
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 1

Low-Power Approximate Logarithmic Squaring
Circuit Design for DSP Applications

Mohammad Saeed Ansari, Bruce F. Cockburn, Jie Han

Abstract—The squaring function is widely used in Digital Signal Processing (DSP). There are many DSP applications with noisy
inputs for which simplifying approximations of the squaring function implementation have a minor impact on the output quality, while
permitting significant reductions in the hardware cost. This article proposes a Low-Error Squaring Function (LESF) and its low-power
hardware implementation. Unlike the existing logarithmic squaring functions, LESF benefits from a double-sided error distribution and,
consequently, error cancellation in larger calculations. LESF approximates a base-2 logarithmic function with a linear polynomial, i.e.
log2f(x) ≈ ax+ b. Since input b in this sum is a constant, LESF replaces the conventional full-adder with a compact specialized adder
for hardware efficiency. Our simulation results show that the 16-bit LESF is 23.23% more accurate (in the mean relative error distance)
than the baseline Mitchell approximate logarithmic squaring function while being 1.8× faster and 39% more energy-efficient. LESF and
other logarithmic squaring functions are evaluated for the square-law detector application. LESF is shown to be more than 3× more
accurate in this application (with respect to the Euclidean distance) than the next most accurate design in the literature, which uses an
iterative error compensation technique.

Index Terms—squaring function, low-power, approximate arithmetic, logarithmic circuits, AM modulation.

F

1 INTRODUCTION

THE performance of a computing system is often de-
termined by its arithmetic modules [1]. A widely-used

arithmetic operation in multimedia and Digital Signal Pro-
cessing (DSP) is the squaring function [2]. DSP applications
usually process noisy data from signal acquisition devices
and, therefore, faster and more hardware-efficient approx-
imate solutions can often be used at the cost of negligible
quality degradation in the final results [3]. In fact, fully
accurate results are not required for many applications and
in those cases approximation can be beneficial due to the
potential to significantly reduce design costs while still
producing sufficiently accurate results [4], [5].

Most general-purpose processors can execute DSP al-
gorithms (e.g., using a multiplier with identical inputs to
implement a squaring function); however, they might not
meet the latency and power consumption constraints for
some battery-powered applications, such as mobile phones
[6]. The logarithm operation can be used to simplify the
computation of arithmetic functions, such as multiplication
[7], [8] and the squaring operation [2], [3], [9]. As shown
in [3], the baseline Mitchell logarithmic squaring function is
29.79% faster and 2.12× smaller than the conventional array
squaring circuit, while consuming 5.93× less power.

Computations in the logarithmic domain are performed
in three steps [10]: (1) take the base-2 logarithm of the input
operand(s), (2) operations in the logarithmic domain, and (3)
take the antilogarithm of the results from (2). Logarithmic
circuits are inherently approximate designs due to the lim-
ited bit precision and the finite accuracy when computing
the base-2 logarithm [11], [12]. Using either piecewise linear

The authors are with the Department of Electrical and Computer Engineering,
University of Alberta, Edmonton, AB, T6G 1H9, Canada (e-mail: ansari2,
cockburn, jhan8@ualberta.ca).

approximations over a finely subdivided input domain or
iterative techniques can compensate for the accuracy loss
when computing the base-2 logarithm [8].

Among the existing approaches to the hardware imple-
mentation of logarithmic conversion, piecewise polynomial
approximation is usually the most efficient solution [10].
An early and influential piecewise polynomial approxima-
tion was proposed by Mitchell [7]. Mitchell’s approximate
logarithm uses a Leading-One Detector (LOD) and always
underestimates the actual value. Several Mitchell-based
methods have been proposed to improve the accuracy. They
typically divide the power-of-two intervals into more than
one region and then apply piecewise linear approximation
within each region. The designs differ in the number of
regions and in the piecewise linear approximation functions
used in each region [10], [13]. A Nearest-One Detector
(NOD) is proposed in [11] instead of the conventional LOD
and, thus, it benefits from a double-sided error distribution
and, consequently, the possibility of error cancellation in
larger calculations.

