌′))
2

] = 𝐸[(𝑌′ − 𝑌)2].  (30) 

On the other hand, the variance of Y’ is also given by 

𝑉𝑎𝑟(𝑌′) = ∑ (𝑋𝑖
2𝑉𝑎𝑟(𝑒𝐻𝑖) + 𝐻𝑖

2𝑉𝑎𝑟(𝑒𝑋𝑖) +
𝑁𝑓−1

𝑖=0

𝑉𝑎𝑟(𝑒𝐻𝑖𝑒𝑋𝑖)) =  ∑ (𝑋𝑖
2𝜎𝑞

2 + 𝐻𝑖
2𝜎𝑞

2 + 𝑉𝑎𝑟(𝑒𝐻𝑖𝑒𝑋𝑖)) 
𝑁𝑓−1

𝑖=0 .  
(31) 

Because 𝑉𝑎𝑟(𝑒𝐻𝑖𝑒𝑋𝑖) is of a higher order than the other terms 

in (31), we have  
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max{𝑉𝑎𝑟(𝑒𝐻𝑖𝑒𝑋𝑖)} =
∆4

16
≪  ∑ 𝜎𝑞

2(𝑋𝑖
2 + 𝐻𝑖

2) 
𝑁𝑓−1

𝑖=0
=

∑
∆2

12
(𝑋𝑖

2 + 𝐻𝑖
2) 

𝑁𝑓−1

𝑖=0
.   

(32) 

Therefore, 𝑉𝑎𝑟(𝑒𝐻𝑖𝑒𝑋𝑖) in (31) can be ignored and by (24) we 

obtain 

𝑉𝑎𝑟(𝑌′) ≈  ∑ 𝜎𝑞
2(𝑋𝑖

2 + 𝐻𝑖
2) 

𝑁𝑓−1

𝑖=0
=  

∆2

12
∑ (𝑋𝑖

2 + 𝐻𝑖
2) 

𝑁𝑓−1

𝑖=0
.  (33) 

From (33), it can be seen that the quantization error is amplified 

by a multiplicative factor. Then, 𝑒𝑐  is defined as the overall 

error for the conventional binary filter, i.e., 

𝑒𝑐 = |𝑌′ − 𝑌| (34) 

By combining (30), (33) and (34), we obtain the mean of the 

squared error as 

𝐸(𝑒𝑐
2) = 𝐸((𝑌′ − 𝑌)2) =  𝑉𝑎𝑟(𝑌′) =

∆2

12
∑ (𝑋𝑖

2 +
𝑁𝑓−1

𝑖=0

𝐻𝑖
2) =

1

12∙22𝑁𝑏
∑ (𝑋𝑖

2 + 𝐻𝑖
2) 

𝑁𝑓−1

𝑖=0
  

(35) 

By (35), 𝑒𝑐 can be estimated as  

𝑒𝑐 = |𝑌′ − 𝑌| ≈ √
∆2

12
∑ (𝑋𝑖

2 + 𝐻𝑖
2) 

𝑁𝑓−1

𝑖=0 =

 
∆

2√3
√∑ (𝑋𝑖

2 + 𝐻𝑖
2) 

𝑁𝑓−1

𝑖=0 =
√3

3∙2𝑁𝑏+1
√∑ (𝑋𝑖

2 + 𝐻𝑖
2) 

𝑁𝑓−1

𝑖=0 .   

(36) 

Hence, the computation error for the conventional binary 

implementation is related to the bit resolution 𝑁𝑏 as well as the 

coefficients and inputs.  

C. Error Analysis for Stochastic Filters 

1) Quantization errors due to the finite sequence length effect 

When a signal is stochastically encoded, the precision is 

limited by the sequence length 𝑁𝑠. For any Ns-bit sequence used 

in a stochastic system, the minimum distance between two 

numbers is 

∆𝑠 =
1

𝑁𝑠
.  (37) 

Then the quantization error is bounded by 

− 
∆𝑠

2
< 𝑒𝑞𝑠 ≤  

∆𝑠

2
.  (38) 

Similarly to the conventional binary quantization error given in 

(19), the mean and variance of the stochastic quantization error 

are respectively  

𝐸(𝑒𝑞𝑠) =  0, (39) 

𝜎𝑞𝑠
2 =

∆𝑠
2

12
=

1

12∙𝑁𝑠
2. (40) 

2) Quantization effect in stochastic computing 

The propagation effect of quantization errors in stochastic 

computing is similar to that in conventional FIR filters. The 

effect of quantization errors in stochastic computing can be 

analyzed by evaluating the output   𝑃𝑌′ . If  𝑃𝑌  is the correct 

output without errors, we have 

 𝑃𝑌 = ∑ 𝑃𝐻𝑖
𝑃𝑋𝑖

.
𝑁𝑓−1

𝑖=0
            (41) 