A NOD is not used in this article; instead, we exploit
the concept of up-rounding in the design of the proposed
squaring function. In fact, the base-2 logarithm of the input
to the squaring function is calculated by using both up-
rounding and the conventional down-rounding methods.
These two scenarios are then jointly considered to calculate
the output of the squaring function. The proposed Low-
Error Squaring Function (LESF) is developed for integers;
however, it can be easily extended to operate on floating-
point (FP) numbers as well. Moreover, LESF approximates
a base-2 logarithm function with a linear polynomial, i.e.
log2f(x) ≈ ax+ b. Adding the constant b can be performed
by using a simplified adder (as one of the inputs is known
and fixed) instead of a general full-adder. The other contri-
bution of this article is to propose an adder that reduces the



IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 2

energy consumption of the LESF.
Note that the LESF is different from a simplified logarith-

mic multiplier in which both inputs have identical values.
In fact, it uses an approximation that is expressly developed
for a squaring function.

The remainder of this article is organized as follows:
Section 2 provides the required background information on
Logarithmic Number Systems (LNS) and the state-of-the-
art squaring functions. Section 3 describes the proposed
squaring function and how it is implemented in hardware.
It also elaborates on how the proposed method can be
applied to FP numbers. Section 4 evaluates and compares
the error and hardware performance of the proposed design
with other state-of-the-art squaring functions. The square-
law detector is considered in Section 5 to evaluate the
performance of the LESF in a widely-used application in the
field of telecommunications and to compare it quantitatively
with the existing designs in the literature. Finally, Section 6
provides concluding remarks.

2 RELATED WORK

Let Z = znzn−1 · · · z1z0 be the (n + 1)-bit binary represen-
tation of a positive integer N . Without loss of generality, let
k, where k ≤ n, indicate the position of the most significant
‘1’ in Z . Hence, N can be represented as [7]:

N = 2k(1 + x), (1)

where 0 ≤ x < 1 is the binary fraction, which can be
calculated as: x =

∑0
i=k−1 2

i−kzi = 1. Consequently, N2

can be obtained as:

N2 = 22k(1 + 2x+ x2), (2)

and the base-2 logarithm of N can be calculated as:

log2N = k + log2(1 + x). (3)

Depending on how log2N is approximated, different ap-
proximations for N2 can be obtained.

The Mitchell algorithm [7], the baseline method for most
logarithmic multipliers and squaring functions, approxi-
mates log2(1 + x) with x, which suggests the following
approximation for N2:

N2 ≈
{
22k(1 + 2x), x < 0.5,

22k+1(2x), x ≥ 0.5.
(4)

The exponent of the power of 2 in (4) gives the position
of the most significant ’1’ in the final result, and the fraction
part indicates the less significant bits.

The authors in [3] propose an approximate squaring
function with error compensation. Their design is composed
of a main block that approximates the squaring function
with a shift operation and a carry-free subtraction. This
block can then be reused for error compensation. In fact,
the error term from the first calculation is used as an input
to the same block and the results are added to the primary
results from the first step. This iterative process continues
until an acceptably small error is achieved. This technique
is applicable to any logarithmic squaring function, including
the LESF. However, this technique significantly increases
the hardware costs, as will be discussed in Section 4.2. The

authors in [3] rewriteN asN = 2k+(N−2k) and, therefore,
N2 can be approximated as:

N2 ≈ 22k + (N − 2k)2k+1 = 2k(2N − 2k) (5)

Comparing the approximated value in (5) with the exact
result shows that the term (N − 2k)2 gives the approxima-
tion error. Similar to Mitchell’s method, this approach also
always underestimates the actual value of N2.

A recent logarithmic multiplier with double-sided error
distribution is proposed in [8], where the same approx-
imation as used by Mitchell is used and, therefore, (4)
would still be valid for this design. However, the hard-
ware efficiency and the accuracy are improved, compared
to Mitchell’s logarithmic multiplier, by using approximate
adders. Three approximate adders are considered in [8] and
the Set-to-One-Adder (SOA) that sets a few least significant
bits to ’1’ shows the best accuracy versus hardware cost
trade-off. Hence, the only difference between the two de-
signs lies in their adders. We used this design as another
reference for comparison purposes.

3 PROPOSED SQUARING FUNCTION

Here we propose an approximation for the squaring func-
tion which, unlike the existing approaches, has a double-
sided error distribution.

3.1 Mathematical modeling

Any positive integer N , as expressed in (1), can be also
factored as:

N = 2k+1(1− t), (6)

where 0 < t ≤ 1. Considering (1) and (6), the base-2
logarithm of N can be expressed as:

log2N = k + log2(1 + x) = k + 1 + log2(1− t). (7)

Hence, log2N2 = 2log2N can be written as the summation
of the middle and right expressions in (7), as given by:

log2N
2 = 2k + 1 + log2(1 + x− t− tx). (8)

The variable t can be obtained as a function of x, i.e.
t = 0.5(1 − x), by considering the fact that both (1) and
(6) represent the same value N . Substituting the expression
into (8) results in:

log2N
2 = 2k + 1 + log2(0.5 + x+ 0.5x2). (9)

The least-squares method can be used to linearly approx-
imate log2(0.5 + x + 0.5x2) in (9). This method chooses
the coefficients so as to minimize the summed square of
residuals. We used the MATLAB curve fitting toolbox [14] to
this end and the best least squares linear fit over 0 ≤ x < 1
is:

log2(0.5 + x+ 0.5x2) ≈ 1.975x− 0.8732. (10)

Hence the base-2 logarithm of N2 can be approximated by
replacing the log() function in (9) with (10). However, to
simplify the hardware implementation, the constant 1.975 is
rounded to 2, which is a simple left-shift in hardware.

The approximation in (10) will not remain the best linear
fit when the coefficient 1.975 is changed to 2 and, therefore,



IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 3

the other coefficient needs to be adjusted to minimize the ap-
proximation error. By trying different values, we found out
experimentally that 0.1268 (the constant obtained by replac-

ing (10) in (9)) needs to be changed to Rc =
5

128
= 0.039 to

achieve the Lowest Mean Relative Error Distance (LMRED)
for the LESF. Fig. 1 shows how the accuracy of the LESF, in
terms of the MRED, changes with different constant values.
As shown in Fig. 1, reducing this constant from 1 improves
the accuracy of the LESF. However, the minimum MRED,
i.e. the maximum accuracy, is obtained when the constant
in (11) lies within the range [0.035, 0.040], see the inset.
Hence, we chose 0.039, which falls into this range and, as
mentioned earlier, can be easily implemented in hardware.

0 0.2 0.4 0.6 0.8

R
c

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
R

E
D

 o
f 

th
e

 L
E

S
F

0.02 0.03 0.04 0.05

0

0.01

0.02

0.03

0.04

Fig. 1: LESF accuracy w.r.t. the MRED vs. Rc in (11).

The proposed squaring function is therefore given by:

N2 ≈ 22k+1.975x+0.1268 ≈ 22k+2x+Rc . (11)

Note that the coefficients that result in the minimum
Mean Squared Error (MSE) for the approximation in (10)
are 1.975 and -0.8732, according to the MATLAB curve
fitting toolbox. However, changing the coefficients to what
are used in (11) increases the MSE from 0.0026 to 0.0084.
Although this increase is notable, the new MSE is still
negligible. More importantly, using the modified coefficients
significantly simplifies the hardware implementation and
still results in a highly-accurate squaring function.