We further include the quantization effect by adding errors 𝑃𝑒𝐻𝑖
, 

𝑃𝑒𝑋𝑖
 and 𝑃𝑒𝑌

 to input 𝑃𝑋𝑖
, the coefficient 𝑃𝐻𝑖

 and the output 𝑃𝑌, 

respectively, where  𝑖 = 0, 1, … , 𝑁𝑓 − 1. Hence the output 𝑃𝑌′ 

can be calculated by 

𝑃𝑌′ =  ∑ ( 𝑃𝐻𝑖
+ 𝑃𝑒𝐻𝑖

)(𝑃𝑋𝑖 + 𝑃𝑒𝑋𝑖
)

𝑁𝑓−1

𝑖=0   

=  ∑ ( 𝑃𝐻𝑖
𝑃𝑋𝑖 + 𝑃𝑋𝑖𝑃𝑒𝐻𝑖

+ 𝑃𝐻𝑖𝑃𝑒𝑋𝑖
+ 𝑃𝑒𝐻𝑖

𝑃𝑒𝑋𝑖
) 

𝑁𝑓−1

𝑖=0   

=  𝑃𝑌 + ∑ (𝑃𝑋𝑖𝑃𝑒𝐻𝑖
+ 𝑃𝐻𝑖𝑃𝑒𝑋𝑖

+ 𝑃𝑒𝐻𝑖
𝑃𝑒𝑋𝑖

)
𝑁𝑓−1

𝑖=0 .  

(42) 

𝑃𝑒𝐻𝑖
and 𝑃𝑒𝑋𝑖

are independent quantization errors that can be 

modeled by 𝑒𝑞𝑠 with the properties in (38), (39) and (40). The 

mean of the stochastic output 𝑃𝑌′ is thus given by 

𝐸(𝑃𝑌′) =  𝐸(𝑃𝑌) + 

𝐸 (∑ (𝑃𝑋𝑖
𝑃𝑒𝐻𝑖

+ 𝑃𝐻𝑖
𝑃𝑒𝑋𝑖

+ 𝑃𝑒𝐻𝑖
𝑃𝑒𝑋𝑖

)
𝑁𝑓−1

𝑖=0
) = 𝐸(𝑃𝑌).  

(43) 

The variance of the output 𝑃𝑌′ can be obtained from (42) as 

𝑉𝑎𝑟(𝑃𝑌′) = ∑ (𝑃𝑋𝑖
2 𝑉𝑎𝑟(𝑃𝑒𝐻𝑖

) + 𝑃𝐻𝑖
2 𝑉𝑎𝑟(𝑃𝑒𝑋𝑖

) +
𝑁𝑓−1

𝑖=0

𝑉𝑎𝑟(𝑃𝑒𝐻𝑖
𝑃𝑒𝑋𝑖

)) =  ∑ (𝑃𝑋𝑖
2 + 𝑃𝐻𝑖

2 )𝜎𝑞𝑠
2 +

𝑁𝑓−1

𝑖=0

𝑉𝑎𝑟(𝑃𝑒𝐻𝑖
𝑃𝑒𝑋𝑖

)) .  

(44) 

𝑉𝑎𝑟 (𝑃𝑒𝐻𝑖
𝑃𝑒𝑋𝑖

) in (44) can be ignored due to the fact that 

max {𝑉𝑎𝑟 (𝑃𝑒𝐻𝑖
𝑃𝑒𝑋𝑖

)} =
∆𝑠

4

16
≪  ∑ 𝜎𝑞𝑠

2 (𝑃𝑋𝑖
2 +

𝑁𝑓−1

𝑖=0

𝑃𝐻𝑖
2 ) = ∑

∆𝑠
2

12
(𝑃𝑋𝑖

2 + 𝑃𝐻𝑖
2 ) 

𝑁𝑓−1

𝑖=0
.  

(45) 

Therefore, (46) becomes 

𝑉𝑎𝑟(𝑃𝑌′) ≈ 𝜎𝑞𝑠
2 ∑ (𝑃𝑋𝑖

2 + 𝑃𝐻𝑖
2 ) 

𝑁𝑓−1

𝑖=0
=

 
∆𝑠

2

12
∑ (𝑃𝑋𝑖

2 + 𝑃𝐻𝑖
2 ) 

𝑁𝑓−1

𝑖=0
. . 

(46) 

By definition and (43), we have  

𝑉𝑎𝑟(𝑃𝑌′) = 𝐸 [(𝑃𝑌′ − 𝐸(𝑃𝑌′))
2
] = 𝐸[(𝑃𝑌′ − 𝑃𝑌)2]. (47) 

By combining (46) and (47), we get  

𝐸[(𝑃𝑌′ − 𝑃𝑌)2] =  
∆𝑠

2

12
∑ (𝑃𝑋𝑖

2 + 𝑃𝐻𝑖
2 ) 

𝑁𝑓−1

𝑖=0
 . (48) 

The overall quantization error 𝑒𝑜𝑞 caused by the quantization 

effect can be defined as the absolute difference between the 

calculated result 𝑃𝑌′ and the accurate result 𝑃𝑌 , i.e., 

𝑒𝑜𝑞 = |𝑃𝑌′ − 𝑃𝑌|.  (49) 

From (48) and (49), the mean of the squared error 𝑒𝑜𝑞
2  can be 

evaluated as 

𝐸[𝑒𝑜𝑞
2 ] = 𝐸[(𝑃𝑌′ − 𝑃𝑌)2] =

∆𝑠
2

12
∑ (𝑃𝑋𝑖

2 + 𝑃𝐻𝑖
2 ) 