2e+4 4e+4 6e+4

Output N2

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

S
ig

n
e
d

 r
e
la

ti
v
e
 e

rr
o

r

Mitchell

0 2e+4 4e+4 6e+4

Output N2

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

S
ig

n
e
d

 r
e
la

ti
v
e
 e

rr
o

r

LESF

Fig. 2: Signed relative error for the 8-bit Mitchell and the
LESF squaring circuits.

The signed relative error for the entire output range is
plotted for the 8-bit LESF and the baseline Mitchell squaring
circuits in Fig. 2. This figure shows that, unlike Mitchell,
LESF has both positive and negative errors.

3.2 Hardware implementation

The form of the proposed squaring function in (11) does
not imply any particular hardware implementation. It is
useful to express the results in the form of (4). To do so, 2y ,
where y = 2x + Rc, needs to be approximated. The least-
squares method is used again and the best linear fit over
0 ≤ y < 1 according to the MATLAB curve fitting toolbox is
2y ≈ 0.9923y+0.9471. We modified the two coefficients and
implemented 2y ≈ y+1 instead. Although this modification
increases the MSE from 0.0007 to 0.003, it is still negligible.
More importantly, it has a low-cost hardware implementa-
tion and still results in a highly-accurate squaring function.
Finally, LESF can be represented by:

N2 ≈


22k(y + 1), y < 1,

22k+1y, 1 ≤ y < 2,

22k+2(y − 1), 2 ≤ y < 3.

(12)

For example for 2 ≤ y < 3 in (12), 2y = 2(2+(y−2)); let
t = y − 2 and, consequently, 2y = 22 × 2t. Since 0 ≤ t < 1,
2y can be approximated as 22 × (1 + t) = 22 × (y − 1).

Fig. 3 shows the block diagram of the n-bit LESF. As
shown in Fig. 3, the first step is to find the k and x values
from the n-bit input I . We used the conventional Mitchell
approach to find these two parameters. The n-bit output
of the LOD is used as the input to the priority encoder
(PE), which stores the value of k in log2n bits, Rk, which
is then used to generate 2k in (12) using the Left-Shift unit
in Fig. 3. The value of x, on the other hand, is obtained by
performing the logical XOR between the original n-bit input
I and the LOD’s output. Since the output of the LOD uses a
one-hot representation, performing the XOR operation does
the subtraction [3]. The result of this subtraction needs to be
represented in the (n − 1)-bit register Rx [7]. If Ii, where
i ∈ {0, 1, 2, · · · , n} is the most significant ’1’ in I , then
Rx = Ii−1Ii−2 · · · I1I0. Hence, zeros should be padded to
the least significant bits of Rx for i < n, e.g. Rx = 00100000
for I = 00001001. This is done by using multiplexers
(MuxBank in Fig. 3) that use the output of the PE and
then append the proper number of zeros accordingly.

Fig. 3: Architecture of the LESF.



IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 4

The next step is to calculate y, which can be done by
adding the constant Rc to the shifted version of Rx, 2Rx,
which has the value 2x. Since 2Rx is an n-bit number,
Rc needs to be represented as an n-bit value. The result
of this addition is stored in (n + 1)-bit register Ry . We
implicitly know that Rc contains the fraction part, which
lies to the right side of the radix point and, therefore, it can
be represented as Rc = 000010100 · · · 00. Note that the bits
following the second ’1‘ in Rc are all zeros.

Algorithm 1 Addition of 2Rx and Rc = 0.039

1: Inputs: 2Rx and Rc, Output: Ry

2: Ry[9 : n+ 1] = 2Rx[8 : n]
3: Ry[8] = ¬2Rx[7] . logical NOT
4: (Ry[7], c5) = HA(2Rx[6], 2Rx[7]) . conventional HA
5: (Ry[6], c4) = HA(¬2Rx[5], c5)
6: (Ry[5], c3) = HA(2Rx[4], c4)
7: (Ry[4], c2) = HA(2Rx[3], c3)
8: (Ry[3], c1) = HA(2Rx[2], c2)
9: (Ry[2], Ry[1]) = HA(2Rx[1], c1)