𝑁𝑓−1

𝑖=0
.  (50) 

Because of (37) and (50), 𝑒𝑜𝑞 can be approximated as 

𝑒𝑜𝑞 ≈ √∆𝑠
2

12
∑ (𝑃𝑋𝑖

2 + 𝑃𝐻𝑖
2 ) 

𝑁𝑓−1

𝑖=0 =
√3 

6𝑁𝑠

√∑ (𝑃𝑋𝑖
2 + 𝑃𝐻𝑖

2 ) 
𝑁𝑓−1

𝑖=0
.  (51) 

3) Random fluctuations in stochastic computing 

In addition to the quantization error caused by the limited 

sequence length, stochastic computing also suffers from a 

fluctuation error as the pseudo random number generator 

introduces uncertainty into the stochastic representations. The 

fluctuation error is denoted by 𝑒𝑓𝑠 .  𝑃𝑌′′ is defined as the final 

result obtained by stochastic computing [11, 16]. Due to 

random fluctuations, 𝑃𝑌′′ is different from 𝑃𝑌. If 𝑃𝑌 is encoded 

by the stochastic bit stream 𝑦(𝑖), where 𝑖 = 1, 2, … , 𝑁𝑠 and 𝑁𝑠 

is the sequence length, then the final output 𝑃𝑌′′ is obtained by  

𝑃𝑌′′ =
1

𝑁𝑠

∑ 𝑦(𝑖)
𝑁𝑠

𝑖=1 ,  (52) 

If no stochastic fluctuations existed, there is no difference 

between 𝑃𝑌  and 𝑃𝑌′′. However, the stochastic bit stream 𝑦(𝑖) is 

usually a Bernoulli sequence. The mean of the output 𝑃𝑌′′ is 

𝐸(𝑃𝑌′′) = 𝑃𝑌. (53) 

The variance is given by 

𝑉𝑎𝑟[𝑃𝑌′′] = 𝑉𝑎𝑟 [
1

𝑁𝑠
∑ 𝑦(𝑖)𝑁𝑠

𝑖=1 ]  

= 𝐸 [(𝑃𝑌′′ − 𝐸(𝑃𝑌′′))
2

] = 𝐸[(𝑃𝑌′′ − 𝑃𝑌)2].  
(54) 

As 𝑦(𝑖) (i = 1, 2, …, 𝑁𝑠) is a Bernoulli sequence, we have 

𝑉𝑎𝑟 [
1

𝑁𝑠
∑ 𝑦(𝑖)𝑁𝑠

𝑖=1 ] =
𝑃𝑌(1−𝑃𝑌)

𝑁𝑠
.  (55) 
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Let 𝑒𝑓𝑠 be the fluctuation error defined as 

𝑒𝑓𝑠 = |𝑃𝑌′′ − 𝑃𝑌|.  (56) 

The error is measured using the variance in (54) and (55), i.e., 

𝐸[𝑒𝑓𝑠
2] = 𝐸[(𝑃𝑌′′ − 𝑃𝑌)2] =

𝑃𝑌(1−𝑃𝑌)

𝑁𝑠
.  (57) 

Therefore the fluctuation error can be approximated as 

𝑒𝑓𝑠 = √
𝑃𝑌 (1−𝑃𝑌)

𝑁𝑠
.  (58) 

Equation (58) implies that the fluctuation can be controlled by 

simply using longer sequences. 

4) Inaccuracies in the computation of stochastic FIR filters 

The stochastic computation can suffer from both 

quantization errors and fluctuation errors. The overall error 𝑒𝑜𝑠 

in a stochastic filter is thus the sum of the two errors: 

𝑒𝑜𝑠 =  𝑒𝑜𝑞 + 𝑒𝑓𝑠. (59) 

Substituting the quantization error 𝑒𝑜𝑞 in (51) and the 

fluctuation error 𝑒𝑓𝑠 in (58), we have 

𝑒𝑜𝑠 = √
𝑃𝑌 (1−𝑃𝑌)

𝑁𝑠
+

√3 

6𝑁𝑠

√∑ (𝑃𝑋𝑖
2 + 𝑃𝐻𝑖

2 ) 
𝑁𝑓−1

𝑖=0
,   (60) 

where 𝑃𝑋𝑖
,  𝑃𝐻𝑖

 and 𝑃𝑌  in (60) are coefficients, inputs and 

outputs, respectively, for the stochastic filter.  

D. Stochastic Sequence Length Estimate by Error Analysis 

The stochastic sequence length is an important parameter as 

it determines both the computational accuracy and the circuit 

performance. To determine the sequence length for stochastic 

FIR filters, we use (36) to evaluate the overall error of the 

conventional binary circuit. For the stochastic circuit, we use 

the upper bound of the overall stochastic error 𝑒𝑜𝑠 in (60) as an 

approximation of the stochastic error. To understand the 

relationship between bit resolution Nb and sequence length Ns, 

let 𝑒𝑜𝑠 =  𝑒𝑐, i.e.,  

𝑒𝑜𝑠 ≈ √
𝑃𝑌 (1−𝑃𝑌)

𝑁𝑠
+

√3 

6𝑁𝑠

√∑ (𝑃𝑋𝑖
2 + 𝑃𝐻𝑖

2 ) 
𝑁𝑓−1

𝑖=0
=

√3

6∙2𝑁𝑏
√∑ (𝑋𝑖

2 + 𝐻𝑖
2) 

𝑁𝑓−1

𝑖=0
≈ 𝑒𝑐 .  

(61) 

Hence the stochastic sequence length 𝑁𝑠 is approximately  

𝑁𝑠 ≈
12𝑃𝑌 (1−𝑃𝑌)

∑ (𝑋𝑖
2+𝐻𝑖

2) 
𝑁𝑓−1

𝑖=0

∙  22𝑁𝑏 .   (62) 

To describe how 𝑁𝑠 changes as 𝑁𝑏 increases, we use the big O 

notation to estimate the relationship between the necessary 

stochastic sequence lengths for a stochastic FIR filter to match 

the performance of the conventional binary FIR filter. 

Therefore, (62) can be written as 

𝑁𝑠 ≈ 𝑂( 22𝑁𝑏).   (63) 

(63) shows that the sequence length Ns grows exponentially 

as the binary resolution Nb increases. This is consistent with the 

stochastic sequences required in our experiments (see Table 3). 

Clearly, this fact has an adverse effect to any stochastic 

implementation. However, if a degraded performance in 

accuracy is acceptable, an exponential reduction would result in 

the required sequence length. This reduction in sequence length 

subsequently means a substantial reduction in energy 

consumption, thus achieving a significant improvement in 

performance metrics such as the EPO. For example, if the 

performance of a stochastic filter equivalent to that of an 8-bit 

binary filter is acceptable for an ideal 12-bit filter, the required 

sequence length, as per (63), would be only 1/256 of the length 

required for matching the performance of the 12-bit filter. This 

would reduce the EPO of the stochastic circuit by a factor of 

255/256. However, the conventional binary implementation 

would only result in a much smaller energy reduction, as shown 

in Table 7 (albeit for a different example). 

VII. FAULT TOLERANCE ANALYSIS AND SIMULATION  

Although errors are inevitable in the quantization process or 

caused by the inherent random fluctuation, stochastic 

computing has been known to be intrinsically fault-tolerant. In 

this section, we consider the fault tolerance of both the 

conventional binary and stochastic designs by taking into 

account soft errors.  

A. Fault-tolerance Analysis  

We first discuss the different behaviors of the conventional 

binary and stochastic circuits using the bit-flip error model [4, 

17].  

Consider a normalized Nb-bit binary number with value B: 

 𝐵 = x1 ∙ 2−1 + x2 ∙ 2−2 + ⋯ +  x𝑁𝑏
∙ 2−𝑁𝑏,        (64) 

where x𝑖 is the bit with weight 2-i (i = 1, …, 𝑁𝑏). Let Ri be a 

random variable to indicate if an error occurs or not, i.e., if Ri is 

1, an error occurs, so bit i flips. Further let 𝜀  be the error 

probability, i.e.,  

𝑃(𝑅𝑖 = 1) =  𝜀.                                   (65) 

Affected by possible bit flips, the normalized binary number 

becomes 

𝐵′ = ∑ x′𝑖 ∙ 2−𝑖𝑁𝑏
𝑖=1 = ∑ [𝑅𝑖(1 − x𝑖) +  x𝑖(1 − 𝑅𝑖)]

𝑁𝑏
𝑖=1 ∙

2−𝑖.  
(66) 

The error for the conventional binary approach is defined as 

𝑒𝑐
(𝑖)

= 𝐵′ − 𝐵,           (67) 

where a superscript (i) is used to indicate that 𝑒𝑐
(𝑖)

 is to denote 

the error caused by error injection. It has been shown in [4] that 

the error 𝑒𝑐
(𝑖)

 has the following mean value and variance: 

𝐸[𝑒𝑐
(𝑖)

] ≈  (1 − 2𝐵)𝜀;        (68) 

𝑉𝑎𝑟[𝑒𝑐
(𝑖)

] ≈  
1

3
(1 − 𝜀)𝜀.        (69) 

Since the stochastic implementation does not necessarily use 

the minimum length for an Nb-bit binary number, the mean 

value and variance for the stochastic method are re-computed 

for comparison. The stochastic number S is the encoded value 

of the Nb-bit binary number B. As a performance matching 

multiplier (PMM) is used, the actual sequence length is 𝑁𝑠 =
𝑃𝑀𝑀 ∙ 2𝑁𝑏. For implementation convenience usually 𝑃𝑀𝑀 is 

also a number in the form of 2𝑁𝑏′ (𝑁𝑏′= 0, 1, 2, …). Hence the 

Ns-bit stochastic sequence can be generated using a (Nb+Nb’)-

bit linear feedback shift register (LFSR). A stochastic bit stream 

𝑦1𝑦2 … 𝑦𝑁𝑠
is produced to encode a normalized Nb-bit binary 

number in [0, 1]. Therefore the stochastic number S can be 

calculated by  

𝑆 =
1

𝑁𝑠
 ∑ 𝑦𝑖

𝑁
𝑖=1 =

1

𝑃𝑀𝑀∙2𝑁𝑏
 ∑ 𝑦𝑖

𝑁𝑠
𝑖=1 ,            (70) 

where 𝑁𝑠 is the stochastic sequence length.  