Since Rc in the addition Ry = 2Rx + Rc is a constant,
a conventional adder can be replaced by a simpler design.
The required function is specified below in Algorithm 1. In
Algorithm 1, the two signals in pairs (Ry[j + 2], cj), where
j ∈ {1, 2, · · · , 5}, denote the sum and carryout signals of
a conventional half-adder (HA), respectively. According to
Algorithm 1, more savings can be obtained by increasing n.
In fact, the second step shows that no calculation is required
from the 8th bit down toward the least significant bit, i.e.
the (n + 1)th bit. Note that since this addition is done for
the fraction part of the result, index p has the weight of 2−p

and, therefore, indexing starts from 1 (the most significant
bit) and goes up to n+ 1.

The extra two bits in Ry compared to Rx are used to
handle the three conditions in (12). As shown in (12), y
represents the fractional part of the result and, thus, needs
to be smaller than 1. Hence, adding two extra bits to the
left side of the radix point lets us track the value of y
and compare it to the conditions given in (12). Finally,
considering that y < 3 (as shown in (12)), the first two most
significant bits in Ry , i.e. Ry[1] and Ry[2] can be 0, 1, or 2,
implements the conditions in (12). Based on the position of
the most significant ’1’, which is determined by the output
of the conventional adder (a.k.a. the exponent) in Fig. 3,
three cases can occur:

• The exponent is so small that there are not enough
bit positions to store the (n − 1) bits of Ry . In this
case, the less significant bits of Ry are discarded.

• The exponent is such that there are just (n − 1) bits
left inO. In this case, the (n−1) bits ofRy will exactly
fit into the available bits in O, see Fig. 3.

• The exponent is too big to fit into the (n−1) available
free bits in O. In this case, after fitting the (n− 1) bit
of Ry , the other bits are filled with zeros.

For further hardware savings, we used the PE proposed
in [15]. This design exploits the fact that the output of
the LOD uses a one-hot representation and, therefore, the
conventional PE can be simplified. Regarding the LOD, the
conventional LOD in [13] is used for all of the designs.

Note that LESF can be used as a more accurate baseline
design instead of the Mitchell design. What is more, the ex-
isting techniques in the literature for improving the accuracy
of the Mitchell design (e.g., the iterative technique in [3]) are
also applicable to the proposed design.

3.3 Extension to FP numbers
The LESF can be easily extended to handle FP numbers as
well as integers. Fig. 4 shows the architecture of the LESF
for 16-bit (a.k.a. half precision) FP numbers. The three main
fields for a 16-bit FP number A = a15a14 · · · a1a0 in IEEE
Standard 754 are: (1) the sign bit (s = a15), (2) the biased
exponent e = a14a13 · · · a10 with the constant bias 15, and
(3) the normalized mantissa m = a9a8 · · · a0, which lies on
the right side of the radix point.

Since the position k of the leading-one is given in the
exponent field, the LOD and PE in Fig. 3(a) can be removed.
On the other hand, the fraction part x is already provided
in the mantissa field and, consequently, the XOR operation
and the MuxBank would no longer be necessary.

Fig. 4: Architecture of the LESF for FP numbers.

4 PERFORMANCE EVALUATION

The designs in [7] and [8] are logarithmic multipliers, and
not squaring circuits. We used the approximation methods
in these two references and simplified their hardware im-
plementation (e.g. by removing one of the two LODs in
a logarithmic multiplier as there is only one input to a
squaring circuit) to create comparable squaring circuits.

Note that there are other types of squaring functions
in the literature, such as [2], [16]. Basically, any multiplier
design can be simplified and used as a squaring circuit.
However, only logarithmic designs are considered in this
work. The performance of the squaring functions is evalu-
ated below using both accuracy and hardware metrics.

4.1 Accuracy metrics
All of the considered designs were implemented in MAT-
LAB and their accuracy was evaluated over the entire 16-
bit unsigned input domain, i.e. from 0 to 65535. Table 1
reports the accuracy metrics for the proposed LESF and
other logarithmic squaring functions in the literature. The
MRED and the Average Error (AE, average of the signed
error distance) were then calculated.

The results in Table 1 show that the approximate squar-
ing function in [3] with one step of error correction, Sq. Fnc.-
1, is the most accurate design, with respect to the MRED.



IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 5

However, using iterative steps for error compensation can
be applied to other designs as well at the cost of signifi-
cant additional hardware, see Section 4.2. Hence, Sq. Fnc.-1
aside, LESF is the most accurate design, being 21.39% more
accurate than the next most accurate ALM-SOA-9 squaring
function. With respect to the AE, LESF seems to be the best
design, due to its double-sided error distribution.

TABLE 1: Error metrics of five different logarithmic
squaring functions.

Squaring Function AE MRED
Mitchell [7] 5.09e+7 0.0384

ALM-SOA-9 [8] 4.87e+7 0.0374
Sq. Fnc.-0. [3] 2.05e+8 0.1137
Sq. Fnc.-1. [3] 2.91e+7 0.0149

LESF 1.44e+7 0.0297

Regarding the ALM-SOA squaring function, we tried
different numbers of approximation bits in the SOA adder
and we found that 9 bits produced the lowest MRED.

We also extracted the Probability Density Function (PDF)
of the approximation error for Mitchell and the LESF squar-
ing circuits and plotted them in Fig. 5. As shown in Fig.
5(a), the Mitchell squaring circuit has a one-sided error
distribution, while the double-sided error distribution of the
LESF is clearly shown in Fig. 5(b).

0 2000 4000 6000 8000 10000 12000 14000

Error value

0

0.01

0.02

0.03

0.04

0.05

0.06

P
ro

b
a

b
il

it
y

(a) Mitchell [7].

-5000 0 5000 10000 15000

Error value

3

4

5

6

7

8

9

10

11

12

P
ro

b
a
b

il
it

y

10-3

(b) LESF.

Fig. 5: Error PDF of the the 8-bit squaring functions.

4.2 Hardware metrics

All of the designs were implemented in VHDL and then
synthesized using the Synopsys Design Compiler for ST
Micro’s 28-nm CMOS process.

The hardware measurements for three key metrics, area,
critical path delay, and power consumption, are given in
Table 2. As shown in this table, LESF is the fastest design
and the third-best design with respect to the area and
power consumption. However, it is the most energy-efficient
design, with respect to the PDP and it also achieves the best
energy-accuracy trade-off, i.e. the lowest PDP-MRED prod-
uct. As mentioned earlier, iterative techniques significantly
increase the hardware cost and this is well reflected in the
results of the Sq. Fnc.-1.

TABLE 2: Hardware metrics of five different logarithmic
squaring designs.

Squaring Function Power
(mW )

Delay
(nS)

Area
(µm2)

Normalized
PDP×MRED

Mitchell [7] 5.24e-2 1.49 184.41 0.28
ALM-SOA-9 [8] 4.33e-2 1.37 144.43 0.22

Sq. Fnc.-0. [3] 8.55e-2 1.07 264.22 1
Sq. Fnc.-1. [3] 1.95e-1 2.86 562.55 0.79

LESF 5.86e-2 0.81 247.57 0.13

5 APPLICATION: SQUARE-LAW DETECTOR

A radio signal must be modulated to be able to carry
information efficiently over a band-limited channel, such
as audio information for broadcasting [17]. For example,
Amplitude Modulation (AM) is a common modulation tech-
nique that is widely used in telecommunications [17].

Let m(t) be any arbitrary message signal (we used a
square-wave signal at 50 Hz) and let c(t) = Accos(2πfct)
be the carrier signal, where Ac and fc denote the amplitude
and frequency of the carrier signal, respectively. The AM
modulated signal s(t) can be expressed as:

s(t) =
[
1 + kam(t)

]
c(t). (13)

where the amplitude sensitivity ka is a constant such that
kam(t)� 1 [17]. We will set kam(t) = 0.01.