For a stochastic circuit, Si (𝑖 = 1, 2, … , 𝑁𝑠) is defined as a 

random variable to indicate if an error occurs or not in a 

stochastic bit stream, i.e., if Si is 1, an error occurs, so bit i flips. 

The error injection rate is also considered to be 𝜀, i.e.,  

𝑃(𝑆𝑖 = 1) =  𝜀.                                    (71) 
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𝑆1, 𝑆2, … , 𝑆𝑁𝑠
are statistically independent, so 

𝐸[𝑆𝑖] =  𝜀;                                            (72) 

𝑉𝑎𝑟[𝑆𝑖] =  (1 − 𝜀)𝜀.                            (73) 

A bit affected by a possible error is denoted by y′𝑖 , thus  

𝑦′𝑖 = 𝑆𝑖(1 − 𝑥𝑖) + 𝑥𝑖(1 − 𝑆𝑖).           (74) 

The stochastic number then becomes  

𝑆′ =
1

𝑁𝑠
 ∑ y′

𝑖
𝑁
𝑖=1 =

1

𝑁𝑠
 ∑ [𝑆𝑖(1 − y𝑖) + y𝑖(1 − 𝑆𝑖)]

𝑁𝑠
𝑖=1 .     (75) 

Hence, the stochastic error 𝑒𝑠
(𝑖)

 is determined by 

  𝑒𝑠
(𝑖)

= 𝑆′ − 𝑆 =
1

𝑁𝑠
 ∑ 𝑆𝑖(1 − 2y𝑖)

𝑁𝑠
𝑖=1 .             (76) 

By (70), (72) and (76), the mean of error 𝑒𝑠
(𝑖)

 is given by 

𝐸[𝑒𝑠
(𝑖)

] =
1

𝑁𝑠
∑ (1 − 2y𝑖)𝑁𝑠

𝑖=1 𝐸[𝑆𝑖] =
1

𝑃𝑀𝑀∙2𝑁𝑏
∑ (1 − 2y𝑖)

𝑁𝑠
𝑖=1 𝜀 =  (1 − 2𝑆)𝜀.  

(77) 

With (73) and (76), the variance of error 𝑒𝑠
(𝑖)

 is obtained as 

𝑉𝑎𝑟[𝑒𝑠
(𝑖)

] =
1

𝑁𝑠
2 ∑ (1 − 2y𝑖)

2𝑁𝑠
𝑖=1 𝑉𝑎𝑟[𝑆𝑖] =

1

𝑁𝑠
2 ∑ (1 − 2y𝑖)

2𝑁𝑠
𝑖=1 (1 − 𝜀)𝜀 =

1

𝑃𝑀𝑀∙2𝑁𝑏
(1 − 𝜀)𝜀. 

(78) 

To investigate how injected errors affect the function to 

implement FIR filters, we assume that the injected errors 

𝑒𝑐
(𝑖)

 and 𝑒𝑠
(𝑖)

 follow additive Gaussian distributions.  

For the conventional binary FIR filter defined in (25) without 

injected errors, the erroneous output 𝑌(𝑖) is given by 

𝑌(𝑖) = ∑ (𝐻𝑖 + 𝑒𝐻𝑖
(𝑖)

)(𝑋𝑖 + 𝑒𝑋𝑖
(𝑖)

)
𝑁𝑓−1

𝑖=0
, (79) 

where 𝑒𝐻𝑖
(𝑖)

 and 𝑒𝑋𝑖
(𝑖)

 are independent errors modeled by 𝑒𝑜𝑐
(𝑖)

 with 

the mean and variance given in (68) and (69), respectively. The 

overall error due to error injection for the conventional binary 

FIR filters 𝑒𝑜𝑐
(𝑖)

 is then 

𝑒𝑜𝑐
(𝑖)

= 𝑌(𝑖) − 𝑌.            (80) 

When the error injection rate 𝜀 is small, the mean and variance 

of the overall error 𝑒𝑜𝑐
(𝑖)

 are given by (approximately)  

𝐸[𝑒𝑜𝑐
(𝑖)

] ≈ ∑ [(𝐻𝑖 + 𝑋𝑖 − 4𝐻𝑖𝑋𝑖)𝜀 + (1 −
𝑁𝑓−1

𝑖=0

2𝐻𝑖)(1 − 2𝑋𝑖)𝜀2] ;  
(81) 

𝑉𝑎𝑟[𝑒𝑜𝑐
(𝑖)

] ≈
𝜀

9
∑ {3(𝐻𝑖

2 + 𝑋𝑖
2) + [1 − 3(𝐻𝑖

2 + 𝑋𝑖
2)]𝜀}

𝑁𝑓−1

𝑖=0
.  (82) 

How (81) and (82) are derived is shown in detail in the appendix. 

Similarly, the overall error due to error injection for the 

stochastic FIR filters 𝑒𝑜𝑠
(𝑖)

 is given by 

𝑒𝑜𝑠
(𝑖)

= 𝑃𝑌(𝑖) − 𝑃𝑌 .            (83) 

Its mean and variance are given by 

𝐸[𝑒𝑜𝑠
(𝑖)

] = ∑ [(𝑃𝐻𝑖
+ 𝑃𝑋𝑖

− 4𝑃𝐻𝑖
𝑃𝑋𝑖

)𝜀 + (1 −
𝑁𝑓−1

𝑖=0

2𝑃𝐻 𝑖
)(1 − 2𝑃𝑋𝑖

)𝜀2] ;  
(84) 

𝑉𝑎𝑟[𝑒𝑜𝑠
(𝑖)

] ≈
𝜀

𝑁𝑠
2 ∑ {𝑁𝑠(𝐻𝑖

2 + 𝑋𝑖
2) + [1 − 𝑁𝑠(𝑃𝑋𝑖

2 +
𝑁𝑓−1

𝑖=0

𝑃𝐻𝑖
2 )]𝜀}.  

(85) 

𝐸[𝑒𝑜𝑐
(𝑖)

] and 𝐸[𝑒𝑜𝑠
(𝑖)

] in (81) and (84) show that the mean output 

error depends on both the inputs and the coefficients. The mean 

of the stochastic error 𝐸[𝑒𝑜𝑠
(𝑖)

] is identical to the mean of the 

conventional binary error 𝐸[𝑒𝑜𝑐
(𝑖)

] for the same filter function 

(thus with the same inputs and coefficients). 

To compare the variances of the binary error and the 

stochastic error, all the inputs and coefficients in (82) and (85) 

are assumed to be 0.5. We then obtain  

𝑉𝑎𝑟[𝑒𝑜𝑐
(𝑖)

] ≈
5𝑁𝑓

18
𝜀 −

𝑁𝑓

6
𝜀2,        (86) 

𝑉𝑎𝑟[𝑒𝑜𝑠
(𝑖)

] ≈ (
𝑁𝑓

𝑁𝑠
2 +

𝑁𝑓

2𝑁𝑠
) 𝜀 −

𝑁𝑓

2𝑁𝑠
𝜀2.       (87) 

For any 𝑁𝑠 > 3, the variances in (86) and (87) satisfy  

 𝑉𝑎𝑟[𝑒𝑜𝑐
(𝑖)

] > 𝑉𝑎𝑟[𝑒𝑜𝑠
(𝑖)

].        (88) 

Due to the factor of  𝑁𝑠 , the stochastic method results in a 

smaller variance. The variation of the error for the stochastic 

implementation 𝑒𝑜𝑠
(𝑖)

 is inversely proportional to the sequence 

length  squared, 𝑁𝑠
2. When using 𝑁𝑠 = 𝑃𝑀𝑀 ∙ 2𝑁𝑏  ( 𝑃𝑀𝑀 =

20, 21, 22, … ) bits in the stochastic encoding of an 𝑁𝑏-bit binary 

number, the variance of the stochastic error can be reduced by 

increasing the  𝑃𝑀𝑀 . In the conventional binary approach, 

however, it is more difficult to obtain a smaller variance as it 

lacks the tuning parameter 𝑃𝑀𝑀 in the stochastic approach. 

B. Fault-tolerance Simulation 

Simulations are further performed to evaluate the reliability 

of the binary and stochastic circuits. To measure the reliability 

of a design, the average absolute error (AAE) is defined as 

𝐴𝐴𝐸 =
1

𝑀
∙

1

22𝑁𝑏+4 ∑ |𝑋𝑖 − 𝑋𝑖
′|𝑀−1

𝑖=0 , (89) 

where 𝑋𝑖 and 𝑋𝑖
′ are the expected correct output and the actual 

output, respectively, M is the number of simulations, and the 

factor 
1

22𝑁𝑏+4 is taken as a constant coefficient so that the AAEs 

are between 0 and 1 (𝑁𝑏 = 13 here). The AAE indicates how 

seriously the injected error affects the correct output. 

In the fault tolerance analysis, the effect of faults is also taken 

into account in auxiliary circuits such as the SNGs and counters. 

Digital logic is modeled in Matlab such that bit flips can occur 

at either the input or output. A bit flips with a certain probability 

as indicated by the error injection rate. The consequence of the 

bit flips can be seen at the final output.  How the faults affect 

the filter behavior is reflected by the value of AAE. We 

investigate the AAE for the conventional binary 13-bit low-pass 

FIR filter with 267 taps, as well as the stochastic MWA design 

and HWA design using a sequence length of 4,194,304 bits 

(from Table 3) under various injected error rates. In addition, 

redundant copies of the binary circuit can be used to achieve a 

better fault tolerance, for example, in the form of triple modular 

redundancy (TMR). We further consider the TMR 

implementations of the binary circuit with unreliable and fault-

free voters [18]. The stochastic computational models in [12, 

13] are used to facilitate our fault-tolerance analysis. XOR gates 

are used to inject errors into the circuit. The majority voters in 

the TMR circuits are considered bitwise rather than word-wise. 