MATLAB was used to generate the message signal m(t),
the carrier signal c(t) with fc = 1KHz, and the modulated
message s(t). Once the modulated signal s(t) is calculated,
it is transmitted over an ideal communication channel. At
the receiver, the amplitude-modulated signal s(t) can be
demodulated using the square-law detector [17]. Signal
s2(t) can be expressed as:

s2(t) = A2
c

[
1 + kam(t)

]2[1 + cos(4πfct)

2

]
. (14)

After dropping the DC terms, s2(t) is passed through
a low-pass filter which removes the high-frequency term
cos(4πfct) and outputs a replica of the message m(t).
The MATLAB lowpass function is used with the pass-band
frequency fpass = 150Hz and a sampling frequency of
fs = 10KHz. With these inputs, the lowpass function gener-
ates a Finite Impulse Response (FIR) filter of order 48. Note
that the exact squaring function in (14) was replaced with
the LESF and other logarithmic squaring functions.

Fig. 6 shows the demodulated messagesm′(t), according
to which the LESF produces the closest waveform to the
waveform generated by using the exact squaring function.



IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 6

Sq. Fnc.-1 is the second most accurate design. Finally, the
waveforms generated by using the Mitchell and the ALM-
SOA-9 squaring functions seem to be worse than the other
two designs.

To numerically compare the performance of the squaring
functions, the Euclidean distances between the exact de-
modulated signal and those obtained by using logarithmic
squaring functions were calculated and are reported in Table
3. The Euclidean distance EA,B between the two signals
A and B measures the straight-line distance between two
points in A and B and can be calculated as [18]:

EA,B =
√∑S

i=1(Ai −Bi)2, (15)

where S is the number of sample points in the two signals
and Ai and Bi denote the samples of the two signals A and
B, respectively.

According to the results in Table 3, the demodulated
signal using the LESF is 67.19% closer to the demodulated
signal using an exact squaring function compared to the
second best design, Sq. Fnc.-1, which is consistent with the
results in Fig. 6. In the figure, the LESF waveform partially
overlies the exact waveform.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Time (S)

0.65

0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

A
m

p
li

tu
d

e

Exact

Mitchell

LESF

Sq. Fnc.-1

ALM-SOA-9

Fig. 6: Comparison of the demodulated signal m′(t) with
exact and logarithmic squaring functions.

TABLE 3: Euclidean distance w.r.t. exact squaring
demodulation of different logarithmic squaring functions.

Squaring Function Euclidean distance
Mitchell [7] 0.3961

ALM-SOA-9 [8] 0.3185
Sq. Fnc.-0. [3] 2.0441
Sq. Fnc.-1. [3] 0.2960

LESF 0.0971

6 CONCLUSION

Logarithmic squaring functions convert squaring into only
shift and addition operations, thus significantly reducing
the hardware implementation cost. This work proposes a
low-error squaring function, LESF, that outperforms the
state-of-the-art designs in the literature. LESF is the most
hardware efficient design, consuming the least amount of
power and while being the fastest design. LESF is also
more accurate than the existing designs, in terms of the

MRED, except for Sq. Fnc.-1, which uses an iterative error
compensation technique. However, this technique can be
used to increase the accuracy of any logarithmic squaring
function with extra hardware cost. Finally, the LESF and
other logarithmic squaring functions were evaluated in a
real-world application, the square-law detector. LESF was
shown to be almost 3× more accurate than the second most
accurate design, Sq. Fnc.-1, with respect to the Euclidean
distance metric.

REFERENCES

[1] M. S. Ansari, H. Jiang, B. F. Cockburn, and J. Han, “Low-power
approximate multipliers using encoded partial products and ap-
proximate compressors,” IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, vol. 8, no. 3, pp. 404–416, 2018.