Table 8 shows the comparison of AAEs obtained from 200 

simulations with a sequence length of 100,000 bits. The results 

with error injection are compared with those without error 

injection, thus the AAEs for the stochastic circuits are 0 when 

the injected error rate is 0. It can be seen that the AAE increases 

as the injected error rate increases. The conventional binary 

circuit is not as fault-tolerant as the stochastic circuits, which is 

consistent with the analysis. When one bit in a binary circuit 

flips, it can cause a serious error if the erroneous bit is among 

the MSBs. However, all bits in a stochastic sequence have the 
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same weight, so the effect of a single bit flip is insignificant in 

a relatively long stochastic sequence. The binary TMR circuit 

with unreliable voters has an improved reliability, but it is still 

not as reliable as the stochastic approaches. However, the 

binary TMR circuit with reliable voters becomes more fault-

tolerant than the stochastic circuits. 

VIII. CONCLUSIONS 

In this paper, a stochastic hardwired weighted average (HWA) 

design and a multi-level weighted average (MWA) design are 

proposed for implementing FIR filters. The HWA design takes 

advantage of simply repeating the input wires of a multiplexer 

to implement the weights of different data inputs, while the 

MWA design uses multiplexers to generate the required filter 

coefficients or weights. The proposed stochastic  

designs show an improved performance, a smaller circuit area 

and lower power consumption, compared with the conventional 

stochastic design. The MWA design with multiple stages is not 

as competitive as the HWA design, but it can be more easily 

reconfigured by re-programming the weight generators. This 

task is not easy for the HWA design that uses repeated inputs to 

implement the filter coefficients. 

Table 8. Average absolute error of the stochastic and binary circuits with 

and without redundancy at various injected error rates. The results are obtained 

from 200 simulations using sequences of 100,000 bits. 

Error 
Rate 

(%) 

Average Absolute Error (%) 

MWA HWA Binary 

Binary TMR 

Error-free 

Voter 

Unreliable 

Voter 

0 0 0 0 0 0 

0.1 0.063 0.065 1.507 0.004 0.126 

0.2 0.121 0.136 2.325 0.009 0.225 

0.5 0.339 0.326 3.290 0.035 0.581 

1 0.592 0.574 5.209 0.111 1.203 

2 1.476 1.226 6.368 0.198 2.382 

5 3.009 2.948 10.942 0.337 5.794 

10 5.472 5.696 21.477 1.123 12.050 

Compared to binary FIR filter circuits, the proposed 

stochastic designs have a significant advantage in circuit area, 

especially at higher resolutions. With respect to the 

performance metrics of throughput per area and energy per 

operation, however, the stochastic design does not show any 

advantages over its binary counterpart. This is primarily due to 

the significant latency in stochastic computing because long 

stochastic sequences must be used to achieve the same filtering 

performance as a binary circuit. With a shorter stochastic 

sequence, however, the stochastic circuit shows a graceful 

degradation in performance compared to the binary design. The 

features of a stochastic circuit are investigated in detail by both 

analysis and simulation. 

A binary TMR circuit using error-free voters is shown to be 

more reliable than the stochastic design. Due to its intrinsic fault 

tolerance, however, the proposed stochastic design shows 

significant advantages in reliability over the conventional 

binary design and its TMR implementation when the voters are 

subject to errors.  These results suggested that other sum-of-

product based circuits could also benefit from stochastic 

implementation.  
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APPENDIX 

In this appendix, we prove that (81) and (82) give the mean 

and variance of the overall error in the conventional binary filter 

circuit. To investigate how the injected errors affect the output 

of the FIR filters, we assume that the correct output of the 

conventional binary FIR filter Y is given by (25), where Hi and 

Xi are the inputs and filter coefficients without injected error. 

With error injection, the output 𝑌(𝑖) given in (79) is evaluated 

by 

𝑌(𝑖) = ∑ (𝐻𝑖 + 𝑒𝐻𝑖
(𝑖)

)(𝑋𝑖 + 𝑒𝑋𝑖
(𝑖)

)
𝑁𝑓−1

𝑖=0
  

=  ∑ (𝐻𝑖𝑋𝑖 + 𝑋𝑖𝑒𝐻𝑖
(𝑖)

+ 𝐻𝑖𝑒𝑋𝑖
(𝑖)

+ 𝑒𝐻𝑖
(𝑖)

𝑒𝑋𝑖
(𝑖)

) 
𝑁𝑓−1

𝑖=0
  

=  𝑌 + ∑ (𝑋𝑖𝑒𝐻𝑖
(𝑖)

+ 𝐻𝑖𝑒𝑋𝑖
(𝑖)

+ 𝑒𝐻𝑖
(𝑖)

𝑒𝑋𝑖
(𝑖)

)
𝑁𝑓−1

𝑖=0
,  

(90) 

where 𝑒𝐻𝑖
(𝑖)

 and 𝑒𝑋𝑖
(𝑖)

 are statistically independent errors of 

Gaussian distribution for the coefficient Hi and the input Xi with 

mean and variance given by (68) and (69), respectively. Then 

we have 

𝐸(𝑒𝐻𝑖
(𝑖)

) ≈ (1 − 2𝐻𝑖)𝜀;        (91) 

𝐸(𝑒𝑋𝑖
(𝑖)

) ≈ (1 − 2𝑋𝑖)𝜀;        (92) 

𝑉𝑎𝑟[𝑒𝑋𝑖
(𝑖)

] = 𝑉𝑎𝑟[𝑒𝐻𝑖
(𝑖)

] ≈  
1

3
(1 − 𝜀)𝜀.     (93) 

The overall error due to error injection for the conventional 

binary FIR filter 𝑒𝑜𝑐
(𝑖)

 is given by (80). The mean of the overall 

error 𝑒𝑜𝑐
(𝑖)

 is given by 

E(𝑒𝑜𝑐
(𝑖)

) = 𝐸(𝑌′ − 𝑌) = 𝐸 ( ∑ (𝑋𝑖𝑒𝐻𝑖
(𝑖)

+ 𝐻𝑖𝑒𝑋𝑖
(𝑖)

+
𝑁𝑓−1

𝑖=0

𝑒𝐻𝑖
(𝑖)

𝑒𝑋𝑖
(𝑖)

)) = ∑ [𝑋𝑖𝐸(𝑒𝐻𝑖
(𝑖)

) + 𝐻𝑖𝐸(𝑒𝑋𝑖
(𝑖)

) +
𝑁𝑓−1

𝑖=0

𝐸(𝑒𝐻𝑖
(𝑖)

𝑒𝑋𝑖
(𝑖)

)].  

(94) 

Since 𝑒𝐻𝑖
(𝑖)

 and 𝑒𝑋𝑖
(𝑖)

 are statistically independent, the mean of 

their product is [15] 

𝐸(𝑒𝐻𝑖
(𝑖)

𝑒𝑋𝑖
(𝑖)

) = 𝐸(𝑒𝐻𝑖
(𝑖)

)𝐸(𝑒𝑋𝑖
(𝑖)

) ≈ (1 − 2𝐻𝑖)(1 − 2𝑋𝑖)𝜀2.   (95) 

By (91), (92) and (95), it is easy to show that the mean of the 

overall error of the conventional binary circuit due to error 

injection is given by (81).  

The variance of the overall error 𝑒𝑜𝑐
(𝑖)

 is given by 

𝑉𝑎𝑟 [𝑒𝑜𝑐
(𝑖)

] = 𝑉𝑎𝑟 ( ∑ (𝑋𝑖𝑒𝐻𝑖
(𝑖)

+ 𝐻𝑖𝑒𝑋𝑖
(𝑖)

+ 𝑒𝐻𝑖
(𝑖)

𝑒𝑋𝑖
(𝑖)

)
𝑁𝑓−1

𝑖=0 ) =

∑ [𝑋𝑖
2𝑉𝑎𝑟(𝑒𝐻𝑖

(𝑖)
) + 𝐻𝑖

2𝑉𝑎𝑟(𝑒𝑋𝑖
(𝑖)

) + 𝑉𝑎𝑟(𝑒𝐻𝑖
(𝑖)

𝑒𝑋𝑖
(𝑖)

)
𝑁𝑓−1

𝑖=0 ].  
(96) 

The variance of the product of the two independent 

variables 𝑒𝐻𝑖
(𝑖)

 and 𝑒𝑋𝑖
(𝑖)

 can be calculated by 

𝑉𝑎𝑟 (𝑒𝐻𝑖
(𝑖)

𝑒𝑋𝑖
(𝑖)

) = 𝑉𝑎𝑟 (𝑒𝐻𝑖
(𝑖)

) 𝑉𝑎𝑟 (𝑒𝑋𝑖
(𝑖)

) − 𝑉𝑎𝑟 (𝑒𝐻𝑖
(𝑖)

) 𝐸2 (𝑒𝑋𝑖
(𝑖)

)

− 𝑉𝑎𝑟 (𝑒𝑋𝑖
(𝑖)

) 𝐸2 (𝑒𝐻𝑖
(𝑖)

). 
(97) 

By (91), (92) and (93), equation (97) can be further written as 

𝑉𝑎𝑟(𝑒𝐻𝑖
(𝑖)

𝑒𝑋𝑖
(𝑖)

) =
1

9
 𝜀2(1 − 𝜀)2 −

1

3
 𝜀3(1 − 𝜀)[(1 −

2𝐻𝑖)2 + (1 − 2𝑋𝑖)
2].  

(98) 

Due to (93) and (98), equation (96) becomes 
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𝑉𝑎𝑟 [𝑒𝑜𝑐
(𝑖)

] = ∑ {
1

3
(𝐻𝑖

2 + 𝑋𝑖
2)𝜀(1 − 𝜀) +

1

9
 𝜀2(1 − 𝜀)2 −

𝑁𝑓−1

𝑖=0
1

3
𝜀3(1 − 𝜀)[(1 − 2𝐻𝑖)2 + (1 − 2𝑋𝑖)2]}.  

(99) 

When the injected error rate 𝜀 is small, 𝜀𝑘 for 𝑘 ≥ 3 in (99) can 

be ignored. This immediately leads to the variance given in (82).  
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