[2] M. H. Sheu and S. H. Lin, “Fast compensative design approach
for the approximate squaring function,” IEEE Journal of Solid-state
Circuits, vol. 37, no. 1, pp. 95–97, 2002.

[3] A. Avramović, Z. Babić, D. Raič, D. Strle, and P. Bulić, “An
approximate logarithmic squaring circuit with error compensation
for DSP applications,” Microelectronics Journal, vol. 45, no. 3, pp.
263–271, 2014.

[4] H. Jiang, F. J. Santiago, M. S. Ansari, L. Liu, B. F. Cockburn,
F. Lombardi, and J. Han, “Characterizing approximate adders
and multipliers optimized under different design constraints,”
Proceedings of the Great Lakes Symposium on VLSI, pp. 393–398, 2019.

[5] M. S. Ansari, V. Mrazek, B. F. Cockburn, L. Sekanina, Z. Vasicek,
and J. Han, “Improving the accuracy and hardware efficiency of
neural networks using approximate multipliers,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 2,
pp. 317–328, 2020.

[6] I. Verbauwhede, P. Schaumont, C. Piguet, and B. Kienhuis, “Archi-
tectures and design techniques for energy efficient embedded DSP
and multimedia processing,” Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 20 988–20 993, 2014.

[7] J. N. Mitchell, “Computer multiplication and division using binary
logarithms,” IRE Transactions on Electronic Computers, no. 4, pp.
512–517, 1962.

[8] W. Liu, J. Xu, D. Wang, C. Wang, P. Montuschi, and F. Lombardi,
“Design and evaluation of approximate logarithmic multipliers
for low power error-tolerant applications,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 65, no. 9, pp. 2856–2868,
2018.

[9] M. Bilal, S. Masud, and S. Athar, “FPGA design for statistics-
inspired approximate sum-of-squared-error computation in mul-
timedia applications,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 59, no. 8, pp. 506–510, 2012.

[10] J. Y. L. Low and C. C. Jong, “Unified Mitchell-based approximation
for efficient logarithmic conversion circuit,” IEEE Transactions on
Computers, vol. 64, no. 6, pp. 1783–1797, 2015.

[11] M. S. Ansari, B. F. Cockburn, and J. Han, “A hardware-efficient
logarithmic multiplier with improved accuracy,” Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), pp. 922–925,
2019.

[12] S. Gandhi, M. S. Ansari, B. F. Cockburn, and J. Han, “Approxi-
mate leading one detector design for a hardware-efficient Mitchell
multiplier,” IEEE Canadian Conference on Electrical and Computer
Engineering (CCECE), pp. 205–208, 2019.

[13] K. H. Abed and R. E. Siferd, “CMOS VLSI implementation of a
low-power logarithmic converter,” IEEE Transactions on Computers,
vol. 52, no. 11, pp. 1421–1433, 2003.

[14] MathWorks, “MATLAB curve fitting toolbox,” Available Online:
https://www.mathworks.com/help/curvefit/curve-fitting.html, 2019.

[15] M. S. Kim, A. A. Del Barrio, R. Hermida, and N. Bagherzadeh,
“Low-power implementation of Mitchell’s approximate logarith-
mic multiplication for convolutional neural networks,” 23rd Asia
and South Pacific Design Automation Conference (ASP-DAC), pp. 617–
622, 2018.

[16] J. P. Langlois and D. Al-Khalili, “Carry-free approximate squaring
functions with O(n) complexity and O(1) delay,” IEEE Transac-
tions on Circuits and Systems II: Express Briefs, vol. 53, no. 5, pp.
374–378, 2006.

[17] H. Taub and D. L. Schilling, Principles of Communication Systems.
McGraw-Hill Higher Education, New York, NY, 1986.



IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 7

[18] H. Anton, Elementary Linear Algebra. John Wiley & Sons, Ltd,
Hoboken, NJ, 2019.


